Candida haemulonii complex (Candida haemulonii [I], Candida duobushaemulonii [II], and Candida haemulonii var. vulnera [III]) has become relevant in recent times, not so much because of a high incidence in human clinical sample cultures but because of its remarkable antifungal resistance. The objective of this study was to evaluate several methods for the identification of this uncommon species of Candida. Ten isolates of C. haemulonii were identified by biochemical and proteomic methods, and their antifungal susceptibility testing was performed by both commercial and reference methods. MALDI-TOF MS (Vitek MS and Vitek MS PRIME) and Vitek2 correctly identified these genera but API method did not. There was a good correlation between the commercial methods and the reference methods for the AST. In conclusion Vitek MS, Vitek MS PRIME, and Vitek2 systems, but not API32C, are reliable for identification of C. haemulonii complex. Furthermore, MALDI-TOF MS systems could identify to the subspecies level. Commercial methods for antifungal susceptibility testing are valid for the study of this species and confirm amphotericin B and to azole resistance.
The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.
- MeSH
- antibakteriální látky * farmakologie MeSH
- benzaldehydy * farmakologie MeSH
- biofilmy * účinky léků MeSH
- cymeny farmakologie MeSH
- faktory virulence MeSH
- gentamiciny * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- Pseudomonas aeruginosa * účinky léků fyziologie MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Wild strains of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested in an experimental hyperbaric chamber to determine the possible effect of hyperbaric oxygen on the susceptibility of these strains to the antibiotics ampicillin, ampicillin + sulbactam, cefazolin, cefuroxime, cefoxitin, gentamicin, sulfamethoxazole + trimethoprim, colistin, oxolinic acid, ofloxacin, tetracycline, and aztreonam during their cultivation at 23 °C and 36.5 °C. Ninety-six-well inoculated microplates with tested antibiotics in Mueller-Hinton broth were cultured under standard incubator conditions (normobaric normoxia) for 24 h or in an experimental hyperbaric chamber (HAUX, Germany) for 24 h at 2.8 ATA of 100% oxygen (hyperbaric hyperoxia). The hyperbaric chamber was pressurised with pure oxygen (100%). Both cultures (normoxic and hyperoxic) were carried out at 23 °C and 36.5 °C to study the possible effect of the cultivation temperature. No significant differences were observed between 23 and 36.5 °C cultivation with or without the 2-h lag phase in Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Cultivation in a hyperbaric chamber at 23 °C and 36.5 °C with or without a 2-h lag phase did not produce significant changes in the minimum inhibitory concentration (MIC) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. For the tested strains of Pseudomonas aeruginosa, the possible effect of hyperbaric oxygen on their antibiotic sensitivity could not be detected because the growth of these bacteria was completely inhibited by 100% hyperbaric oxygen at 2.8 ATA under all hyperbaric conditions tested at 23 °C and 36.5 °C. Subsequent tests with wild strains of pseudomonads, burkholderias, and stenotrophomonads not only confirmed the fact that these bacteria stop growing under hyperbaric conditions at a pressure of 2.8 ATA of 100% oxygen but also indicated that inhibition of growth of these bacteria under hyperbaric conditions is reversible.
- MeSH
- ampicilin farmakologie MeSH
- anaerobní bakterie MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria MeSH
- Escherichia coli MeSH
- hyperbarická oxygenace * MeSH
- Klebsiella pneumoniae MeSH
- kombinace léků trimethoprim a sulfamethoxazol farmakologie MeSH
- kyslík MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- oxidační stres MeSH
- pseudomonádové infekce * MeSH
- Pseudomonas aeruginosa MeSH
- sulbaktam MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
- MeSH
- diabetes mellitus * MeSH
- diabetická noha * MeSH
- diabetická retinopatie * MeSH
- diabetické nefropatie * etiologie MeSH
- lidé MeSH
- obezita MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Environmental pollution is a serious problem that can cause sicknesses, fatality, and biological contaminants such as bacteria, which can trigger allergic reactions and infectious illnesses. There is also evidence that environmental pollutants can have an impact on the gut microbiome and contribute to the development of various mental health and metabolic disorders. This study aimed to study the antibiotic resistance and virulence potential of environmental Pseudomonas aeruginosa (P. aeruginosa) isolates in slaughterhouses. A total of 100 samples were collected from different slaughterhouse tools. The samples were identified by cultural and biochemical tests and confirmed by the VITEK 2 system. P. aeruginosa isolates were further confirmed by CHROMagarTM Pseudomonas and genetically by rpsL gene analysis. Molecular screening of virulence genes (fimH, papC, lasB, rhlI, lasI, csgA, toxA, and hly) and antibiotic resistance genes (blaCTX-M, blaAmpC, blaSHV, blaNDM, IMP-1, aac(6')-Ib-, ant(4')IIb, mexY, TEM, tetA, and qnrB) by PCR and testing the antibiotic sensitivity, biofilm formation, and production of pigments, and hemolysin were carried out in all isolated strains. A total of 62 isolates were identified as P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant and most of them have multiple resistant genes. blaCTX-M gene was detected in all strains; 23 (37.1%) strains have the ability for biofilm formation, 33 strains had virulence genes, and 26 isolates from them have more than one virulence genes. There should be probably 60 (96.8%) P. aeruginosa strains that produce pyocyanin pigment. Slaughterhouse tools are sources for multidrug-resistant and virulent pathogenic microorganisms which are a serious health problem. Low-hygienic slaughterhouses could be a reservoir for resistance and virulence genes which could then be transferred to other pathogens.
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- biofilmy účinky léků růst a vývoj MeSH
- faktory virulence * genetika MeSH
- jatka * MeSH
- mikrobiální testy citlivosti * MeSH
- mikrobiologie životního prostředí MeSH
- Pseudomonas aeruginosa * genetika účinky léků patogenita izolace a purifikace MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The study aimed to assess the potential of phyllospheric bacterial strains isolated from cauliflower plants as biocontrol agents against black rot disease caused by Xanthomonas campestris pv. campestris, through both in vitro and in vivo evaluations. A total of 46 bacterial strains were isolated from healthy and infected cauliflower leaves of both resistant and susceptible plants, and evaluated them for various traits, including plant growth-promoting activities and in vitro antagonistic activity against Xanthomonas campestris pv. campestris. Further, a pot experiment was conducted with the susceptible cauliflower genotype (Pusa Sharad) and 10 selected phyllospheric bacterial isolates to assess their biocontrol efficacy against the disease. The results showed that 82.60% of phyllospheric bacterial isolates were positive for phosphate solubilization, 63.04% for ammonia production, 58.69% for HCN production, 36.95% for siderophore production, and 78.26% had the capacity to produce IAA. Out of the 46 isolates, 23 exhibited in vitro antagonistic activity against X. campestris pv. campestris and 10 isolates were selected for a pot experiment under glasshouse conditions based on their good plant growth-promoting activities and antagonistic assay. The results revealed that bacterial isolate CFLB-27 exhibited the highest biocontrol efficiency (65.41%), followed by CFLB-24 (58.30%), CFLB-31 (47.11%), and CFLB-26 (46.03%). These four isolates were identified as Pseudomonas fluorescens CFLB-27, Bacillus velezensis CFLB-24, Bacillus amyloliquefaciens CFLB-31, and Stenotrophomonas rhizophila CFLB-26. This study provides valuable insights into the potential of phyllospheric bacteria as an effective tool for disease management in sustainable agriculture.
- MeSH
- antibióza * MeSH
- Bacteria klasifikace izolace a purifikace genetika růst a vývoj MeSH
- biologická ochrana MeSH
- Brassica * mikrobiologie MeSH
- listy rostlin * mikrobiologie MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- Xanthomonas campestris * genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- fyziologická adaptace * genetika MeSH
- genom bakteriální * MeSH
- nízká teplota * MeSH
- profágy genetika MeSH
- Pseudomonas * genetika klasifikace MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
This study summarizes the response of cyanobacterium Spirulina subsalsa HKAR-19 under simulated light conditions of photosynthetically active radiation (PAR), PAR+UV-A (PA), and PAR+UV-A+UV-B (PAB). Exposure to UV radiation caused a significant (P < 0.05) decrease in chlorophyll a, phycocyanin, and total protein. In contrast, total carotene content increased significantly (P < 0.05) under PA and PAB with increasing irradiation time. The photosynthetic efficiency of photosystem II also decreased significantly in PA and PAB radiation. We have also recorded a decrease in the fluorescence emission intensity of phycocyanin under PA and PAB exposure. The phycocyanin fluorescence shifted towards shorter wavelengths (blue-shift) after 72 h of PA and PAB exposure. Intracellular reactive oxygen species (ROS) levels increased significantly in PA and PAB. Fluorescence microscopic images showed an increase in green fluorescence, indicating ROS generation in UV radiation. We have also quantified ROS generation using green and red fluorescence ratio represented as G/R ratio. A 2-6-fold increase in antioxidative enzymes activity was observed to overcome the damaging effects caused by UV stress as compared to untreated control cultures. The lipid peroxidation was assessed in terms of malondialdehyde content which increases significantly (P < 0.05) as the duration of exposure increases. These results suggest that a combined effect of PAR, UV-A, and UV-B was more deleterious than an individual one.
- MeSH
- antioxidancia * metabolismus MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl * metabolismus MeSH
- fotosyntéza * účinky záření MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- fykokyanin * metabolismus MeSH
- karotenoidy metabolismus MeSH
- peroxidace lipidů účinky záření MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- Spirulina * účinky záření metabolismus MeSH
- ultrafialové záření * MeSH
- Publikační typ
- časopisecké články MeSH
Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.
- MeSH
- Brucella * genetika izolace a purifikace MeSH
- brucelóza * diagnóza mikrobiologie MeSH
- DNA bakterií genetika MeSH
- lidé MeSH
- limita detekce MeSH
- mléko mikrobiologie MeSH
- rekombinasy * metabolismus genetika MeSH
- senzitivita a specificita MeSH
- skot MeSH
- techniky amplifikace nukleových kyselin * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-β-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.