-
Je něco špatně v tomto záznamu ?
Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation
L. Xiong, H. Yu, K. Zeng, Y. Li, Y. Wei, H. Li, X. Ji
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články
Grantová podpora
32160294
National Natural Science Foundation of China
31860147
National Natural Science Foundation of China
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- fyziologická adaptace * genetika MeSH
- genom bakteriální * MeSH
- nízká teplota * MeSH
- profágy genetika MeSH
- Pseudomonas * genetika klasifikace MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24015657
- 003
- CZ-PrNML
- 005
- 20240820130413.0
- 007
- ta
- 008
- 240820s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-023-01117-0 $2 doi
- 035 __
- $a (PubMed)38051419
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Xiong, Lingling $u Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 245 10
- $a Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation / $c L. Xiong, H. Yu, K. Zeng, Y. Li, Y. Wei, H. Li, X. Ji
- 520 9_
- $a Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
- 650 12
- $a Pseudomonas $x genetika $x klasifikace $7 D011549
- 650 12
- $a nízká teplota $7 D003080
- 650 12
- $a genom bakteriální $7 D016680
- 650 12
- $a fylogeneze $7 D010802
- 650 12
- $a fyziologická adaptace $x genetika $7 D000222
- 650 12
- $a RNA ribozomální 16S $x genetika $7 D012336
- 650 _2
- $a zastoupení bazí $7 D001482
- 650 _2
- $a sekvenování celého genomu $7 D000073336
- 650 _2
- $a profágy $x genetika $7 D039002
- 650 _2
- $a DNA bakterií $x genetika $7 D004269
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Yu, Hang $u Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 700 1_
- $a Zeng, Kun $u Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 700 1_
- $a Li, Yanmei $u Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 700 1_
- $a Wei, Yunlin $u Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 700 1_
- $a Li, Haiyan $u Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- 700 1_
- $a Ji, Xiuling $u Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China. jixiuling1023@126.com $1 https://orcid.org/0000000214218049
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 69, č. 4 (2024), s. 775-787
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38051419 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240820 $b ABA008
- 991 __
- $a 20240820130412 $b ABA008
- 999 __
- $a ok $b bmc $g 2136014 $s 1227560
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 69 $c 4 $d 775-787 $e 20231205 $i 1874-9356 $m Folia microbiologica $n Folia Microbiol (Praha) $x MED00011005
- GRA __
- $a 32160294 $p National Natural Science Foundation of China
- GRA __
- $a 31860147 $p National Natural Science Foundation of China
- LZP __
- $a Pubmed-20240820