• This record comes from PubMed

Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation

. 2024 Aug ; 69 (4) : 775-787. [epub] 20231205

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
32160294 National Natural Science Foundation of China
31860147 National Natural Science Foundation of China

Links

PubMed 38051419
DOI 10.1007/s12223-023-01117-0
PII: 10.1007/s12223-023-01117-0
Knihovny.cz E-resources

Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.

See more in PubMed

Andrews S (2014) FastQC a quality control tool for high throughput sequence data

Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet 25:25–29. https://doi.org/10.1038/75556 PubMed DOI

Bairoch A, Apweiler R (1999) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 27:49–54. https://doi.org/10.1093/nar/27.1.49 PubMed DOI PMC

Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. https://doi.org/10.1146/annurev.arplant.54.031902.134927 PubMed DOI

Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600. https://doi.org/10.1016/s0959-440x(00)00253-0 PubMed DOI

Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14. https://doi.org/10.1007/978-1-4939-9173-0_1 PubMed DOI PMC

Chin CS et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474 PubMed DOI

DangThu Q, Jang SH, Lee C (2020) Biochemical comparison of two glucose 6-phosphate dehydrogenase isozymes from a cold-adapted Pseudomonas mandelii. Extremophiles 24:501–509. https://doi.org/10.1007/s00792-020-01171-3 PubMed DOI

Faßhauer P et al (2021) Functional redundancy and specialization of the conserved cold shock proteins in Bacillus subtilis. Microorganisms 9. https://doi.org/10.3390/microorganisms9071434

Fouts DE (2006) Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851. https://doi.org/10.1093/nar/gkl732 PubMed DOI PMC

Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV (2021) COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 49:D274-d281. https://doi.org/10.1093/nar/gkaa1018 PubMed DOI

Grant JR, Stothard P (2008) The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181-184. https://doi.org/10.1093/nar/gkn179 PubMed DOI PMC

Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52-57. https://doi.org/10.1093/nar/gkm360 PubMed DOI PMC

Han SR, Kim B, Jang JH, Park H, Oh TJ (2021) Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics 22:403. https://doi.org/10.1186/s12864-021-07734-8

Han SR et al (2019) Complete genome sequencing of Shigella sp. PAMC 28760: identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb Pathog 137:103759. https://doi.org/10.1016/j.micpath.2019.103759

Harrison E, Brockhurst MA (2017) Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. Bioessays 39. https://doi.org/10.1002/bies.201700112

Henrissat B, Davies GJ (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 124:1515–1519. https://doi.org/10.1104/pp.124.4.1515 PubMed DOI PMC

Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193:1552–1562. https://doi.org/10.1128/jb.01319-10 PubMed DOI PMC

Hubloher JJ, Zeidler S, Lamosa P, Santos H, Averhoff B, Müller V (2020) Trehalose-6-phosphate-mediated phenotypic change in Acinetobacter baumannii. Environ Microbiol 22:5156–5166. https://doi.org/10.1111/1462-2920.15148 PubMed DOI

Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9 PubMed DOI PMC

Jin B, Jeong KW, Kim Y (2014) Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun 451:402–407. https://doi.org/10.1016/j.bbrc.2014.07.127 PubMed DOI

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27 PubMed DOI PMC

Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala H (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of Enteropathogenic yersinia. Front Microbiol 7:1151. https://doi.org/10.3389/fmicb.2016.01151 PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096 PubMed DOI PMC

Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP (2023) In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 14:1140249. https://doi.org/10.3389/fmicb.2023.1140249 PubMed DOI PMC

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160 PubMed DOI PMC

Luzzatto L, Nannelli C, Notaro R (2016) Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin North Am 30:373–393. https://doi.org/10.1016/j.hoc.2015.11.006 PubMed DOI

Mazzon RR, Lang EA, Silva CA, Marques MV (2012) Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 194:6507–6517. https://doi.org/10.1128/jb.01422-12 PubMed DOI PMC

Mistry J et al (2021) Pfam: The protein families database in 2021. Nucleic Acids Res 49:D412-d419. https://doi.org/10.1093/nar/gkaa913 PubMed DOI

Muchaamba F, Stephan R, Tasara T (2021) Listeria monocytogenes cold shock proteins: small proteins with a huge impact. Microorganisms 9. https://doi.org/10.3390/microorganisms9051061

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114 PubMed DOI PMC

Patel M, Patel HM, Vohra N, Dave S (2020) Complete genome sequencing and comparative genome characterization of the lignocellulosic biomass degrading bacterium Pseudomonas stutzeri MP4687 from cattle rumen. Biotechnol Rep (amst) 28:e00530. https://doi.org/10.1016/j.btre.2020.e00530 PubMed DOI

Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153 PubMed DOI

Shah BA, Kasarlawar ST, Phale PS (2022) Glucose-6-phosphate dehydrogenase, ZwfA, a dual cofactor-specific isozyme is predominantly involved in the glucose metabolism of Pseudomonas bharatica CSV86(T). Microbiol Spectr 10:e0381822. https://doi.org/10.1128/spectrum.03818-22 PubMed DOI

Shen L et al (2021) Complete genome sequencing of Bacillus sp. TK-2, analysis of its cold evolution adaptability. Sci Rep 11:4836. https://doi.org/10.1038/s41598-021-84286-7

Shinde S et al (2020) Glycogen metabolism supports photosynthesis start through the oxidative pentose phosphate pathway in Cyanobacteria. Plant Physiol 182:507–517. https://doi.org/10.1104/pp.19.01184 PubMed DOI

Sinetova MA, Los DA (2016) New insights in cyanobacterial cold stress responses: genes, sensors, and molecular triggers. Biochim Biophys Acta 1860:2391–2403. https://doi.org/10.1016/j.bbagen.2016.07.006 PubMed DOI

Stracke C et al (2020) Salt stress response of Sulfolobus acidocaldarius involves complex trehalose metabolism utilizing a novel trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway. Appl Environ Microbiol 86. https://doi.org/10.1128/aem.01565-20

Strauß M, Vitiello C, Schweimer K, Gottesman M, Rösch P, Knauer SH (2016) Transcription is regulated by NusA:NusG interaction. Nucleic Acids Res 44:5971–5982. https://doi.org/10.1093/nar/gkw423 PubMed DOI PMC

Tanizawa Y, Tohno M, Kaminuma E, Nakamura Y, Arita M (2015) Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage. BMC Genomics 16:240. https://doi.org/10.1186/s12864-015-1435-2 PubMed DOI PMC

Thanna S, Sucheck SJ (2016) Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. Medchemcomm 7:69–85. https://doi.org/10.1039/c5md00376h PubMed DOI

Volke DC, Olavarría K, Nikel PI (2021) Cofactor specificity of glucose-6-phosphate dehydrogenase isozymes in Pseudomonas putida reveals a general principle underlying glycolytic strategies in bacteria. mSystems 6. https://doi.org/10.1128/mSystems.00014-21

Wang M et al (2020) Glycogen metabolism impairment via single gene mutation in the glgBXCAP operon alters the survival rate of Escherichia coli under various environmental stresses. Front Microbiol 11:588099. https://doi.org/10.3389/fmicb.2020.588099 PubMed DOI PMC

Wilson WA et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985. https://doi.org/10.1111/j.1574-6976.2010.00220.x PubMed DOI

Zhang J et al (2010) Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 76:2989–2996. https://doi.org/10.1128/aem.00026-09 PubMed DOI PMC

Zhang C et al (2017) Complete genome sequence of the lytic cold-active Pseudomonas fluorescens bacteriophage VSW-3 from Napahai plateau wetland. Virus Genes 53:146–150. https://doi.org/10.1007/s11262-016-1403-1 PubMed DOI

Zhang B et al (2020) Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 104:7991–8006. https://doi.org/10.1007/s00253-020-10808-4 PubMed DOI

Zou H, Chen N, Shi M, Xian M, Song Y, Liu J (2016) The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biotechnol 100:3865–3876. https://doi.org/10.1007/s00253-016-7462-3 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...