The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30754724
PubMed Central
PMC6410071
DOI
10.3390/nano9020243
PII: nano9020243
Knihovny.cz E-zdroje
- Klíčová slova
- lignin, lignin nanoparticles, noncovalent interactions, self-assembly,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lignin serves as a significant contributor to the natural stock of non-fossilized carbon, second only to cellulose in the biosphere. In this review article, we focus on the self-assembly properties of lignin and their contribution to its effective utilization and valorization. Traditionally, investigations on self-assembly properties of lignin have aimed at understanding the lignification process of the cell wall and using it for efficient delignification for commercial purposes. In recent years (mainly the last three years), an increased number of attempts and reports of technical-lignin nanostructure synthesis with controlled particle size and morphology have been published. This has renewed the interests in the self-assembly properties of technical lignins and their possible applications. Based on the sources and processing methods of lignin, there are significant differences between its structure and properties, which is the primary obstacle in the generalized understanding of the lignin structure and the lignification process occurring within cell walls. The reported studies are also specific to source and processing methods. This work has been divided into two parts. In the first part, the aggregation propensity of lignin based on type, source and extraction method, temperature, and pH of solution is discussed. This is followed by a critical overview of non-covalent interactions and their contribution to the self-associative properties of lignin. The role of self-assembly towards the understanding of xylogenesis and nanoparticle synthesis is also discussed. A particular emphasis is placed on the interaction and forces involved that are used to explain the self-association of lignin.
Zobrazit více v PubMed
Achyuthan K.E., Achyuthan A.M., Adams P.D., Dirk S.M., Harper J.C., Simmons B.A., Singh A.K. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules. 2010;15:8641–8688. doi: 10.3390/molecules15118641. PubMed DOI PMC
Poletto M., Zattera A.J. Materials produced from plant biomass: part III: degradation kinetics and hydrogen bonding in lignin. Mater. Res. 2013;16:1065–1070. doi: 10.1590/S1516-14392013005000112. DOI
Westbye P., Köhnke T., Glasser W., Gatenholm P. The influence of lignin on the self-assembly behaviour of xylan rich fractions from birch (Betula pendula) Cellulose. 2007;14:603–613. doi: 10.1007/s10570-007-9178-0. DOI
Beisl S., Miltner A., Friedl A. Lignin from Micro-to Nanosize: Production Methods. Int. J. Mol. Sci. 2017;18:1244. doi: 10.3390/ijms18061244. PubMed DOI PMC
Figueiredo P., Lintinen K., Hirvonen J.T., Kostiainen M.A., Santos H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater Sci. 2018;93:233–269. doi: 10.1016/j.pmatsci.2017.12.001. DOI
Zhao W., Simmons B., Singh S., Ragauskas A., Cheng G. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem. 2016;18:5693–5700. doi: 10.1039/C6GC01813K. DOI
Yang W., Fortunati E., Gao D., Balestra G.M., Giovanale G., He X., Torre L., Kenny J.M., Puglia D. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustainable Chem. Eng. 2018;6:3502–3514. doi: 10.1021/acssuschemeng.7b03782. DOI
Nypeloe T.E., Carrillo C.A., Rojas O.J. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal. Soft Matter. 2015;11:2046–2054. doi: 10.1039/C4SM02851A. PubMed DOI
Qian Y., Zhang Q., Qiu X., Zhu S. CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N-2-switchable Pickering emulsions. Green Chem. 2014;16:4963–4968. doi: 10.1039/C4GC01242A. DOI
Mishra P.K., Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition. Ultrason. Sonochem. 2017;35:45–50. doi: 10.1016/j.ultsonch.2016.09.001. PubMed DOI
Qian Y., Zhong X., Li Y., Qiu X. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind. Crops Prod. 2017;101:54–60. doi: 10.1016/j.indcrop.2017.03.001. DOI
Yang W., Kenny J.M., Puglia D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind. Crops Prod. 2015;74:348–356. doi: 10.1016/j.indcrop.2015.05.032. DOI
Král P., Klímek P., Mishra P.K., Rademacher P., Wimmer R. Preparation and Characterization of Cork Layered Composite Plywood Boards. BioResources. 2014;9:1977–1985. doi: 10.15376/biores.9.2.1977-1985. DOI
Gilca I.A., Ghitescu R.E., Puitel A.C., Popa V.I. Preparation of lignin nanoparticles by chemical modification. Iran. Polym. J. 2014;23:355–363. doi: 10.1007/s13726-014-0232-0. DOI
Klímek P., Wimmer R., Kumar Mishra P., Kúdela J. Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. J. Cleaner Prod. 2017;141:812–817. doi: 10.1016/j.jclepro.2016.09.152. DOI
Cauley A.N., Wilson J.N. Functionalized Lignin Biomaterials for Enhancing Optical Properties and Cellular Interactions of Dyes. Biomater. Sci. 2017;5:2114–2121. doi: 10.1039/C7BM00518K. PubMed DOI
Li Y., Qiu X., Qian Y., Xiong W., Yang D. pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery. Chem. Eng. J. 2017;327:1176–1183. doi: 10.1016/j.cej.2017.07.022. DOI
Liu D., Li Y., Qian Y., Xiao Y., Du S., Qiu X. Synergistic Antioxidant Performance of Lignin and Quercetin Mixtures. ACS Sustainable Chem. Eng. 2017;5:8424–8428. doi: 10.1021/acssuschemeng.7b02282. DOI
Siddiqui L., Mishra H., Mishra P.K., Iqbal Z., Talegaonkar S. Novel 4-in-1 strategy to combat colon cancer, drug resistance and cancer relapse utilizing functionalized bioinspiring lignin nanoparticle. Med. Hypotheses. 2018;121:10–14. doi: 10.1016/j.mehy.2018.09.003. PubMed DOI
Lindström T. The colloidal behaviour of kraft lignin. Colloid. Polym. Sci. 1980;258:168–173. doi: 10.1007/BF01498276. DOI
Lindströmn T. The colloidal behaviour of kraft lignin. Colloid. Polym. Sci. 1979;257:277–285. doi: 10.1007/BF01382370. DOI
Norgren M., Edlund H., Wågberg L. Aggregation of lignin derivatives under alkaline conditions. Kinetics and aggregate structure. Langmuir. 2002;18:2859–2865. doi: 10.1021/la011627d. DOI
Norgren M., Edlund H., Wågberg L., Lindström B., Annergren G. Aggregation of kraft lignin derivatives under conditions relevant to the process, part I: phase behaviour. Colloids Surf. A Physicochem. Engin Aspects. 2001;194:85–96. doi: 10.1016/S0927-7757(01)00753-1. DOI
Zhao W., Xiao L.-P., Song G., Sun R.-C., He L., Singh S., Simmons B.A., Cheng G. From lignin subunits to aggregates: insights into lignin solubilization. Green Chem. 2017;19:3272–3281. doi: 10.1039/C7GC00944E. DOI
Mafé S., Manzanares J., Kontturi A.-K., Kontturi K. Temperature effects on counterion binding to spherical polyelectrolytes: the charge-discharge transition of lignosulfonate. Bioelectrochem. Bioenerg. 1995;38:367–375. doi: 10.1016/0302-4598(95)01814-U. DOI
Norgren M., Lindström B. Physico-Chemical Characterization of a Fractionated Kraft Lignin. Holzforschung. 2005;54:528. doi: 10.1515/HF.2000.089. DOI
Hita I., Heeres H.J., Deuss P.J. Insight into structure–reactivity relationships for the iron-catalyzed hydrotreatment of technical lignins. Bioresour. Technol. 2018;267:93–101. doi: 10.1016/j.biortech.2018.07.028. PubMed DOI
Constant S., Wienk H.L.J., Frissen A.E., de Peinder P., Boelens R., van Es D.S., Grisel R.J.H., Weckhuysen B.M., Huijgen W.J.J., Gosselink R.J.A., et al. New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chem. 2016;18:2651–2665.
Renders T., Van den Bosch S., Koelewijn S.-F., Schutyser W., Sels B. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 2017;10:1551–1557. doi: 10.1039/C7EE01298E. DOI
Dence C.W. Methods in lignin chemistry. Springer-Verlag; New York, NY, USA: 1992. The determination of lignin; pp. 33–61.
Lupoi J.S., Singh S., Parthasarathi R., Simmons B.A., Henry R.J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable Sustainable Energy Rev. 2015;49:871–906. doi: 10.1016/j.rser.2015.04.091. DOI
Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Hallett J.P., Leak D.J., Liotta C.L. The path forward for biofuels and biomaterials. Science. 2006;311:484–489. doi: 10.1126/science.1114736. PubMed DOI
Lancefield C.S., Wienk H.L., Boelens R., Weckhuysen B.M., Bruijnincx P.C. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem. Sci. 2018;9:6348–6360. doi: 10.1039/C8SC02000K. PubMed DOI PMC
Shen Q., Zhang T., Zhu M.-F. A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surf. A Physicochem. Eng. Aspects. 2008;320:57–60. doi: 10.1016/j.colsurfa.2008.01.012. DOI
Dawy M., Shabaka A.A., Nada A.M.A. Molecular structure and dielectric properties of some treated lignins. Polym. Degrad. Stab. 1998;62:455–462. doi: 10.1016/S0141-3910(98)00026-3. DOI
Ratnaweera D.R., Saha D., Pingali S.V., Labbé N., Naskar A.K., Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv. 2015;5:67258–67266. doi: 10.1039/C5RA13485D. DOI
Fiţigău I., Peter F., Boeriu C. Structural analysis of lignins from different sources. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2013;7:167–172.
Miller-Chou B.A., Koenig J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003;28:1223–1270. doi: 10.1016/S0079-6700(03)00045-5. DOI
Wang J., Li Y., Qiu X., Liu D., Yang D., Liu W., Qian Y. Dissolution of lignin in green urea aqueous solution. Appl. Surf. Sci. 2017;425:736–741. doi: 10.1016/j.apsusc.2017.06.220. DOI
Qian Y., Deng Y., Qiu X., Li H., Yang D. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 2014;16:2156–2163. doi: 10.1039/c3gc42131g. DOI
Xiong F., Han Y., Wang S., Li G., Qin T., Chen Y., Chu F. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind. Crops Prod. 2017;100:146–152. doi: 10.1016/j.indcrop.2017.02.025. DOI
Xiong F., Han Y., Wang S., Li G., Qin T., Chen Y., Chu F. Preparation and Formation Mechanism of Renewable Lignin Hollow Nanospheres with a Single Hole by Self-Assembly. ACS Sustainable Chem. Eng. 2017;5:2273–2281. doi: 10.1021/acssuschemeng.6b02585. DOI
Bikova T., Treimanis A., Rossinska G., Telysheva G. On-line study of lignin behaviour in dilute alkaline solution by the SEC-UV method. Holzforschung. 2004;58:489–494. doi: 10.1515/HF.2004.074. DOI
Garver T.M., Callaghan P.T. Hydrodynamics of kraft lignins. Macromolecules. 1991;24:420–430. doi: 10.1021/ma00002a013. DOI
Salentinig S., Schubert M. Softwood Lignin Self-Assembly for Nanomaterial Design. Biomacromolecules. 2017;18:2649–2653. doi: 10.1021/acs.biomac.7b00822. PubMed DOI
Yang M., Zhao W., Singh S., Simmons B., Cheng G. On the solution structure of kraft lignin in ethylene glycol and its implication for nanoparticle preparation. Nanoscale Adv. 2019;1:299–304. doi: 10.1039/C8NA00042E. PubMed DOI PMC
Sameni J., Krigstin S., Sain M. Solubility of Lignin and Acetylated Lignin in Organic Solvents. BioResources. 2017;12:1548–1565. doi: 10.15376/biores.12.1.1548-1565. DOI
Evstigneev E. Factors affecting lignin solubility. Russ. J. Appl. Chem. 2011;84:1040–1045. doi: 10.1134/S1070427211060243. DOI
Borisova O.V., Billon L., Cernochova Z., Lapp A., Stepanek P., Borisov O.V. Effect of Temperature on Self-Assembly of Amphiphilic Block-Gradient Copolymers of Styrene and Acrylic Acid. Macromol. Symp. 2015;348:25–32. doi: 10.1002/masy.201400174. DOI
Guerra A., Gaspar A.R., Contreras S., Lucia L.A., Crestini C., Argyropoulos D.S. On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species. Phytochemistry. 2007;68:2570–2583. doi: 10.1016/j.phytochem.2007.05.026. PubMed DOI
Dhotel A., Chen Z., Delbreilh L., Youssef B., Saiter J.-M., Tan L. Molecular Motions in Functional Self-Assembled Nanostructures. Int. J. Mol. Sci. 2013;14:2303–2333. doi: 10.3390/ijms14022303. PubMed DOI PMC
Martinez C.R., Iverson B.L. Rethinking the term “pi-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI
McRae E.M. Academic Press; New York, NY, USA: 1964. Kasha in Physical Process in Radiation Biology.
Deng Y., Feng X., Yang D., Yi C., Qiu X. Pi-Pi stacking of the aromatic groups in lignosulfonates. BioResources. 2012;7:1145–1156.
Lievonen M., Valle-Delgado J.J., Mattinen M.-L., Hult E.-L., Lintinen K., Kostiainen M.A., Paananen A., Szilvay G.R., Setälä H., Österberg M. A simple process for lignin nanoparticle preparation. Green Chem. 2016;18:1416–1422. doi: 10.1039/C5GC01436K. DOI
Whitesides G.M., Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 2002;99:4769–4774. doi: 10.1073/pnas.082065899. PubMed DOI PMC
Kubo S., Kadla J.F. Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules. 2005;6:2815–2821. doi: 10.1021/bm050288q. PubMed DOI
Simon J.P., Eriksson K.-E.L. The significance of intra-molecular hydrogen bonding in the ß-O-4 linkage of lignin. J. Mol. Struct. 1996;384:1–7. doi: 10.1016/S0022-2860(96)09329-5. DOI
Kadla J.F., Kubo S. Miscibility and Hydrogen Bonding in Blends of Poly(ethylene oxide) and Kraft Lignin. Macromolecules. 2003;36:7803–7811. doi: 10.1021/ma0348371. DOI
Vainio U., Maximova N., Hortling B., Laine J., Stenius P., Simola L.K., Gravitis J., Serimaa R. Morphology of Dry Lignins and Size and Shape of Dissolved Kraft Lignin Particles by X-ray Scattering. Langmuir. 2004;20:9736–9744. doi: 10.1021/la048407v. PubMed DOI
Suzuki M., Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev. 2010;39:455–463. doi: 10.1039/B910604A. PubMed DOI
Choi B., Yu J., Paley D.W., Trinh M.T., Paley M.V., Karch J.M., Crowther A.C., Lee C.-H., Lalancette R.A., Zhu X., et al. van der Waals Solids from Self-Assembled Nanoscale Building Blocks. Nano Lett. 2016;16:1445–1449. doi: 10.1021/acs.nanolett.5b05049. PubMed DOI
Gao H.-Y., Wagner H., Held P.A., Du S., Gao H.-J., Studer A., Fuchs H. In-plane Van der Waals interactions of molecular self-assembly monolayer. Appl. Phys. Lett. 2015;106:081606. doi: 10.1063/1.4907777. DOI
Lindström T., Westman L. The colloidal behaviour of kraft lignin. Colloid. Polym. Sci. 1982;260:594–598. doi: 10.1007/BF01422591. DOI
Youssefian S., Rahbar N. Molecular Origin of Strength and Stiffness in Bamboo Fibrils. Sci. Rep. 2015;5:11116. doi: 10.1038/srep11116. PubMed DOI PMC
Meyer E.E., Rosenberg K.J., Israelachvili J. Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. 2006;103:15739–15746. doi: 10.1073/pnas.0606422103. PubMed DOI PMC
Leskinen T., Witos J., Valle Delgado J.J., Lintinen K.S., Kostiainen M.A., Wiedmer S.K., Österberg M., Mattinen M.-L. Adsorption of proteins on colloidal lignin particles for advanced biomaterials. Biomacromolecules. 2017;18:2767–2776. doi: 10.1021/acs.biomac.7b00676. PubMed DOI
Qin C., Clarke K., Li K. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol. Biofuels. 2014;7:65. PubMed PMC
Salas C., Rojas O.J., Lucia L.A., Hubbe M.A., Genzer J. On the surface interactions of proteins with lignin. ACS Appl. Mater. Interfaces. 2013;5:199–206. doi: 10.1021/am3024788. PubMed DOI
Sammond D.W., Yarbrough J.M., Mansfield E., Bomble Y.J., Hobdey S.E., Decker S.R., Taylor L.E., Resch M.G., Bozell J.J., Himmel M.E., et al. Predicting Enzyme Adsorption to Lignin Films by Calculating Enzyme Surface Hydrophobicity. J. Biol. Chem. 2014;289:20960–20969. doi: 10.1074/jbc.M114.573642. PubMed DOI PMC
Ekeberg D., Gretland K.S., Gustafsson J., Bråten S.M., Fredheim G.E. Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Anal. Chim. Acta. 2006;565:121–128. doi: 10.1016/j.aca.2006.02.008. DOI
Mansfield S.D. Solutions for dissolution—engineering cell walls for deconstruction. Curr. Opin. Biotechnol. 2009;20:286–294. doi: 10.1016/j.copbio.2009.05.001. PubMed DOI
Mishra P.K., Giagli K., Tsalagkas D., Mishra H., Talegaonkar S., Gryc V., Wimmer R. Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology. Recent. Pat. Nanotechnol. 2018;12:13–21. doi: 10.2174/1872210511666170808111512. PubMed DOI
Donaldson L.A. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry. 2001;57:859–873. doi: 10.1016/S0031-9422(01)00049-8. PubMed DOI
Chen Y., Sarkanen S. Macromolecular lignin replication: A mechanistic working hypothesis. Phytochem. Rev. 2003;2:235–255. doi: 10.1023/B:PHYT.0000046173.38194.ba. DOI
Gang D.R., Costa M.A., Fujita M., Dinkova-Kostova A.T., Wang H.-B., Burlat V., Martin W., Sarkanen S., Davin L.B., Lewis N.G. Regiochemical control of monolignol radical coupling: A new paradigm for lignin and lignan biosynthesis. Chem. Biol. 1999;6:143–151. doi: 10.1016/S1074-5521(99)89006-1. PubMed DOI
Karmanov A.P., Monakov Y.B. Lignin. Structural organisation and fractal properties. Russ. Chem. Rev. 2003;72:715–734. doi: 10.1070/RC2003v072n08ABEH000767. DOI
Radotic K., Tasic M., Jeremic M., Budimlija Z., Simic-Krstic J., Polzovic A., Bozovic Z. Fractal dimension of lignin structure at the molecular level. Iugoslav. Physiol. Pharmacol. Acta. 1998;34:215–220.
Karmanov A., Kuznetsov S., Monakov Y.B. Modeling of lignin biosynthesis in vitro. The strange attractor. mezhdunarodnaya kniga. 1995;342:193–196.
Rowe J.M., Johnston K.P. Formulating Poorly Water Soluble Drugs. Springer; New York, NY, USA: 2012. Precipitation Technologies for Nanoparticle Production; pp. 501–568. (AAPS Advances in the Pharmaceutical Sciences Series).
Frangville C., Rutkevicius M., Richter A.P., Velev O.D., Stoyanov S.D., Paunov V.N. Fabrication of Environmentally Biodegradable Lignin Nanoparticles. Chem. Phys. Chem. 2012;13:4235–4243. doi: 10.1002/cphc.201200537. PubMed DOI
Tortora M., Cavalieri F., Mosesso P., Ciaffardini F., Melone F., Crestini C. Ultrasound Driven Assembly of Lignin into Microcapsules for Storage and Delivery of Hydrophobic Molecules. Biomacromolecules. 2014;15:1634–1643. doi: 10.1021/bm500015j. PubMed DOI
Bartzoka E.D., Lange H., Thiel K., Crestini C. Coordination Complexes and One-Step Assembly of Lignin for Versatile Nanocapsule Engineering. ACS Sustainable Chem. Eng. 2016;4:5194–5203. doi: 10.1021/acssuschemeng.6b00904. DOI
Li H., Deng Y., Liang J., Dai Y., Li B., Ren Y., Qiu X., Li C. Direct Preparation of Hollow Nanospheres with Kraft Lignin: A Facile Strategy for Effective Utilization of Biomass Waste. BioResources. 2016;11:3073–3083. doi: 10.15376/biores.11.2.3073-3083. DOI
Gilca I.A., Pupa V.I., Crestini C. Obtaining lignin nanoparticles by sonication. Ultrason. Sonochem. 2015;23:369–375. doi: 10.1016/j.ultsonch.2014.08.021. PubMed DOI
Rao X., Liu Y., Zhang Q., Chen W., Liu Y., Yu H. Assembly of Organosolv Lignin Residues into Submicron Spheres: The Effects of Granulating in Ethanol/Water Mixtures and Homogenization. ACS Omega. 2017;2:2858–2865. doi: 10.1021/acsomega.7b00285. PubMed DOI PMC
Li H., Deng Y., Liu B., Ren Y., Liang J., Qian Y., Qiu X., Li C., Zheng D. Preparation of Nanocapsules via the Self-Assembly of Kraft Lignin: A Totally Green Process with Renewable Resources. ACS Sustainable Chem. Eng. 2016;4:1946–1953. doi: 10.1021/acssuschemeng.5b01066. DOI
Yiamsawas D., Baier G., Thines E., Landfester K., Wurm F.R. Biodegradable lignin nanocontainers. RSC Adv. 2014;4:11661–11663. doi: 10.1039/C3RA47971D. DOI
Li H., Deng Y., Wu H., Ren Y., Qiu X., Zheng D., Li C. Self-assembly of kraft lignin into nanospheres in dioxane-water mixtures. Holzforschung. 2016;70:725–731. doi: 10.1515/hf-2015-0238. DOI
Myint A.A., Lee H.W., Seo B., Son W.-S., Yoon J., Yoon T.J., Park H.J., Yu J., Yoon J., Lee Y.-W. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an anti-solvent. Green Chem. 2016;18:2129–2146. doi: 10.1039/C5GC02398J. DOI
Enzymatic degradation of cellulose in soil: A review
Lignin for Bioeconomy: The Present and Future Role of Technical Lignin