Lignin for Bioeconomy: The Present and Future Role of Technical Lignin

. 2020 Dec 23 ; 22 (1) : . [epub] 20201223

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33374628

Lignin, the term commonly used in literature, represents a group of heterogeneous aromatic compounds of plant origin. Protolignin or lignin in the cell wall is entirely different from the commercially available technical lignin due to changes during the delignification process. In this paper, we assess the status of lignin valorization in terms of commercial products. We start with existing knowledge of the lignin/protolignin structure in its native form and move to the technical lignin from various sources. Special attention is given to the patents and lignin-based commercial products. We observed that the technical lignin-based commercial products utilize coarse properties of the technical lignin in marketed formulations. Additionally, the general principles of polymers chemistry and self-assembly are difficult to apply in lignin-based nanotechnology, and lignin-centric investigations must be carried out. The alternate upcoming approach is to develop lignin-centric or lignin first bio-refineries for high-value applications; however, that brings its own technological challenges. The assessment of the gap between lab-scale applications and lignin-based commercial products delineates the challenges lignin nanoparticles-based technologies must meet to be a commercially viable alternative.

Zobrazit více v PubMed

Achyuthan K.E., Achyuthan A.M., Adams P.D., Dirk S.M., Harper J.C., Simmons B.A., Singh A.K. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules. 2010;15:8641–8688. doi: 10.3390/molecules15118641. PubMed DOI PMC

Kopsahelis N., Agouridis N., Bekatorou A., Kanellaki M. Comparative Study of Spent Grains and Delignified Spent Grains as Yeast Supports for Alcohol Production from Molasses. Bioresour. Technol. 2007;98:1440–1447. doi: 10.1016/j.biortech.2006.03.030. PubMed DOI

Ashori A. Nonwood Fibers—A Potential Source of Raw Material in Papermaking. Polym. Plast. Technol. Eng. 2006;45:1133–1136. doi: 10.1080/03602550600728976. DOI

Argyropoulos D.S. Quantitative Phosphorus-31 NMR Analysis of Six Soluble Lignins. J. Wood Chem. Technol. 1994;14:65–82. doi: 10.1080/02773819408003086. DOI

Balakshin M.Y., Berlin A., DelliColli H.T., Grunert C.A.N.J., Gutman V.M., Ortiz D., Pye E.K. Derivatives of Native Lignin. 8,445,562. U.S. Patent. 2013 May 21;

Dawy M., Shabaka A.A., Nada A.M.A. Molecular Structure and Dielectric Properties of Some Treated Lignins. Polym. Degrad. Stab. 1998;62:455–462. doi: 10.1016/S0141-3910(98)00026-3. DOI

Mansfield S.D. Solutions for Dissolution—Engineering Cell Walls for Deconstruction. Curr. Opin. Biotechnol. 2009;20:286–294. doi: 10.1016/j.copbio.2009.05.001. PubMed DOI

Ahvazi B., Cloutier É., Wojciechowicz O., Ngo T.-D. Lignin Profiling: A Guide for Selecting Appropriate Lignins as Precursors in Biomaterials Development. ACS Sustain. Chem. Eng. 2016;4:5090–5105. doi: 10.1021/acssuschemeng.6b00873. DOI

Siddiqui L., Bag J., Mittal D., Leekha A., Mishra H., Mishra M., Verma A.K., Mishra P.K., Ekielski A., Iqbal Z. Assessing the Potential of Lignin Nanoparticles as Drug Carrier: Synthesis, Cytotoxicity and Genotoxicity Studies. Int. J. Biol. Macromol. 2020;152:786–802. doi: 10.1016/j.ijbiomac.2020.02.311. PubMed DOI

Siddiqui L., Mishra H., Mishra P.K., Iqbal Z., Talegaonkar S. Novel 4-in-1 Strategy to Combat Colon Cancer, Drug Resistance and Cancer Relapse Utilizing Functionalized Bioinspiring Lignin Nanoparticle. Med. Hypotheses. 2018;121:10–14. doi: 10.1016/j.mehy.2018.09.003. PubMed DOI

Mishra P.K., Ekielski A. A Simple Method to Synthesize Lignin Nanoparticles. Colloids Interfaces. 2019;3:52. doi: 10.3390/colloids3020052. DOI

Poletto M., Zattera A.J. Materials Produced from Plant Biomass: Part III: Degradation Kinetics and Hydrogen Bonding in Lignin. Mater. Res. 2013;16:1065–1070. doi: 10.1590/S1516-14392013005000112. DOI

Santos R.B., Capanema E.A., Balakshin M.Y., Chang H., Jameel H. Lignin Structural Variation in Hardwood Species. J. Agric. Food Chem. 2012;60:4923–4930. doi: 10.1021/jf301276a. PubMed DOI

Negro M., Manzanares P., Oliva J., Ballesteros I., Ballesteros M. Changes in Various Physical/Chemical Parameters of Pinus Pinaster Wood after Steam Explosion Pretreatment. Biomass Bioenergy. 2003;25:301–308. doi: 10.1016/S0961-9534(03)00017-5. DOI

Poulomi S., Dong Ho K., Seokwon J., Arthur R. Pseudo-Lignin and Pretreatment Chemistry. Energy Environ. Sci. 2011;4:1306–1310.

Hu F., Jung S., Ragauskas A. Pseudo-Lignin Formation and Its Impact on Enzymatic Hydrolysis. Bioresour. Technol. 2012;117:7–12. doi: 10.1016/j.biortech.2012.04.037. PubMed DOI

Kumar R., Hu F., Sannigrahi P., Jung S., Ragauskas A.J., Wyman C.E. Carbohydrate Derived-pseudo-lignin Can Retard Cellulose Biological Conversion. Biotechnol. Bioeng. 2013;110:737–753. doi: 10.1002/bit.24744. PubMed DOI

Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C., Weckhuysen B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016;55:8164–8215. doi: 10.1002/anie.201510351. PubMed DOI PMC

Bouxin F.P., McVeigh A., Tran F., Westwood N.J., Jarvis M.C., Jackson S.D. Catalytic Depolymerisation of Isolated Lignins to Fine Chemicals Using a Pt/Alumina Catalyst: Part 1—Impact of the Lignin Structure. Green Chem. 2015;17:1235–1242. doi: 10.1039/C4GC01678E. DOI

Hubbe M.A., Alén R., Paleologou M., Kannangara M., Kihlman J. Lignin Recovery from Spent Alkaline Pulping Liquors Using Acidification, Membrane Separation, and Related Processing Steps: A Review. Bioresources. 2019;14:2300–2351. doi: 10.15376/biores.14.1.2300-2351. DOI

Norgren M., Edlund H. Lignin: Recent Advances and Emerging Applications. Curr. Opin. Colloid Interface Sci. 2014;19:409–416. doi: 10.1016/j.cocis.2014.08.004. DOI

Thakur V.K., Thakur M.K., Raghavan P., Kessler M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain. Chem. Eng. 2014;2:1072–1092. doi: 10.1021/sc500087z. DOI

Figueiredo P., Lintinen K., Hirvonen J.T., Kostiainen M.A., Santos H.A. Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2018;93:233–269. doi: 10.1016/j.pmatsci.2017.12.001. DOI

Mishra P.K., Ekielski A. The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. Nanomaterials. 2019;9:243. doi: 10.3390/nano9020243. PubMed DOI PMC

Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., Loh X.J. Towards Lignin-Based Functional Materials in a Sustainable World. Green Chem. 2016;18:1175–1200. doi: 10.1039/C5GC02616D. DOI

Gael Febdinand Dahl. 296,935. U.S. Patent. 1884 Apr 15;

Zhang Y.-H.P. Reviving the Carbohydrate Economy via Multi-Product Lignocellulose Biorefineries. J. Ind. Microbiol. Biotechnol. 2008;35:367–375. doi: 10.1007/s10295-007-0293-6. PubMed DOI

Ramirez F., González V., Crespo M., Meier D., Faix O., Zúñiga V. Ammoxidized Kraft Lignin as a Slow-Release Fertilizer Tested on Sorghum Vulgare. Bioresour. Technol. 1997;61:43–46. doi: 10.1016/S0960-8524(97)84697-4. DOI

Kadla J., Kubo S., Venditti R., Gilbert R., Compere A., Griffith W. Lignin-Based Carbon Fibers for Composite Fiber Applications. Carbon. 2002;40:2913–2920. doi: 10.1016/S0008-6223(02)00248-8. DOI

Gosselink R., de Jong E., Abächerli A., Guran B. Activities and Results of the Thematic Network Eurolignin; Proceedings of the 7th ILI Forum; Barcelona, Spain. 27–28 April 2005; pp. 25–30.

Tejado A., Peña C., Labidi J., Echeverria J.M., Mondragon I. Physico-Chemical Characterization of Lignins from Different Sources for Use in Phenol–Formaldehyde Resin Synthesis. Bioresour. Technol. 2007;98:1655–1663. doi: 10.1016/j.biortech.2006.05.042. PubMed DOI

Zoumpoulakis L., Simitzis J. Ion Exchange Resins from Phenol/Formaldehyde Resin-modified Lignin. Polym. Int. 2001;50:277–283. doi: 10.1002/pi.621. DOI

Carrott P., Carrott M.R. Lignin–from Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007;98:2301–2312. PubMed

Vishtal A.G., Kraslawski A. Challenges in industrial applications of technical lignins. Bioresources. 2011;6:3547–3568.

Brauns F.E., Brauns D.A. The Chemistry of Lignin: Covering the Literature for the Years 1949–1958. Elsevier; Amsterdam, The Netherlands: 2013.

ÖHMAN F., Theliander H., Norgren M., Tomani P., Axegård P. Method for Separating Lignin from a Lignin Containing Liquid/Slurry. 8,815,052. U.S. Patent. 2006 Aug 26;

Miettinen M. Continuous Method for the Precipitation of Lignin from Black Liquor. 9,139,606. U.S. Patent. 2015 Sep 22;

Wells K., Pors D., Foan J., Maki K., Kouisni L., Paleologou M. CO2 Impacts of Commercial Scale Lignin Extraction at Hinton Pulp Using the LignoForce Process & Lignin Substitution into Petroleum-Based Products. PACWEST Conference; Newport Beach, CA, USA: Jun, 2015. pp. 10–13.

Lake M.A., Blackburn J.C. Lignin Product and Process for Making Same. 9,879,119. U.S. Patent. 2018 Jan 30;

Kleinert T.N. Organosolv Pulping and Recovery Process. 3,585,104. U.S. Patent. 1971 Jun 15;

Belgacem M.N., Blayo A., Gandini A. Organosolv Lignin as a Filler in Inks, Varnishes and Paints. Ind. Crop. Prod. 2003;18:145–153. doi: 10.1016/S0926-6690(03)00042-6. DOI

Anttila J., Tanskanen J., Rousu P., Rousu P., Hytönen K. Process for Preparing a Sugar Product. Application No.12/741,693. U.S. Patent. 2010 Sep 23;

Diebold V.B., Cowan W.F., Walsh J.K. Solvent Pulping Process. 4,100,016. U.S. Patent. 1978 Jul 11;

Nimz H., Casten R. Holzaufschluss Mit Essigsaure. DE 34.45. German Patent. 1986 Dec 4;:132.

Nimz H., Schoene M. Non-Waste Pulping and Bleaching with Acetic Acid; Proceedings of the 7th International Symposium on Wood and Pulping Chemistry; Beijing, China. 25 May 1993; pp. 258–265.

Baumeister M., Edel E. Process for the Continuous Extraction of Vegetable-Fiber Material in Two Stages. 4,496,426. U.S. Patent. 1985 Jan 29;

Glasner A.D.-I., Bobik M.D. Process for Recovery of Chemicals from the Pulping Liquor. EP0538576B1. E.U. Patent. 1995 Dec 4;

Delmas M., Mlayah B.B. Process for Producing Bioethanol from Lignocellulosic Plant Raw Material. 8,551,747. U.S. Patent. 2013 Oct 8;

Mlayah B.B., Delmas M., Avignon G. Installation for Implementing a Method for Producing Paper Pulp, Lignins and Sugars and Production Method Using Such an Installation. 8,157,964. U.S. Patent. 2012 Apr 17;

Mikkonen H., Peltonen S., Kallioinen A., Suurnäkki A., Kunnari V., Malm T. Process for Defibering a Fibrous Raw-Material; World Intellectual Property Organization. WO2009066007. International Patent. 2009 May 28;

Rousu P., Rousu P., Rousu E. Process for Producing Pulp with a Mixture of Formic Acid and Acetic Acid as Cooking Chemical. 6,562,191. U.S. Patent. 2003 May 13;

Rousu P., Rousu P., Rousu E. Method of Producing Pulp Using Single-Stage Cooking with Formic Acid and Washing with Performic Acid. 6,156,156. U.S. Patent. 2000 Dec 5;

Seisto A., Poppius-Levlin K. Milox Pulping of Agricultural Plants; Proceedings of the 8th International Symposium on Wood and Pulping Chemistry; Helsinki, Finland. 6–9 June 1995.

Berlin A., Balakshin M.Y., Ma R., Gutman V.M., Ortiz D. Organosolv Process. Application No. 13/584,697. U.S. Patent. 2013 Aug 15;

Berlin A., Balakshin M.Y., Ma R., Gutman V.M., Ortiz D. Organosolv Process World Intellectual Property Organization. WO2011097720A1. International Patent. 2011 Aug 18;

Luterbacher J.S., Shuai L. Production of Monomers from Lignin during Depolymerisation of Lignocellulose-Containing Composition. Application No. 16/093,065. U.S. Patent. 2019 May 2;

Manesh A., Hemyeri R., Mohapatra S., Guenther J., Zoborowski E., Manesh M.A. System and Method for Extraction of Chemicals from Lignocellulosic Materials. 9,365,525. U.S. Patent. 2016 Jun 14;

Manesh A., Guenther J.H., Zoborowski E.G., Braenner W., Manesh M.A., Hawk L.J. Oxygen Assisted Organosolv Process, System and Method for Delignification of Lignocellulosic Materials and Lignin Recovery. 9,382,283. U.S. Patent. 2016 Jul 5;

Abacherli A., Doppenberg F. Verfahren zur Aufbereitung von Aromatische Polymere Enthaltenden Alkalischen Lösungen. DE59807559. German Patent. 1998 Mar 20;

Hussin M.H., Aziz A.A., Iqbal A., Ibrahim M.N.M., Abd Latif N.H. Development and Characterization Novel Bio-Adhesive for Wood Using Kenaf Core (Hibiscus Cannabinus) Lignin and Glyoxal. Int. J. Biol. Macromol. 2019;122:713–722. doi: 10.1016/j.ijbiomac.2018.11.009. PubMed DOI

Deandrea M., Mitchell W.D., Narendranath N. Lignin Compositions and Methods for Use in Fermentation and Animal Feed. Application No. 15/486,837. U.S. Patent. 2017 Oct 19;

Chen J., Eraghi Kazzaz A., AlipoorMazandarani N., Hosseinpour Feizi Z., Fatehi P. Production of Flocculants, Adsorbents, and Dispersants from Lignin. Molecules. 2018;23:868. doi: 10.3390/molecules23040868. PubMed DOI PMC

Stigsson L. Method for the Production of High Yield Chemical Pulp from Softwood. Application No. 10/759,047. U.S. Patent. 2005 Jul 21;

Abacherli A., Doppenberg F. Method for Preparing Alkaline Solutions Containing Aromatic Polymers. No. CA2283698A1. Canadian Patent. 1998 Dec 1;

Chakar F.S., Ragauskas A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crop. Prod. 2004;20:131–141. doi: 10.1016/j.indcrop.2004.04.016. DOI

Temler J.S. High-Yield Semi-Chemical Carbonate Pulping Process. 4,229,251. U.S. Patent. 1980 Oct 21;

Baklanova O., Plaksin G., Drozdov V., Duplyakin V., Chesnokov N., Kuznetsov B. Preparation of Microporous Sorbents from Cedar Nutshells and Hydrolytic Lignin. Carbon. 2003;41:1793–1800. doi: 10.1016/S0008-6223(03)00149-0. DOI

Eyal A., Vitner A., Mali R. Method for Preparing a Hydrolyzate. Application No. 13/577,215. U.S. Patent. 2013 Jan 31;

Nguyen Q.A., Tucker M.P. Dilute Acid/Metal Salt Hydrolysis of Lignocellulosics. 6,423,145. U.S. Patent. 2002 Jul 23;

Zhang J., Chen G., Yang N.W., Wang Y.G. Preparation and Evaluation of Sodium Hydroxymethyl Lignosulfonate as Eco-Friendly Drilling Fluid Additive. Adv. Mater. Res. 2012;415:629–632. doi: 10.4028/www.scientific.net/AMR.415-417.629. DOI

Corey A., Wamsley K., Winowiski T., Moritz J. Effects of Calcium Lignosulfonate, Mixer-Added Fat, and Feed Form on Feed Manufacture and Broiler Performance. J. Appl. Poult. Res. 2014;23:418–428. doi: 10.3382/japr.2013-00916. DOI

Hemmilä V., Adamopoulos S., Hosseinpourpia R., Ahmed S.A. Ammonium Lignosulfonate Adhesives for Particleboards with PMDI and Furfuryl Alcohol as Crosslinkers. Polymers. 2019;11:1633. doi: 10.3390/polym11101633. PubMed DOI PMC

Joensson B., Grundberg H., Gustafsson A. Lignosulfonate of a Certain Quality and Method of Preparation of Lignosulfonate of a Certain Quality. 9,447,131. U.S. Patent. 2016 Sep 20;

Sjoede A., Froelander A., Lersch M., Roedsrud G. Lignocellulosic Biomass Conversion. 10,648,008. U.S. Patent. 2020 May 12;

Reknes K. Agglomerated Particulate Lignosulfonate. 8,277,557. U.S. Patent. 2012 Feb 2;

Reknes K. Agglomerated Particulate Lignosulfonate. Application 14/575,760. U.S. Patent. 2015 Jun 4;

Lanthier S., Tassin P., Mahieu E. Process for the Treatment of a Sulfonated Lignin-Based Liquor Containing Sulfite and Ammonium Ions with Formaldehyde. Number DE10107122A1. German Patent. 2002 Sep 26;

Lanthier S., Tassin P., Mahieu E. Processing of Sulfonated Lignin-Based Liquor Containing Sulfite and Ammonium Ions, Obtained in Paper Production, for Re-Use in Building Industry Comprises Optional Replacement of Some Ammonium Ions and Treatment with Formaldehyde. Number FR2805263A1. French Patent. 2001 Aug 24;

Harada H., Hirota M., Nishijima E., Yashiro J., Yatsushiro X., Mahirota H., Nishijima E. System for producing bioethanol using lignocellulose as raw material. JP2009213389A. Japanese Patent. 2009 Sep 24;

Ligninsulphonates|Burgo Group. [(accessed on 10 August 2020)]; Available online: https://www.burgo.com/en/group/figures/ls.

Argyropoulos D. Use of Lignocellulosics Solvated in Ionic Liquids for Production of Biofuels. 8,182,557. U.S. Patent. 2012 May 22;

Holbrey J., Swatloski R., Chen J., Daly D., Rogers R. Polymer Dissolution and Blend Formation in Ionic Liquids. 7,888,412. U.S. Patent. 2011 Feb 15;

Fearon O., Kuitunen S., Vuorinen T. Reaction Kinetics of Strong Nucleophiles with a Dimeric Non-Phenolic Lignin Model Compound with α-Carbonyl Functionality (Adleron) in Aqueous Alkali Solution. Holzforschung. 2016;70:811–818. doi: 10.1515/hf-2015-0236. DOI

Gierer J. Chemical Aspects of Kraft Pulping. Wood Sci. Technol. 1980;14:241–266. doi: 10.1007/BF00383453. DOI

Sixta H. Pulp Properties and Applications. Handb. Pulp. 2006:1009–1067.

Demuner I.F., Colodette J.L., Demuner A.J., Jardim C.M. Biorefinery Review: Wide-Reaching Products through Kraft Lignin. BioResources. 2019;14:7543–7581.

Yoon S.-H., Van Heiningen A. Kraft Pulping and Papermaking Properties of Hot-Water Pre-Extracted Loblolly Pine in an Integrated Forest Products Biorefinery. Tappi J. 2008;7:22–27.

Ragnar M., Lindgren C.T., Nilvebrant N.-O. PKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000;20:277–305. doi: 10.1080/02773810009349637. DOI

Sundin J. Doctoral Thesis. Royal Institute of Technology; Stockholm, Sweden: Dec 1, 2000. Precipitation of Kraft Lignin under Alkaline Conditions.

Zhu W., Theliander H. Precipitation of Lignin from Softwood Black Liquor: An Investigation of the Equilibrium and Molecular Properties of Lignin. Bioresources. 2015;10:1696–1714. doi: 10.15376/biores.10.1.1696-1715. DOI

Jansen R., LAWSON J.A., Lapidot N. Methods for Separating and Refining Lignin from Black Liquor and Compositions Thereof. 10,767,308. U.S. Patent. 2020 Sep 8;

Evstigneev E. Factors Affecting Lignin Solubility. Russ. J. Appl. Chem. 2011;84:1040–1045. doi: 10.1134/S1070427211060243. DOI

Ohman F., Theliander H., Tomani P., Axegard P. Method for Lignin Separation from Black Liquor. 9,777,033. U.S. Patent. 2017 Oct 3;

Kouisni L., Paleologou M. Method for Separating Lignin from Black Liquor. 8,771,464. U.S. Patent. 2014 Jul 8;

Kouisni L., Gagné A., Maki K., Holt-Hindle P., Paleologou M. LignoForce System for the Recovery of Lignin from Black Liquor: Feedstock Options, Odor Profile, and Product Characterization. ACS Sustain. Chem. Eng. 2016;4:5152–5159. doi: 10.1021/acssuschemeng.6b00907. DOI

Lake M.A., Blackburn J.C. SLRP-an Innovative Lignin-Recovery Technology. Cellul Chem. Technol. 2014;48:799–804.

Lake M.A., Blackburn J.C. Process for Recovering Lignin. 9,260,464. U.S. Patent. 2016 Feb 16;

Borand M.N., Karaosmanoğlu F. Effects of Organosolv Pretreatment Conditions for Lignocellulosic Biomass in Biorefinery Applications: A Review. J. Renew. Sustain. Energy. 2018;10:033104. doi: 10.1063/1.5025876. DOI

Schulze P., Seidel-Morgenstern A., Lorenz H., Leschinsky M., Unkelbach G. Advanced Process for Precipitation of Lignin from Ethanol Organosolv Spent Liquors. Bioresour. Technol. 2016;199:128–134. doi: 10.1016/j.biortech.2015.09.040. PubMed DOI

Pandey M.P., Kim C.S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chem. Eng. Technol. 2011;34:29–41. doi: 10.1002/ceat.201000270. DOI

Pye E.K., Lora J.H. The AlcellTM Process: A Proven Alternative to Kraft Pulping. Tappi J. 1991;74:113–118.

Sarkanen K.V. Chemistry of Solvent Pulping. Tappi J. 1990;73:215–219.

Brosse N., Dufour A., Meng X., Sun Q., Ragauskas A. Miscanthus: A Fast-Growing Crop for Biofuels and Chemicals Production. BiofuelsBioprod. Bioref. 2012;6:580–598. doi: 10.1002/bbb.1353. DOI

Patt R., Kordsachia O. Herstellung von Zellstoffen Unter Verwendung von Alkalischen Sulfitlösungen Mit Zusatz von Anthrachinon Und Methanol. Das Pap. (Darmstadt) 1986;40:V1–V8.

Kordsachia O., Patt R., Wandinger B. ASAM Pulping and Chlorine Free Bleaching of Eucalyptus. Forest Institute (INFOR); Santiago, Chile: 1993.

Kordsachia O., Wandinger B., Patt R. Some Investigations on ASAM Pulping and Chlorine Free Bleaching of Eucalyptus from Spain. Holz Als Roh-Und Werkst. 1992;50:85–91. doi: 10.1007/BF02628679. DOI

Technologies & Solutions. Chempolis. [(accessed on 8 March 2020)]; Available online: https://chempolis.com/technologies-solutions/

Sridach W. The Environmentally Benign Pulping Process of Non-Wood Fibers. Suranaree J. Sci. Technol. 2010;17:105–123.

Leponiemi A. Non-Wood Pulping Possibilities-a Challenge for the Chemical Pulping Industry. Appita Technol. Innov. Manuf. Environ. 2008;61:234–243.

Zhao X., Dai L., Liu D. Characterization and Comparison of Acetosolv and Milox Lignin Isolated from Crofton Weed Stem. J. Appl. Polym. Sci. 2009;114:1295–1302. doi: 10.1002/app.30604. DOI

Ligero P., Vega A., Villaverde J. Delignification of Miscanthus× Giganteus by the Milox Process. Bioresour. Technol. 2010;101:3188–3193. doi: 10.1016/j.biortech.2009.12.021. PubMed DOI

Delmas G., Benjelloun-Mlayah B., Bigot Y.L., Delmas M. Functionality of Wheat Straw Lignin Extracted in Organic Acid Media. J. Appl. Polym. Sci. 2011;121:491–501. doi: 10.1002/app.33592. DOI

Snelders J., Dornez E., Benjelloun-Mlayah B., Huijgen W.J.J., de Wild P.J., Gosselink R.J.A., Gerritsma J., Courtin C.M. Biorefining of Wheat Straw Using an Acetic and Formic Acid Based Organosolv Fractionation Process. Bioresour. Technol. 2014;156:275–282. doi: 10.1016/j.biortech.2014.01.069. PubMed DOI

Kangas H., Hakala T., Tamminen T., Määttänen M., Rovio S., Liitiä T., Poppius-Levlin K. Optimisation of Acetic Acid Lignofibre Organosolv Process. Bioresources. 2015;10:2699–2718. doi: 10.15376/biores.10.2.2699-2718. DOI

Kangas H., Liitiä T., Rovio S., Ohra-Aho T., Heikkinen H., Tamminen T., Poppius-Levlin K. Characterization of Dissolved Lignins from Acetic Acid Lignofibre (LGF) Organosolv Pulping and Discussion of Its Delignification Mechanisms. Holzforschung. 2015;69:247–256. doi: 10.1515/hf-2014-0070. DOI

Pan X., Arato C., Gilkes N., Gregg D., Mabee W., Pye K., Xiao Z., Zhang X., Saddler J. Biorefining of Softwoods Using Ethanol Organosolv Pulping: Preliminary Evaluation of Process Streams for Manufacture of Fuel-Grade Ethanol and Co-Products. Biotechnol. Bioeng. 2005;90:473–481. doi: 10.1002/bit.20453. PubMed DOI

Arato C., Pye E.K., Gjennestad G. The Lignol Approach to Biorefining of Woody Biomass to Produce Ethanol and Chemicals. Appl. Biochem. Biotechnol. 2005;123:871–882. doi: 10.1385/ABAB:123:1-3:0871. PubMed DOI

Mupondwa E., Li X., Tabil L., Sokhansanj S., Adapa P. Status of Canada’s Lignocellulosic Ethanol: Part I: Pretreatment Technologies. Renew. Sustain. Energy Rev. 2017;72:178–190. doi: 10.1016/j.rser.2017.01.039. DOI

Shuai L., Amiri M.T., Questell-Santiago Y.M., Héroguel F., Li Y., Kim H., Meilan R., Chapple C., Ralph J., Luterbacher J.S. Formaldehyde Stabilization Facilitates Lignin Monomer Production during Biomass Depolymerization. Science. 2016;354:329–333. doi: 10.1126/science.aaf7810. PubMed DOI

Aro T., Fatehi P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem. 2017;10:1861–1877. doi: 10.1002/cssc.201700082. PubMed DOI

FAN J., ZHAN H. Optimization of Synthesis of Spherical Lignosulphonate Resin and Its Structure Characterization* *Supported by the Ph.D. Programs Foundation of Ministry of Education of China (20020561001) Chin. J. Chem. Eng. 2008;16:407–410. doi: 10.1016/S1004-9541(08)60097-X. DOI

Calvo-Flores F.G., Dobado J.A., Isac-García J., Martín-Martínez F.J. Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2015.

Doherty W.O., Mousavioun P., Fellows C.M. Value-Adding to Cellulosic Ethanol: Lignin Polymers. Ind. Crop. Prod. 2011;33:259–276. doi: 10.1016/j.indcrop.2010.10.022. DOI

Matsushita Y. Conversion of Technical Lignins to Functional Materials with Retained Polymeric Properties. J. Wood Sci. 2015;61:230–250. doi: 10.1007/s10086-015-1470-2. DOI

Areskogh D., Li J., Gellerstedt G., Henriksson G. Investigation of the Molecular Weight Increase of Commercial Lignosulfonates by Laccase Catalysis. Biomacromolecules. 2010;11:904–910. doi: 10.1021/bm901258v. PubMed DOI

Howard G.C. Process of Utilizing Waste Sulphite Liquor. 1,551,882. U.S. Patent. 1925 Sep 1;

Howard G.C. Utilization of Sulfite, Liquor. Ind. Eng. Chem. 1934;26:614–617. doi: 10.1021/ie50294a007. DOI

Sandborn L.T., Richter S.J., Clemens H.G. Process of Making Vanillin. 2,057,117. U.S. Patent. 1936 Oct 13;

Li T., Takkellapati S. The Current and Emerging Sources of Technical Lignins and Their Applications. BiofuelsBioprod. Biorefining. 2018;12:756–787. doi: 10.1002/bbb.1913. PubMed DOI PMC

Rodríguez A., Sánchez R., Requejo A., Ferrer A. Feasibility of Rice Straw as a Raw Material for the Production of Soda Cellulose Pulp. J. Clean. Prod. 2010;18:1084–1091. doi: 10.1016/j.jclepro.2010.03.011. DOI

Heitner C., Dimmel D., Schmidt J. Lignin and Lignans: Advances in Chemistry. CRC Press; Boca Raton, FL, USA: 2016.

Pu Y., Hu F., Huang F., Ragauskas A.J. Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Res. 2015;8:992–1003. doi: 10.1007/s12155-015-9655-5. DOI

Sturgeon M.R., Kim S., Lawrence K., Paton R.S., Chmely S.C., Nimlos M., Foust T.D., Beckham G.T. A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustain. Chem. Eng. 2014;2:472–485. doi: 10.1021/sc400384w. DOI

Van den Bosch S., Koelewijn S.-F., Renders T., Van den Bossche G., Vangeel T., Schutyser W., Sels B.F. Catalytic Strategies Towards Lignin-Derived Chemicals. Top Curr Chem (Z) 2018;376:36. doi: 10.1007/s41061-018-0214-3. PubMed DOI

Constant S., Wienk J.H.L., Frissen E.A., de Peinder P., Boelens R., van Es D.S., Grisel H.R.J., Weckhuysen M.B., Huijgen J.W.J., Gosselink A.R.J., et al. New Insights into the Structure and Composition of Technical Lignins: A Comparative Characterisation Study. Green Chem. 2016;18:2651–2665. doi: 10.1039/C5GC03043A. DOI

Mishra P.K., Wimmer R. Aerosol Assisted Self-Assembly as a Route to Synthesize Solid and Hollow Spherical Lignin Colloids and Its Utilization in Layer by Layer Deposition. Ultrason Sonochem. 2017;35:45–50. doi: 10.1016/j.ultsonch.2016.09.001. PubMed DOI

Deng Y., Feng X., Yang D., Yi C., Qiu X. Pi-Pi stacking of the aromatic groups in lignosulfonates. Bioresources. 2012;7:1145–1156. doi: 10.15376/biores.7.1.1145-1156. DOI

Yang M., Zhao W., Singh S., Simmons B., Cheng G. On the Solution Structure of Kraft Lignin in Ethylene Glycol and Its Implication for Nanoparticle Preparation. Nanoscale Adv. 2018;1:299–304. doi: 10.1039/C8NA00042E. PubMed DOI PMC

Iravani S., Varma R.S. Greener Synthesis of Lignin Nanoparticles and Their Applications. Green Chemis. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI

Wang B., Sun D., Wang H.-M., Yuan T.-Q., Sun R.-C. Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens. ACS Sustain. Chem. Eng. 2019;7:2658–2666. doi: 10.1021/acssuschemeng.8b05735. DOI

Yin H., Liu L., Wang X., Wang T., Zhou Y., Liu B., Shan Y., Wang L., Lü X. A Novel Flocculant Prepared by Lignin Nanoparticles-Gelatin Complex from Switchgrass for the Capture of Staphylococcus Aureus and Escherichia Coli. Colloids Surf. A Physicochem. Eng. Asp. 2018;545:51–59. doi: 10.1016/j.colsurfa.2018.02.033. DOI

Azimvand J., Didehban K., Mirshokraie S. Safranin-O Removal from Aqueous Solutions Using Lignin Nanoparticle-g-Polyacrylic Acid Adsorbent: Synthesis, Properties, and Application. Adsorpt. Sci. Technol. 2018;36:1422–1440. doi: 10.1177/0263617418777836. DOI

Dai L., Liu R., Hu L.-Q., Zou Z.-F., Si C.-L. Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustain. Chem. Eng. 2017;5:8241–8249. doi: 10.1021/acssuschemeng.7b01903. DOI

Li Y., Qiu X., Qian Y., Xiong W., Yang D. PH-Responsive Lignin-Based Complex Micelles: Preparation, Characterization and Application in Oral Drug Delivery. Chem. Eng. J. 2017;327:1176–1183. doi: 10.1016/j.cej.2017.07.022. DOI

Sipponen M.H., Smyth M., Leskinen T., Johansson L.-S., Österberg M. All-Lignin Approach to Prepare Cationic Colloidal Lignin Particles: Stabilization of Durable Pickering Emulsions. Green Chem. 2017;19:5831–5840. doi: 10.1039/C7GC02900D. DOI

Sipponen M.H., Farooq M., Koivisto J., Pellis A., Seitsonen J., Österberg M. Spatially Confined Lignin Nanospheres for Biocatalytic Ester Synthesis in Aqueous Media. Nat. Commun. 2018;9:2300. doi: 10.1038/s41467-018-04715-6. PubMed DOI PMC

Mattinen M.-L., Valle-Delgado J.J., Leskinen T., Anttila T., Riviere G., Sipponen M., Paananen A., Lintinen K., Kostiainen M., Österberg M. Enzymatically and Chemically Oxidized Lignin Nanoparticles for Biomaterial Applications. Enzym. Microb. Technol. 2018;111:48–56. doi: 10.1016/j.enzmictec.2018.01.005. PubMed DOI

Mattinen M.-L., Riviere G., Henn A., Nugroho R.W.N., Leskinen T., Nivala O., Valle-Delgado J.J., Kostiainen M.A., Österberg M. Colloidal Lignin Particles as Adhesives for Soft Materials. Nanomaterials. 2018;8:1001. doi: 10.3390/nano8121001. PubMed DOI PMC

Gonzalez G., Nelly M., Levi M., Turri S., Griffini G. Lignin Nanoparticles by Ultrasonication and Their Incorporation in Waterborne Polymer Nanocomposites. J. Appl. Polym. Sci. 2017;134:45318. doi: 10.1002/app.45318. DOI

Figueiredo P., Lintinen K., Kiriazis A., Hynninen V., Liu Z., Bauleth-Ramos T., Rahikkala A., Correia A., Kohout T., Sarmento B. In Vitro Evaluation of Biodegradable Lignin-Based Nanoparticles for Drug Delivery and Enhanced Antiproliferation Effect in Cancer Cells. Biomaterials. 2017;121:97–108. doi: 10.1016/j.biomaterials.2016.12.034. PubMed DOI

Figueiredo P., Ferro C., Kemell M., Liu Z., Kiriazis A., Lintinen K., Florindo H.F., Yli-Kauhaluoma J., Hirvonen J., Kostiainen M.A. Functionalization of Carboxylated Lignin Nanoparticles for Targeted and PH-Responsive Delivery of Anticancer Drugs. Nanomedicine. 2017;12:2581–2596. doi: 10.2217/nnm-2017-0219. PubMed DOI

Lievonen M., Valle-Delgado J.J., Mattinen M.-L., Hult E.-L., Lintinen K., Kostiainen M.A., Paananen A., Szilvay G.R., Setälä H., Österberg M. A Simple Process for Lignin Nanoparticle Preparation. Green Chem. 2016;18:1416–1422. doi: 10.1039/C5GC01436K. DOI

Silmore K.S., Gupta C., Washburn N.R. Tunable Pickering Emulsions with Polymer-Grafted Lignin Nanoparticles (PGLNs) J. Colloid Interface Sci. 2016;466:91–100. doi: 10.1016/j.jcis.2015.11.042. PubMed DOI

Liu Z.-H., Hao N., Shinde S., Pu Y., Kang X., Ragauskas J.A., Yuan S.J. Defining Lignin Nanoparticle Properties through Tailored Lignin Reactivity by Sequential Organosolv Fragmentation Approach (SOFA) Green Chem. 2019;21:245–260. doi: 10.1039/C8GC03290D. DOI

Tian D., Hu J., Bao J., Chandra R.P., Saddler J.N., Lu C. Lignin Valorization: Lignin Nanoparticles as High-Value Bio-Additive for Multifunctional Nanocomposites. Biotechnol. Biofuels. 2017;10:192. doi: 10.1186/s13068-017-0876-z. PubMed DOI PMC

Tian D., Hu J., Chandra R.P., Saddler J.N., Lu C. Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery. ACS Sustain. Chem. Eng. 2017;5:2702–2710. doi: 10.1021/acssuschemeng.6b03043. DOI

Gutiérrez-Hernández J.M., Escalante A., Murillo-Vázquez R.N., Delgado E., González F.J., Toríz G. Use of Agave Tequilana-Lignin and Zinc Oxide Nanoparticles for Skin Photoprotection. J. Photochem. Photobiol. B Biol. 2016;163:156–161. doi: 10.1016/j.jphotobiol.2016.08.027. PubMed DOI

Zikeli F., Vinciguerra V., D’Annibale A., Capitani D., Romagnoli M., Scarascia Mugnozza G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials. 2019;9:281. doi: 10.3390/nano9020281. PubMed DOI PMC

Gong W., Ran Z., Ye F., Zhao G. Lignin from Bamboo Shoot Shells as an Activator and Novel Immobilizing Support for α-Amylase. Food Chem. 2017;228:455–462. doi: 10.1016/j.foodchem.2017.02.017. PubMed DOI

Xiong F., Han Y., Wang S., Li G., Qin T., Chen Y., Chu F. Preparation and Formation Mechanism of Size-Controlled Lignin Nanospheres by Self-Assembly. Ind. Crop. Prod. 2017;100:146–152. doi: 10.1016/j.indcrop.2017.02.025. DOI

Xing Q., Buono P., Ruch D., Dubois P., Wu L., Wang W.-J. Biodegradable UV-Blocking Films through Core–Shell Lignin–Melanin Nanoparticles in Poly(Butylene Adipate-Co-Terephthalate) ACS Sustain. Chem. Eng. 2019;7:4147–4157. doi: 10.1021/acssuschemeng.8b05755. DOI

Xiao D., Ding W., Zhang J., Ge Y., Wu Z., Li Z. Fabrication of a Versatile Lignin-Based Nano-Trap for Heavy Metal Ion Capture and Bacterial Inhibition. Chem. Eng. J. 2019;358:310–320. doi: 10.1016/j.cej.2018.10.037. DOI

Yang W., Fortunati E., Bertoglio F., Owczarek J.S., Bruni G., Kozanecki M., Kenny J.M., Torre L., Visai L., Puglia D. Polyvinyl Alcohol/Chitosan Hydrogels with Enhanced Antioxidant and Antibacterial Properties Induced by Lignin Nanoparticles. Carbohydr. Polym. 2018;181:275–284. doi: 10.1016/j.carbpol.2017.10.084. PubMed DOI

Yang W., Rallini M., Wang D.-Y., Gao D., Dominici F., Torre L., Kenny J.M., Puglia D. Role of Lignin Nanoparticles in UV Resistance, Thermal and Mechanical Performance of PMMA Nanocomposites Prepared by a Combined Free-Radical Graft Polymerization/Masterbatch Procedure. Compos. Part A Appl. Sci. Manuf. 2018;107:61–69. doi: 10.1016/j.compositesa.2017.12.030. DOI

Juikar S.J., Vigneshwaran N. Extraction of Nanolignin from Coconut Fibers by Controlled Microbial Hydrolysis. Ind. Crop. Prod. 2017;109:420–425. doi: 10.1016/j.indcrop.2017.08.067. DOI

Wurm F., Landfester K., Yiam-Sawas D., Thines E., Fischer J. Lignin Biomaterial as Agricultural Drug Carrier. Application No. 16/075,503. U.S. Patent. 2019 Feb 7;

Falsini S., Clemente I., Papini A., Tani C., Schiff S., Salvatici M.C., Petruccelli R., Benelli C., Giordano C., Gonnelli C. When Sustainable Nanochemistry Meets Agriculture: Lignin Nanocapsules for Bioactive Compound Delivery to Plantlets. ACS Sustain. Chem. Eng. 2019;7:19935–19942. doi: 10.1021/acssuschemeng.9b05462. DOI

Datta R., Kelkar A., Baraniya D., Molaei A., Moulick A., Meena R.S., Formanek P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability. 2017;9:1163. doi: 10.3390/su9071163. DOI

Pang Y., Wang S., Qiu X., Luo Y., Lou H., Huang J. Preparation of Lignin/SDS Composite Nanoparticles and Its Application in Pickering Emulsion Template Based Microencapsulation. J. Agric. Food Chem. 2017;65:11011–11019. doi: 10.1021/acs.jafc.7b03784. PubMed DOI

Borregaard. [(accessed on 18 December 2020)]; Available online: https://www.lignotech.com.

Tenhaeff W.E., Rios O., More K., McGuire M.A. Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. Adv. Funct. Mater. 2014;24:86–94. doi: 10.1002/adfm.201301420. DOI

Qin Y., Yang D., Qiu X. Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustain. Chem. Eng. 2015;3:3239–3244. doi: 10.1021/acssuschemeng.5b00821. DOI

Snowdon M.R., Mohanty A.K., Misra M. A Study of Carbonized Lignin as an Alternative to Carbon Black. ACS Sustain. Chem. Eng. 2014;2:1257–1263. doi: 10.1021/sc500086v. DOI

Cerrutti B., De Souza C., Castellan A., Ruggiero R., Frollini E. Carboxymethyl Lignin as Stabilizing Agent in Aqueous Ceramic Suspensions. Ind. Crop. Prod. 2012;36:108–115. doi: 10.1016/j.indcrop.2011.08.015. DOI

Greil P. Biomorphous Ceramics from Lignocellulosics. J. Eur. Ceram. Soc. 2001;21:105–118. doi: 10.1016/S0955-2219(00)00179-5. DOI

Kalliola A., Vehmas T., Liitiä T., Tamminen T. Alkali-O2 Oxidized Lignin–A Bio-Based Concrete Plasticizer. Ind. Crop. Prod. 2015;74:150–157. doi: 10.1016/j.indcrop.2015.04.056. DOI

Kamoun A., Jelidi A., Chaabouni M. Evaluation of the Performance of Sulfonated Esparto Grass Lignin as a Plasticizer–Water Reducer for Cement. Cem. Concr. Res. 2003;33:995–1003. doi: 10.1016/S0008-8846(02)01098-0. DOI

Zhang T., Cai G., Liu S. Application of Lignin-Based by-Product Stabilized Silty Soil in Highway Subgrade: A Field Investigation. J. Clean. Prod. 2017;142:4243–4257. doi: 10.1016/j.jclepro.2016.12.002. DOI

Grossman A., Vermerris W. Lignin-Based Polymers and Nanomaterials. Curr. Opin. Biotechnol. 2019;56:112–120. doi: 10.1016/j.copbio.2018.10.009. PubMed DOI

Chang X., Sun J., Xu Z., Zhang F., Wang J., Lv K., Dai Z. A Novel Nano-Lignin-Based Amphoteric Copolymer as Fluid-Loss Reducer in Water-Based Drilling Fluids. Colloids Surf. A Physicochem. Eng. Asp. 2019;583:123979. doi: 10.1016/j.colsurfa.2019.123979. DOI

Pishnamazi M., Casilagan S., Clancy C., Shirazian S., Iqbal J., Egan D., Edlin C., Croker D.M., Walker G.M., Collins M.N. Microcrystalline Cellulose, Lactose and Lignin Blends: Process Mapping of Dry Granulation via Roll Compaction. Powder Technol. 2019;341:38–50. doi: 10.1016/j.powtec.2018.07.003. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enzymatic degradation of cellulose in soil: A review

. 2024 Jan 15 ; 10 (1) : e24022. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...