Lignin for Bioeconomy: The Present and Future Role of Technical Lignin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33374628
PubMed Central
PMC7793518
DOI
10.3390/ijms22010063
PII: ijms22010063
Knihovny.cz E-zdroje
- Klíčová slova
- bioeconomy, lignin, lignin nanoparticles, self-assembly, technical lignin,
- MeSH
- algoritmy MeSH
- biotechnologie * ekonomika metody trendy MeSH
- ekonomika * trendy MeSH
- hydrolýza MeSH
- lignin analogy a deriváty chemie klasifikace izolace a purifikace MeSH
- rostliny chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lignin MeSH
- lignosulfuric acid MeSH Prohlížeč
Lignin, the term commonly used in literature, represents a group of heterogeneous aromatic compounds of plant origin. Protolignin or lignin in the cell wall is entirely different from the commercially available technical lignin due to changes during the delignification process. In this paper, we assess the status of lignin valorization in terms of commercial products. We start with existing knowledge of the lignin/protolignin structure in its native form and move to the technical lignin from various sources. Special attention is given to the patents and lignin-based commercial products. We observed that the technical lignin-based commercial products utilize coarse properties of the technical lignin in marketed formulations. Additionally, the general principles of polymers chemistry and self-assembly are difficult to apply in lignin-based nanotechnology, and lignin-centric investigations must be carried out. The alternate upcoming approach is to develop lignin-centric or lignin first bio-refineries for high-value applications; however, that brings its own technological challenges. The assessment of the gap between lab-scale applications and lignin-based commercial products delineates the challenges lignin nanoparticles-based technologies must meet to be a commercially viable alternative.
Department of Production Engineering Warsaw University of Life Sciences 02 776 Warsaw Poland
Faculty of Business and Economics Mendel University in Brno 61300 Brno Czech Republic
Zobrazit více v PubMed
Achyuthan K.E., Achyuthan A.M., Adams P.D., Dirk S.M., Harper J.C., Simmons B.A., Singh A.K. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules. 2010;15:8641–8688. doi: 10.3390/molecules15118641. PubMed DOI PMC
Kopsahelis N., Agouridis N., Bekatorou A., Kanellaki M. Comparative Study of Spent Grains and Delignified Spent Grains as Yeast Supports for Alcohol Production from Molasses. Bioresour. Technol. 2007;98:1440–1447. doi: 10.1016/j.biortech.2006.03.030. PubMed DOI
Ashori A. Nonwood Fibers—A Potential Source of Raw Material in Papermaking. Polym. Plast. Technol. Eng. 2006;45:1133–1136. doi: 10.1080/03602550600728976. DOI
Argyropoulos D.S. Quantitative Phosphorus-31 NMR Analysis of Six Soluble Lignins. J. Wood Chem. Technol. 1994;14:65–82. doi: 10.1080/02773819408003086. DOI
Balakshin M.Y., Berlin A., DelliColli H.T., Grunert C.A.N.J., Gutman V.M., Ortiz D., Pye E.K. Derivatives of Native Lignin. 8,445,562. U.S. Patent. 2013 May 21;
Dawy M., Shabaka A.A., Nada A.M.A. Molecular Structure and Dielectric Properties of Some Treated Lignins. Polym. Degrad. Stab. 1998;62:455–462. doi: 10.1016/S0141-3910(98)00026-3. DOI
Mansfield S.D. Solutions for Dissolution—Engineering Cell Walls for Deconstruction. Curr. Opin. Biotechnol. 2009;20:286–294. doi: 10.1016/j.copbio.2009.05.001. PubMed DOI
Ahvazi B., Cloutier É., Wojciechowicz O., Ngo T.-D. Lignin Profiling: A Guide for Selecting Appropriate Lignins as Precursors in Biomaterials Development. ACS Sustain. Chem. Eng. 2016;4:5090–5105. doi: 10.1021/acssuschemeng.6b00873. DOI
Siddiqui L., Bag J., Mittal D., Leekha A., Mishra H., Mishra M., Verma A.K., Mishra P.K., Ekielski A., Iqbal Z. Assessing the Potential of Lignin Nanoparticles as Drug Carrier: Synthesis, Cytotoxicity and Genotoxicity Studies. Int. J. Biol. Macromol. 2020;152:786–802. doi: 10.1016/j.ijbiomac.2020.02.311. PubMed DOI
Siddiqui L., Mishra H., Mishra P.K., Iqbal Z., Talegaonkar S. Novel 4-in-1 Strategy to Combat Colon Cancer, Drug Resistance and Cancer Relapse Utilizing Functionalized Bioinspiring Lignin Nanoparticle. Med. Hypotheses. 2018;121:10–14. doi: 10.1016/j.mehy.2018.09.003. PubMed DOI
Mishra P.K., Ekielski A. A Simple Method to Synthesize Lignin Nanoparticles. Colloids Interfaces. 2019;3:52. doi: 10.3390/colloids3020052. DOI
Poletto M., Zattera A.J. Materials Produced from Plant Biomass: Part III: Degradation Kinetics and Hydrogen Bonding in Lignin. Mater. Res. 2013;16:1065–1070. doi: 10.1590/S1516-14392013005000112. DOI
Santos R.B., Capanema E.A., Balakshin M.Y., Chang H., Jameel H. Lignin Structural Variation in Hardwood Species. J. Agric. Food Chem. 2012;60:4923–4930. doi: 10.1021/jf301276a. PubMed DOI
Negro M., Manzanares P., Oliva J., Ballesteros I., Ballesteros M. Changes in Various Physical/Chemical Parameters of Pinus Pinaster Wood after Steam Explosion Pretreatment. Biomass Bioenergy. 2003;25:301–308. doi: 10.1016/S0961-9534(03)00017-5. DOI
Poulomi S., Dong Ho K., Seokwon J., Arthur R. Pseudo-Lignin and Pretreatment Chemistry. Energy Environ. Sci. 2011;4:1306–1310.
Hu F., Jung S., Ragauskas A. Pseudo-Lignin Formation and Its Impact on Enzymatic Hydrolysis. Bioresour. Technol. 2012;117:7–12. doi: 10.1016/j.biortech.2012.04.037. PubMed DOI
Kumar R., Hu F., Sannigrahi P., Jung S., Ragauskas A.J., Wyman C.E. Carbohydrate Derived-pseudo-lignin Can Retard Cellulose Biological Conversion. Biotechnol. Bioeng. 2013;110:737–753. doi: 10.1002/bit.24744. PubMed DOI
Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C., Weckhuysen B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016;55:8164–8215. doi: 10.1002/anie.201510351. PubMed DOI PMC
Bouxin F.P., McVeigh A., Tran F., Westwood N.J., Jarvis M.C., Jackson S.D. Catalytic Depolymerisation of Isolated Lignins to Fine Chemicals Using a Pt/Alumina Catalyst: Part 1—Impact of the Lignin Structure. Green Chem. 2015;17:1235–1242. doi: 10.1039/C4GC01678E. DOI
Hubbe M.A., Alén R., Paleologou M., Kannangara M., Kihlman J. Lignin Recovery from Spent Alkaline Pulping Liquors Using Acidification, Membrane Separation, and Related Processing Steps: A Review. Bioresources. 2019;14:2300–2351. doi: 10.15376/biores.14.1.2300-2351. DOI
Norgren M., Edlund H. Lignin: Recent Advances and Emerging Applications. Curr. Opin. Colloid Interface Sci. 2014;19:409–416. doi: 10.1016/j.cocis.2014.08.004. DOI
Thakur V.K., Thakur M.K., Raghavan P., Kessler M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain. Chem. Eng. 2014;2:1072–1092. doi: 10.1021/sc500087z. DOI
Figueiredo P., Lintinen K., Hirvonen J.T., Kostiainen M.A., Santos H.A. Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2018;93:233–269. doi: 10.1016/j.pmatsci.2017.12.001. DOI
Mishra P.K., Ekielski A. The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. Nanomaterials. 2019;9:243. doi: 10.3390/nano9020243. PubMed DOI PMC
Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., Loh X.J. Towards Lignin-Based Functional Materials in a Sustainable World. Green Chem. 2016;18:1175–1200. doi: 10.1039/C5GC02616D. DOI
Gael Febdinand Dahl. 296,935. U.S. Patent. 1884 Apr 15;
Zhang Y.-H.P. Reviving the Carbohydrate Economy via Multi-Product Lignocellulose Biorefineries. J. Ind. Microbiol. Biotechnol. 2008;35:367–375. doi: 10.1007/s10295-007-0293-6. PubMed DOI
Ramirez F., González V., Crespo M., Meier D., Faix O., Zúñiga V. Ammoxidized Kraft Lignin as a Slow-Release Fertilizer Tested on Sorghum Vulgare. Bioresour. Technol. 1997;61:43–46. doi: 10.1016/S0960-8524(97)84697-4. DOI
Kadla J., Kubo S., Venditti R., Gilbert R., Compere A., Griffith W. Lignin-Based Carbon Fibers for Composite Fiber Applications. Carbon. 2002;40:2913–2920. doi: 10.1016/S0008-6223(02)00248-8. DOI
Gosselink R., de Jong E., Abächerli A., Guran B. Activities and Results of the Thematic Network Eurolignin; Proceedings of the 7th ILI Forum; Barcelona, Spain. 27–28 April 2005; pp. 25–30.
Tejado A., Peña C., Labidi J., Echeverria J.M., Mondragon I. Physico-Chemical Characterization of Lignins from Different Sources for Use in Phenol–Formaldehyde Resin Synthesis. Bioresour. Technol. 2007;98:1655–1663. doi: 10.1016/j.biortech.2006.05.042. PubMed DOI
Zoumpoulakis L., Simitzis J. Ion Exchange Resins from Phenol/Formaldehyde Resin-modified Lignin. Polym. Int. 2001;50:277–283. doi: 10.1002/pi.621. DOI
Carrott P., Carrott M.R. Lignin–from Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007;98:2301–2312. PubMed
Vishtal A.G., Kraslawski A. Challenges in industrial applications of technical lignins. Bioresources. 2011;6:3547–3568.
Brauns F.E., Brauns D.A. The Chemistry of Lignin: Covering the Literature for the Years 1949–1958. Elsevier; Amsterdam, The Netherlands: 2013.
ÖHMAN F., Theliander H., Norgren M., Tomani P., Axegård P. Method for Separating Lignin from a Lignin Containing Liquid/Slurry. 8,815,052. U.S. Patent. 2006 Aug 26;
Miettinen M. Continuous Method for the Precipitation of Lignin from Black Liquor. 9,139,606. U.S. Patent. 2015 Sep 22;
Wells K., Pors D., Foan J., Maki K., Kouisni L., Paleologou M. CO2 Impacts of Commercial Scale Lignin Extraction at Hinton Pulp Using the LignoForce Process & Lignin Substitution into Petroleum-Based Products. PACWEST Conference; Newport Beach, CA, USA: Jun, 2015. pp. 10–13.
Lake M.A., Blackburn J.C. Lignin Product and Process for Making Same. 9,879,119. U.S. Patent. 2018 Jan 30;
Kleinert T.N. Organosolv Pulping and Recovery Process. 3,585,104. U.S. Patent. 1971 Jun 15;
Belgacem M.N., Blayo A., Gandini A. Organosolv Lignin as a Filler in Inks, Varnishes and Paints. Ind. Crop. Prod. 2003;18:145–153. doi: 10.1016/S0926-6690(03)00042-6. DOI
Anttila J., Tanskanen J., Rousu P., Rousu P., Hytönen K. Process for Preparing a Sugar Product. Application No.12/741,693. U.S. Patent. 2010 Sep 23;
Diebold V.B., Cowan W.F., Walsh J.K. Solvent Pulping Process. 4,100,016. U.S. Patent. 1978 Jul 11;
Nimz H., Casten R. Holzaufschluss Mit Essigsaure. DE 34.45. German Patent. 1986 Dec 4;:132.
Nimz H., Schoene M. Non-Waste Pulping and Bleaching with Acetic Acid; Proceedings of the 7th International Symposium on Wood and Pulping Chemistry; Beijing, China. 25 May 1993; pp. 258–265.
Baumeister M., Edel E. Process for the Continuous Extraction of Vegetable-Fiber Material in Two Stages. 4,496,426. U.S. Patent. 1985 Jan 29;
Glasner A.D.-I., Bobik M.D. Process for Recovery of Chemicals from the Pulping Liquor. EP0538576B1. E.U. Patent. 1995 Dec 4;
Delmas M., Mlayah B.B. Process for Producing Bioethanol from Lignocellulosic Plant Raw Material. 8,551,747. U.S. Patent. 2013 Oct 8;
Mlayah B.B., Delmas M., Avignon G. Installation for Implementing a Method for Producing Paper Pulp, Lignins and Sugars and Production Method Using Such an Installation. 8,157,964. U.S. Patent. 2012 Apr 17;
Mikkonen H., Peltonen S., Kallioinen A., Suurnäkki A., Kunnari V., Malm T. Process for Defibering a Fibrous Raw-Material; World Intellectual Property Organization. WO2009066007. International Patent. 2009 May 28;
Rousu P., Rousu P., Rousu E. Process for Producing Pulp with a Mixture of Formic Acid and Acetic Acid as Cooking Chemical. 6,562,191. U.S. Patent. 2003 May 13;
Rousu P., Rousu P., Rousu E. Method of Producing Pulp Using Single-Stage Cooking with Formic Acid and Washing with Performic Acid. 6,156,156. U.S. Patent. 2000 Dec 5;
Seisto A., Poppius-Levlin K. Milox Pulping of Agricultural Plants; Proceedings of the 8th International Symposium on Wood and Pulping Chemistry; Helsinki, Finland. 6–9 June 1995.
Berlin A., Balakshin M.Y., Ma R., Gutman V.M., Ortiz D. Organosolv Process. Application No. 13/584,697. U.S. Patent. 2013 Aug 15;
Berlin A., Balakshin M.Y., Ma R., Gutman V.M., Ortiz D. Organosolv Process World Intellectual Property Organization. WO2011097720A1. International Patent. 2011 Aug 18;
Luterbacher J.S., Shuai L. Production of Monomers from Lignin during Depolymerisation of Lignocellulose-Containing Composition. Application No. 16/093,065. U.S. Patent. 2019 May 2;
Manesh A., Hemyeri R., Mohapatra S., Guenther J., Zoborowski E., Manesh M.A. System and Method for Extraction of Chemicals from Lignocellulosic Materials. 9,365,525. U.S. Patent. 2016 Jun 14;
Manesh A., Guenther J.H., Zoborowski E.G., Braenner W., Manesh M.A., Hawk L.J. Oxygen Assisted Organosolv Process, System and Method for Delignification of Lignocellulosic Materials and Lignin Recovery. 9,382,283. U.S. Patent. 2016 Jul 5;
Abacherli A., Doppenberg F. Verfahren zur Aufbereitung von Aromatische Polymere Enthaltenden Alkalischen Lösungen. DE59807559. German Patent. 1998 Mar 20;
Hussin M.H., Aziz A.A., Iqbal A., Ibrahim M.N.M., Abd Latif N.H. Development and Characterization Novel Bio-Adhesive for Wood Using Kenaf Core (Hibiscus Cannabinus) Lignin and Glyoxal. Int. J. Biol. Macromol. 2019;122:713–722. doi: 10.1016/j.ijbiomac.2018.11.009. PubMed DOI
Deandrea M., Mitchell W.D., Narendranath N. Lignin Compositions and Methods for Use in Fermentation and Animal Feed. Application No. 15/486,837. U.S. Patent. 2017 Oct 19;
Chen J., Eraghi Kazzaz A., AlipoorMazandarani N., Hosseinpour Feizi Z., Fatehi P. Production of Flocculants, Adsorbents, and Dispersants from Lignin. Molecules. 2018;23:868. doi: 10.3390/molecules23040868. PubMed DOI PMC
Stigsson L. Method for the Production of High Yield Chemical Pulp from Softwood. Application No. 10/759,047. U.S. Patent. 2005 Jul 21;
Abacherli A., Doppenberg F. Method for Preparing Alkaline Solutions Containing Aromatic Polymers. No. CA2283698A1. Canadian Patent. 1998 Dec 1;
Chakar F.S., Ragauskas A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crop. Prod. 2004;20:131–141. doi: 10.1016/j.indcrop.2004.04.016. DOI
Temler J.S. High-Yield Semi-Chemical Carbonate Pulping Process. 4,229,251. U.S. Patent. 1980 Oct 21;
Baklanova O., Plaksin G., Drozdov V., Duplyakin V., Chesnokov N., Kuznetsov B. Preparation of Microporous Sorbents from Cedar Nutshells and Hydrolytic Lignin. Carbon. 2003;41:1793–1800. doi: 10.1016/S0008-6223(03)00149-0. DOI
Eyal A., Vitner A., Mali R. Method for Preparing a Hydrolyzate. Application No. 13/577,215. U.S. Patent. 2013 Jan 31;
Nguyen Q.A., Tucker M.P. Dilute Acid/Metal Salt Hydrolysis of Lignocellulosics. 6,423,145. U.S. Patent. 2002 Jul 23;
Zhang J., Chen G., Yang N.W., Wang Y.G. Preparation and Evaluation of Sodium Hydroxymethyl Lignosulfonate as Eco-Friendly Drilling Fluid Additive. Adv. Mater. Res. 2012;415:629–632. doi: 10.4028/www.scientific.net/AMR.415-417.629. DOI
Corey A., Wamsley K., Winowiski T., Moritz J. Effects of Calcium Lignosulfonate, Mixer-Added Fat, and Feed Form on Feed Manufacture and Broiler Performance. J. Appl. Poult. Res. 2014;23:418–428. doi: 10.3382/japr.2013-00916. DOI
Hemmilä V., Adamopoulos S., Hosseinpourpia R., Ahmed S.A. Ammonium Lignosulfonate Adhesives for Particleboards with PMDI and Furfuryl Alcohol as Crosslinkers. Polymers. 2019;11:1633. doi: 10.3390/polym11101633. PubMed DOI PMC
Joensson B., Grundberg H., Gustafsson A. Lignosulfonate of a Certain Quality and Method of Preparation of Lignosulfonate of a Certain Quality. 9,447,131. U.S. Patent. 2016 Sep 20;
Sjoede A., Froelander A., Lersch M., Roedsrud G. Lignocellulosic Biomass Conversion. 10,648,008. U.S. Patent. 2020 May 12;
Reknes K. Agglomerated Particulate Lignosulfonate. 8,277,557. U.S. Patent. 2012 Feb 2;
Reknes K. Agglomerated Particulate Lignosulfonate. Application 14/575,760. U.S. Patent. 2015 Jun 4;
Lanthier S., Tassin P., Mahieu E. Process for the Treatment of a Sulfonated Lignin-Based Liquor Containing Sulfite and Ammonium Ions with Formaldehyde. Number DE10107122A1. German Patent. 2002 Sep 26;
Lanthier S., Tassin P., Mahieu E. Processing of Sulfonated Lignin-Based Liquor Containing Sulfite and Ammonium Ions, Obtained in Paper Production, for Re-Use in Building Industry Comprises Optional Replacement of Some Ammonium Ions and Treatment with Formaldehyde. Number FR2805263A1. French Patent. 2001 Aug 24;
Harada H., Hirota M., Nishijima E., Yashiro J., Yatsushiro X., Mahirota H., Nishijima E. System for producing bioethanol using lignocellulose as raw material. JP2009213389A. Japanese Patent. 2009 Sep 24;
Ligninsulphonates|Burgo Group. [(accessed on 10 August 2020)]; Available online: https://www.burgo.com/en/group/figures/ls.
Argyropoulos D. Use of Lignocellulosics Solvated in Ionic Liquids for Production of Biofuels. 8,182,557. U.S. Patent. 2012 May 22;
Holbrey J., Swatloski R., Chen J., Daly D., Rogers R. Polymer Dissolution and Blend Formation in Ionic Liquids. 7,888,412. U.S. Patent. 2011 Feb 15;
Fearon O., Kuitunen S., Vuorinen T. Reaction Kinetics of Strong Nucleophiles with a Dimeric Non-Phenolic Lignin Model Compound with α-Carbonyl Functionality (Adleron) in Aqueous Alkali Solution. Holzforschung. 2016;70:811–818. doi: 10.1515/hf-2015-0236. DOI
Gierer J. Chemical Aspects of Kraft Pulping. Wood Sci. Technol. 1980;14:241–266. doi: 10.1007/BF00383453. DOI
Sixta H. Pulp Properties and Applications. Handb. Pulp. 2006:1009–1067.
Demuner I.F., Colodette J.L., Demuner A.J., Jardim C.M. Biorefinery Review: Wide-Reaching Products through Kraft Lignin. BioResources. 2019;14:7543–7581.
Yoon S.-H., Van Heiningen A. Kraft Pulping and Papermaking Properties of Hot-Water Pre-Extracted Loblolly Pine in an Integrated Forest Products Biorefinery. Tappi J. 2008;7:22–27.
Ragnar M., Lindgren C.T., Nilvebrant N.-O. PKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000;20:277–305. doi: 10.1080/02773810009349637. DOI
Sundin J. Doctoral Thesis. Royal Institute of Technology; Stockholm, Sweden: Dec 1, 2000. Precipitation of Kraft Lignin under Alkaline Conditions.
Zhu W., Theliander H. Precipitation of Lignin from Softwood Black Liquor: An Investigation of the Equilibrium and Molecular Properties of Lignin. Bioresources. 2015;10:1696–1714. doi: 10.15376/biores.10.1.1696-1715. DOI
Jansen R., LAWSON J.A., Lapidot N. Methods for Separating and Refining Lignin from Black Liquor and Compositions Thereof. 10,767,308. U.S. Patent. 2020 Sep 8;
Evstigneev E. Factors Affecting Lignin Solubility. Russ. J. Appl. Chem. 2011;84:1040–1045. doi: 10.1134/S1070427211060243. DOI
Ohman F., Theliander H., Tomani P., Axegard P. Method for Lignin Separation from Black Liquor. 9,777,033. U.S. Patent. 2017 Oct 3;
Kouisni L., Paleologou M. Method for Separating Lignin from Black Liquor. 8,771,464. U.S. Patent. 2014 Jul 8;
Kouisni L., Gagné A., Maki K., Holt-Hindle P., Paleologou M. LignoForce System for the Recovery of Lignin from Black Liquor: Feedstock Options, Odor Profile, and Product Characterization. ACS Sustain. Chem. Eng. 2016;4:5152–5159. doi: 10.1021/acssuschemeng.6b00907. DOI
Lake M.A., Blackburn J.C. SLRP-an Innovative Lignin-Recovery Technology. Cellul Chem. Technol. 2014;48:799–804.
Lake M.A., Blackburn J.C. Process for Recovering Lignin. 9,260,464. U.S. Patent. 2016 Feb 16;
Borand M.N., Karaosmanoğlu F. Effects of Organosolv Pretreatment Conditions for Lignocellulosic Biomass in Biorefinery Applications: A Review. J. Renew. Sustain. Energy. 2018;10:033104. doi: 10.1063/1.5025876. DOI
Schulze P., Seidel-Morgenstern A., Lorenz H., Leschinsky M., Unkelbach G. Advanced Process for Precipitation of Lignin from Ethanol Organosolv Spent Liquors. Bioresour. Technol. 2016;199:128–134. doi: 10.1016/j.biortech.2015.09.040. PubMed DOI
Pandey M.P., Kim C.S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chem. Eng. Technol. 2011;34:29–41. doi: 10.1002/ceat.201000270. DOI
Pye E.K., Lora J.H. The AlcellTM Process: A Proven Alternative to Kraft Pulping. Tappi J. 1991;74:113–118.
Sarkanen K.V. Chemistry of Solvent Pulping. Tappi J. 1990;73:215–219.
Brosse N., Dufour A., Meng X., Sun Q., Ragauskas A. Miscanthus: A Fast-Growing Crop for Biofuels and Chemicals Production. BiofuelsBioprod. Bioref. 2012;6:580–598. doi: 10.1002/bbb.1353. DOI
Patt R., Kordsachia O. Herstellung von Zellstoffen Unter Verwendung von Alkalischen Sulfitlösungen Mit Zusatz von Anthrachinon Und Methanol. Das Pap. (Darmstadt) 1986;40:V1–V8.
Kordsachia O., Patt R., Wandinger B. ASAM Pulping and Chlorine Free Bleaching of Eucalyptus. Forest Institute (INFOR); Santiago, Chile: 1993.
Kordsachia O., Wandinger B., Patt R. Some Investigations on ASAM Pulping and Chlorine Free Bleaching of Eucalyptus from Spain. Holz Als Roh-Und Werkst. 1992;50:85–91. doi: 10.1007/BF02628679. DOI
Technologies & Solutions. Chempolis. [(accessed on 8 March 2020)]; Available online: https://chempolis.com/technologies-solutions/
Sridach W. The Environmentally Benign Pulping Process of Non-Wood Fibers. Suranaree J. Sci. Technol. 2010;17:105–123.
Leponiemi A. Non-Wood Pulping Possibilities-a Challenge for the Chemical Pulping Industry. Appita Technol. Innov. Manuf. Environ. 2008;61:234–243.
Zhao X., Dai L., Liu D. Characterization and Comparison of Acetosolv and Milox Lignin Isolated from Crofton Weed Stem. J. Appl. Polym. Sci. 2009;114:1295–1302. doi: 10.1002/app.30604. DOI
Ligero P., Vega A., Villaverde J. Delignification of Miscanthus× Giganteus by the Milox Process. Bioresour. Technol. 2010;101:3188–3193. doi: 10.1016/j.biortech.2009.12.021. PubMed DOI
Delmas G., Benjelloun-Mlayah B., Bigot Y.L., Delmas M. Functionality of Wheat Straw Lignin Extracted in Organic Acid Media. J. Appl. Polym. Sci. 2011;121:491–501. doi: 10.1002/app.33592. DOI
Snelders J., Dornez E., Benjelloun-Mlayah B., Huijgen W.J.J., de Wild P.J., Gosselink R.J.A., Gerritsma J., Courtin C.M. Biorefining of Wheat Straw Using an Acetic and Formic Acid Based Organosolv Fractionation Process. Bioresour. Technol. 2014;156:275–282. doi: 10.1016/j.biortech.2014.01.069. PubMed DOI
Kangas H., Hakala T., Tamminen T., Määttänen M., Rovio S., Liitiä T., Poppius-Levlin K. Optimisation of Acetic Acid Lignofibre Organosolv Process. Bioresources. 2015;10:2699–2718. doi: 10.15376/biores.10.2.2699-2718. DOI
Kangas H., Liitiä T., Rovio S., Ohra-Aho T., Heikkinen H., Tamminen T., Poppius-Levlin K. Characterization of Dissolved Lignins from Acetic Acid Lignofibre (LGF) Organosolv Pulping and Discussion of Its Delignification Mechanisms. Holzforschung. 2015;69:247–256. doi: 10.1515/hf-2014-0070. DOI
Pan X., Arato C., Gilkes N., Gregg D., Mabee W., Pye K., Xiao Z., Zhang X., Saddler J. Biorefining of Softwoods Using Ethanol Organosolv Pulping: Preliminary Evaluation of Process Streams for Manufacture of Fuel-Grade Ethanol and Co-Products. Biotechnol. Bioeng. 2005;90:473–481. doi: 10.1002/bit.20453. PubMed DOI
Arato C., Pye E.K., Gjennestad G. The Lignol Approach to Biorefining of Woody Biomass to Produce Ethanol and Chemicals. Appl. Biochem. Biotechnol. 2005;123:871–882. doi: 10.1385/ABAB:123:1-3:0871. PubMed DOI
Mupondwa E., Li X., Tabil L., Sokhansanj S., Adapa P. Status of Canada’s Lignocellulosic Ethanol: Part I: Pretreatment Technologies. Renew. Sustain. Energy Rev. 2017;72:178–190. doi: 10.1016/j.rser.2017.01.039. DOI
Shuai L., Amiri M.T., Questell-Santiago Y.M., Héroguel F., Li Y., Kim H., Meilan R., Chapple C., Ralph J., Luterbacher J.S. Formaldehyde Stabilization Facilitates Lignin Monomer Production during Biomass Depolymerization. Science. 2016;354:329–333. doi: 10.1126/science.aaf7810. PubMed DOI
Aro T., Fatehi P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem. 2017;10:1861–1877. doi: 10.1002/cssc.201700082. PubMed DOI
FAN J., ZHAN H. Optimization of Synthesis of Spherical Lignosulphonate Resin and Its Structure Characterization* *Supported by the Ph.D. Programs Foundation of Ministry of Education of China (20020561001) Chin. J. Chem. Eng. 2008;16:407–410. doi: 10.1016/S1004-9541(08)60097-X. DOI
Calvo-Flores F.G., Dobado J.A., Isac-García J., Martín-Martínez F.J. Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2015.
Doherty W.O., Mousavioun P., Fellows C.M. Value-Adding to Cellulosic Ethanol: Lignin Polymers. Ind. Crop. Prod. 2011;33:259–276. doi: 10.1016/j.indcrop.2010.10.022. DOI
Matsushita Y. Conversion of Technical Lignins to Functional Materials with Retained Polymeric Properties. J. Wood Sci. 2015;61:230–250. doi: 10.1007/s10086-015-1470-2. DOI
Areskogh D., Li J., Gellerstedt G., Henriksson G. Investigation of the Molecular Weight Increase of Commercial Lignosulfonates by Laccase Catalysis. Biomacromolecules. 2010;11:904–910. doi: 10.1021/bm901258v. PubMed DOI
Howard G.C. Process of Utilizing Waste Sulphite Liquor. 1,551,882. U.S. Patent. 1925 Sep 1;
Howard G.C. Utilization of Sulfite, Liquor. Ind. Eng. Chem. 1934;26:614–617. doi: 10.1021/ie50294a007. DOI
Sandborn L.T., Richter S.J., Clemens H.G. Process of Making Vanillin. 2,057,117. U.S. Patent. 1936 Oct 13;
Li T., Takkellapati S. The Current and Emerging Sources of Technical Lignins and Their Applications. BiofuelsBioprod. Biorefining. 2018;12:756–787. doi: 10.1002/bbb.1913. PubMed DOI PMC
Rodríguez A., Sánchez R., Requejo A., Ferrer A. Feasibility of Rice Straw as a Raw Material for the Production of Soda Cellulose Pulp. J. Clean. Prod. 2010;18:1084–1091. doi: 10.1016/j.jclepro.2010.03.011. DOI
Heitner C., Dimmel D., Schmidt J. Lignin and Lignans: Advances in Chemistry. CRC Press; Boca Raton, FL, USA: 2016.
Pu Y., Hu F., Huang F., Ragauskas A.J. Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Res. 2015;8:992–1003. doi: 10.1007/s12155-015-9655-5. DOI
Sturgeon M.R., Kim S., Lawrence K., Paton R.S., Chmely S.C., Nimlos M., Foust T.D., Beckham G.T. A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustain. Chem. Eng. 2014;2:472–485. doi: 10.1021/sc400384w. DOI
Van den Bosch S., Koelewijn S.-F., Renders T., Van den Bossche G., Vangeel T., Schutyser W., Sels B.F. Catalytic Strategies Towards Lignin-Derived Chemicals. Top Curr Chem (Z) 2018;376:36. doi: 10.1007/s41061-018-0214-3. PubMed DOI
Constant S., Wienk J.H.L., Frissen E.A., de Peinder P., Boelens R., van Es D.S., Grisel H.R.J., Weckhuysen M.B., Huijgen J.W.J., Gosselink A.R.J., et al. New Insights into the Structure and Composition of Technical Lignins: A Comparative Characterisation Study. Green Chem. 2016;18:2651–2665. doi: 10.1039/C5GC03043A. DOI
Mishra P.K., Wimmer R. Aerosol Assisted Self-Assembly as a Route to Synthesize Solid and Hollow Spherical Lignin Colloids and Its Utilization in Layer by Layer Deposition. Ultrason Sonochem. 2017;35:45–50. doi: 10.1016/j.ultsonch.2016.09.001. PubMed DOI
Deng Y., Feng X., Yang D., Yi C., Qiu X. Pi-Pi stacking of the aromatic groups in lignosulfonates. Bioresources. 2012;7:1145–1156. doi: 10.15376/biores.7.1.1145-1156. DOI
Yang M., Zhao W., Singh S., Simmons B., Cheng G. On the Solution Structure of Kraft Lignin in Ethylene Glycol and Its Implication for Nanoparticle Preparation. Nanoscale Adv. 2018;1:299–304. doi: 10.1039/C8NA00042E. PubMed DOI PMC
Iravani S., Varma R.S. Greener Synthesis of Lignin Nanoparticles and Their Applications. Green Chemis. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI
Wang B., Sun D., Wang H.-M., Yuan T.-Q., Sun R.-C. Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens. ACS Sustain. Chem. Eng. 2019;7:2658–2666. doi: 10.1021/acssuschemeng.8b05735. DOI
Yin H., Liu L., Wang X., Wang T., Zhou Y., Liu B., Shan Y., Wang L., Lü X. A Novel Flocculant Prepared by Lignin Nanoparticles-Gelatin Complex from Switchgrass for the Capture of Staphylococcus Aureus and Escherichia Coli. Colloids Surf. A Physicochem. Eng. Asp. 2018;545:51–59. doi: 10.1016/j.colsurfa.2018.02.033. DOI
Azimvand J., Didehban K., Mirshokraie S. Safranin-O Removal from Aqueous Solutions Using Lignin Nanoparticle-g-Polyacrylic Acid Adsorbent: Synthesis, Properties, and Application. Adsorpt. Sci. Technol. 2018;36:1422–1440. doi: 10.1177/0263617418777836. DOI
Dai L., Liu R., Hu L.-Q., Zou Z.-F., Si C.-L. Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustain. Chem. Eng. 2017;5:8241–8249. doi: 10.1021/acssuschemeng.7b01903. DOI
Li Y., Qiu X., Qian Y., Xiong W., Yang D. PH-Responsive Lignin-Based Complex Micelles: Preparation, Characterization and Application in Oral Drug Delivery. Chem. Eng. J. 2017;327:1176–1183. doi: 10.1016/j.cej.2017.07.022. DOI
Sipponen M.H., Smyth M., Leskinen T., Johansson L.-S., Österberg M. All-Lignin Approach to Prepare Cationic Colloidal Lignin Particles: Stabilization of Durable Pickering Emulsions. Green Chem. 2017;19:5831–5840. doi: 10.1039/C7GC02900D. DOI
Sipponen M.H., Farooq M., Koivisto J., Pellis A., Seitsonen J., Österberg M. Spatially Confined Lignin Nanospheres for Biocatalytic Ester Synthesis in Aqueous Media. Nat. Commun. 2018;9:2300. doi: 10.1038/s41467-018-04715-6. PubMed DOI PMC
Mattinen M.-L., Valle-Delgado J.J., Leskinen T., Anttila T., Riviere G., Sipponen M., Paananen A., Lintinen K., Kostiainen M., Österberg M. Enzymatically and Chemically Oxidized Lignin Nanoparticles for Biomaterial Applications. Enzym. Microb. Technol. 2018;111:48–56. doi: 10.1016/j.enzmictec.2018.01.005. PubMed DOI
Mattinen M.-L., Riviere G., Henn A., Nugroho R.W.N., Leskinen T., Nivala O., Valle-Delgado J.J., Kostiainen M.A., Österberg M. Colloidal Lignin Particles as Adhesives for Soft Materials. Nanomaterials. 2018;8:1001. doi: 10.3390/nano8121001. PubMed DOI PMC
Gonzalez G., Nelly M., Levi M., Turri S., Griffini G. Lignin Nanoparticles by Ultrasonication and Their Incorporation in Waterborne Polymer Nanocomposites. J. Appl. Polym. Sci. 2017;134:45318. doi: 10.1002/app.45318. DOI
Figueiredo P., Lintinen K., Kiriazis A., Hynninen V., Liu Z., Bauleth-Ramos T., Rahikkala A., Correia A., Kohout T., Sarmento B. In Vitro Evaluation of Biodegradable Lignin-Based Nanoparticles for Drug Delivery and Enhanced Antiproliferation Effect in Cancer Cells. Biomaterials. 2017;121:97–108. doi: 10.1016/j.biomaterials.2016.12.034. PubMed DOI
Figueiredo P., Ferro C., Kemell M., Liu Z., Kiriazis A., Lintinen K., Florindo H.F., Yli-Kauhaluoma J., Hirvonen J., Kostiainen M.A. Functionalization of Carboxylated Lignin Nanoparticles for Targeted and PH-Responsive Delivery of Anticancer Drugs. Nanomedicine. 2017;12:2581–2596. doi: 10.2217/nnm-2017-0219. PubMed DOI
Lievonen M., Valle-Delgado J.J., Mattinen M.-L., Hult E.-L., Lintinen K., Kostiainen M.A., Paananen A., Szilvay G.R., Setälä H., Österberg M. A Simple Process for Lignin Nanoparticle Preparation. Green Chem. 2016;18:1416–1422. doi: 10.1039/C5GC01436K. DOI
Silmore K.S., Gupta C., Washburn N.R. Tunable Pickering Emulsions with Polymer-Grafted Lignin Nanoparticles (PGLNs) J. Colloid Interface Sci. 2016;466:91–100. doi: 10.1016/j.jcis.2015.11.042. PubMed DOI
Liu Z.-H., Hao N., Shinde S., Pu Y., Kang X., Ragauskas J.A., Yuan S.J. Defining Lignin Nanoparticle Properties through Tailored Lignin Reactivity by Sequential Organosolv Fragmentation Approach (SOFA) Green Chem. 2019;21:245–260. doi: 10.1039/C8GC03290D. DOI
Tian D., Hu J., Bao J., Chandra R.P., Saddler J.N., Lu C. Lignin Valorization: Lignin Nanoparticles as High-Value Bio-Additive for Multifunctional Nanocomposites. Biotechnol. Biofuels. 2017;10:192. doi: 10.1186/s13068-017-0876-z. PubMed DOI PMC
Tian D., Hu J., Chandra R.P., Saddler J.N., Lu C. Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery. ACS Sustain. Chem. Eng. 2017;5:2702–2710. doi: 10.1021/acssuschemeng.6b03043. DOI
Gutiérrez-Hernández J.M., Escalante A., Murillo-Vázquez R.N., Delgado E., González F.J., Toríz G. Use of Agave Tequilana-Lignin and Zinc Oxide Nanoparticles for Skin Photoprotection. J. Photochem. Photobiol. B Biol. 2016;163:156–161. doi: 10.1016/j.jphotobiol.2016.08.027. PubMed DOI
Zikeli F., Vinciguerra V., D’Annibale A., Capitani D., Romagnoli M., Scarascia Mugnozza G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials. 2019;9:281. doi: 10.3390/nano9020281. PubMed DOI PMC
Gong W., Ran Z., Ye F., Zhao G. Lignin from Bamboo Shoot Shells as an Activator and Novel Immobilizing Support for α-Amylase. Food Chem. 2017;228:455–462. doi: 10.1016/j.foodchem.2017.02.017. PubMed DOI
Xiong F., Han Y., Wang S., Li G., Qin T., Chen Y., Chu F. Preparation and Formation Mechanism of Size-Controlled Lignin Nanospheres by Self-Assembly. Ind. Crop. Prod. 2017;100:146–152. doi: 10.1016/j.indcrop.2017.02.025. DOI
Xing Q., Buono P., Ruch D., Dubois P., Wu L., Wang W.-J. Biodegradable UV-Blocking Films through Core–Shell Lignin–Melanin Nanoparticles in Poly(Butylene Adipate-Co-Terephthalate) ACS Sustain. Chem. Eng. 2019;7:4147–4157. doi: 10.1021/acssuschemeng.8b05755. DOI
Xiao D., Ding W., Zhang J., Ge Y., Wu Z., Li Z. Fabrication of a Versatile Lignin-Based Nano-Trap for Heavy Metal Ion Capture and Bacterial Inhibition. Chem. Eng. J. 2019;358:310–320. doi: 10.1016/j.cej.2018.10.037. DOI
Yang W., Fortunati E., Bertoglio F., Owczarek J.S., Bruni G., Kozanecki M., Kenny J.M., Torre L., Visai L., Puglia D. Polyvinyl Alcohol/Chitosan Hydrogels with Enhanced Antioxidant and Antibacterial Properties Induced by Lignin Nanoparticles. Carbohydr. Polym. 2018;181:275–284. doi: 10.1016/j.carbpol.2017.10.084. PubMed DOI
Yang W., Rallini M., Wang D.-Y., Gao D., Dominici F., Torre L., Kenny J.M., Puglia D. Role of Lignin Nanoparticles in UV Resistance, Thermal and Mechanical Performance of PMMA Nanocomposites Prepared by a Combined Free-Radical Graft Polymerization/Masterbatch Procedure. Compos. Part A Appl. Sci. Manuf. 2018;107:61–69. doi: 10.1016/j.compositesa.2017.12.030. DOI
Juikar S.J., Vigneshwaran N. Extraction of Nanolignin from Coconut Fibers by Controlled Microbial Hydrolysis. Ind. Crop. Prod. 2017;109:420–425. doi: 10.1016/j.indcrop.2017.08.067. DOI
Wurm F., Landfester K., Yiam-Sawas D., Thines E., Fischer J. Lignin Biomaterial as Agricultural Drug Carrier. Application No. 16/075,503. U.S. Patent. 2019 Feb 7;
Falsini S., Clemente I., Papini A., Tani C., Schiff S., Salvatici M.C., Petruccelli R., Benelli C., Giordano C., Gonnelli C. When Sustainable Nanochemistry Meets Agriculture: Lignin Nanocapsules for Bioactive Compound Delivery to Plantlets. ACS Sustain. Chem. Eng. 2019;7:19935–19942. doi: 10.1021/acssuschemeng.9b05462. DOI
Datta R., Kelkar A., Baraniya D., Molaei A., Moulick A., Meena R.S., Formanek P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability. 2017;9:1163. doi: 10.3390/su9071163. DOI
Pang Y., Wang S., Qiu X., Luo Y., Lou H., Huang J. Preparation of Lignin/SDS Composite Nanoparticles and Its Application in Pickering Emulsion Template Based Microencapsulation. J. Agric. Food Chem. 2017;65:11011–11019. doi: 10.1021/acs.jafc.7b03784. PubMed DOI
Borregaard. [(accessed on 18 December 2020)]; Available online: https://www.lignotech.com.
Tenhaeff W.E., Rios O., More K., McGuire M.A. Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. Adv. Funct. Mater. 2014;24:86–94. doi: 10.1002/adfm.201301420. DOI
Qin Y., Yang D., Qiu X. Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustain. Chem. Eng. 2015;3:3239–3244. doi: 10.1021/acssuschemeng.5b00821. DOI
Snowdon M.R., Mohanty A.K., Misra M. A Study of Carbonized Lignin as an Alternative to Carbon Black. ACS Sustain. Chem. Eng. 2014;2:1257–1263. doi: 10.1021/sc500086v. DOI
Cerrutti B., De Souza C., Castellan A., Ruggiero R., Frollini E. Carboxymethyl Lignin as Stabilizing Agent in Aqueous Ceramic Suspensions. Ind. Crop. Prod. 2012;36:108–115. doi: 10.1016/j.indcrop.2011.08.015. DOI
Greil P. Biomorphous Ceramics from Lignocellulosics. J. Eur. Ceram. Soc. 2001;21:105–118. doi: 10.1016/S0955-2219(00)00179-5. DOI
Kalliola A., Vehmas T., Liitiä T., Tamminen T. Alkali-O2 Oxidized Lignin–A Bio-Based Concrete Plasticizer. Ind. Crop. Prod. 2015;74:150–157. doi: 10.1016/j.indcrop.2015.04.056. DOI
Kamoun A., Jelidi A., Chaabouni M. Evaluation of the Performance of Sulfonated Esparto Grass Lignin as a Plasticizer–Water Reducer for Cement. Cem. Concr. Res. 2003;33:995–1003. doi: 10.1016/S0008-8846(02)01098-0. DOI
Zhang T., Cai G., Liu S. Application of Lignin-Based by-Product Stabilized Silty Soil in Highway Subgrade: A Field Investigation. J. Clean. Prod. 2017;142:4243–4257. doi: 10.1016/j.jclepro.2016.12.002. DOI
Grossman A., Vermerris W. Lignin-Based Polymers and Nanomaterials. Curr. Opin. Biotechnol. 2019;56:112–120. doi: 10.1016/j.copbio.2018.10.009. PubMed DOI
Chang X., Sun J., Xu Z., Zhang F., Wang J., Lv K., Dai Z. A Novel Nano-Lignin-Based Amphoteric Copolymer as Fluid-Loss Reducer in Water-Based Drilling Fluids. Colloids Surf. A Physicochem. Eng. Asp. 2019;583:123979. doi: 10.1016/j.colsurfa.2019.123979. DOI
Pishnamazi M., Casilagan S., Clancy C., Shirazian S., Iqbal J., Egan D., Edlin C., Croker D.M., Walker G.M., Collins M.N. Microcrystalline Cellulose, Lactose and Lignin Blends: Process Mapping of Dry Granulation via Roll Compaction. Powder Technol. 2019;341:38–50. doi: 10.1016/j.powtec.2018.07.003. DOI