Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31412664
PubMed Central
PMC6722666
DOI
10.3390/biom9080363
PII: biom9080363
Knihovny.cz E-resources
- Keywords
- CNF toxicity, Drosophila melanogaster, haemocompatibility, wood-based CNF,
- MeSH
- Biocompatible Materials chemistry toxicity MeSH
- Cellulose chemistry toxicity MeSH
- Behavior, Animal drug effects MeSH
- Wood chemistry MeSH
- Drosophila melanogaster drug effects MeSH
- Nanofibers chemistry MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Cellulose MeSH
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
Biotechnology Department Heritage Institute of Technology Kolkata 700107 West Bengal India
Department of Wood Processing Technology Mendel University in Brno 61300 Brno Czech Republic
See more in PubMed
Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today. 2017;22:1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI
Mishra P.K., Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials. 2019;9:243. doi: 10.3390/nano9020243. PubMed DOI PMC
Sharma H., Mishra P.K., Talegaonkar S., Vaidya B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov. Today. 2015;20:1143–1151. doi: 10.1016/j.drudis.2015.05.009. PubMed DOI
Thomas S.C., Harshita, Mishra P.K., Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015;21:6165–6188. doi: 10.2174/1381612821666151027153246. PubMed DOI
Mishra P.K., Ekielski A. A simple method to synthesize lignin nanoparticles. Colloids Interfaces. 2019;3:52. doi: 10.3390/colloids3020052. DOI
Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI
Mishra P.K., Gregor T., Wimmer R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. BioResources. 2017;12:107–116. doi: 10.15376/biores.12.1.107-116. DOI
Azizi Samir M.A.S., Alloin F., Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–626. doi: 10.1021/bm0493685. PubMed DOI
Klemm D., Schumann D., Kramer F., Heßler N., Koth D., Sultanova B. Nanocellulose materials—Different cellulose, different functionality. Macromol. Symp. 2009;280:60–71. doi: 10.1002/masy.200950608. DOI
Crowley M.M., Schroeder B., Fredersdorf A., Obara S., Talarico M., Kucera S., McGinity J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 2004;269:509–522. doi: 10.1016/j.ijpharm.2003.09.037. PubMed DOI
Entwistle C., Rowe R. Plasticization of cellulose ethers used in the film coating of tablets. J. Pharm. Pharmacol. 1979;31:269–272. doi: 10.1111/j.2042-7158.1979.tb13499.x. PubMed DOI
Grosswald R.R., Anderson J.B., Andrew C.S. Method for the Manufacture of Pharmaceutical Cellulose Capsules. EP0587773A1. European Patent. 1997 Jul 30;
Vueba M., De Carvalho L.B., Veiga F., Sousa J., Pina M. Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. Eur. J. Pharm. Biopharm. 2004;58:51–59. doi: 10.1016/j.ejpb.2004.03.006. PubMed DOI
Lin N., Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014;59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025. DOI
Abe K., Yano H. Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 2011;85:733–737. doi: 10.1016/j.carbpol.2011.03.028. DOI
Fischer F., Rigacci A., Pirard R., Berthon-Fabry S., Achard P. Cellulose-based aerogels. Polymer. 2006;47:7636–7645. doi: 10.1016/j.polymer.2006.09.004. DOI
Anderson R.L., Owens J.W., Timms C.W. The toxicity of purified cellulose in studies with laboratory animals. Cancer Lett. 1992;63:83–92. doi: 10.1016/0304-3835(92)90057-3. PubMed DOI
Cullen R.T., Miller B.G., Jones A.D., Davis J.M.G. Toxicity of cellulose fibres. Ann. Occup. Hyg. 2002;46:81–84.
Ilves M., Vilske S., Aimonen K., Lindberg H.K., Pesonen S., Wedin I., Nuopponen M., Vanhala E., Højgaard C., Winther J.R., et al. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology. 2018;12:729–746. doi: 10.1080/17435390.2018.1472312. PubMed DOI
Catalán J., Rydman E., Aimonen K., Hannukainen K.-S., Suhonen S., Vanhala E., Moreno C., Meyer V., da Silva Perez D., Sneck A., et al. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis. 2016;32:23–31. doi: 10.1093/mutage/gew035. PubMed DOI
Ogonowski M., Edlund U., Gorokhova E., Linde M., Ek K., Liewenborg B., Könnecke O., Navarro J.R.G., Breitholtz M. Multi-level toxicity assessment of engineered cellulose nanofibrils in Daphnia magna. Nanotoxicology. 2018;12:509–521. doi: 10.1080/17435390.2018.1464229. PubMed DOI
Bhandari J., Mishra H., Mishra P.K., Wimmer R.W., Ahmad F.J., Talegaonkar S. Cellulose Nanofiber Aerogel as a Promising Biomaterial for Customized Oral Drug Delivery. [(accessed on 27 March 2017)]; Available online: https://www.dovepress.com/cellulose-nanofiber-aerogel-as-a-promising-biomaterial-for-customized--peer-reviewed-article-IJN. PubMed PMC
Pandey U.B., Nichols C.D. Human Disease Models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011;63:411–436. doi: 10.1124/pr.110.003293. PubMed DOI PMC
Yamaguchi M., Yoshida H. Drosophila as a model organism. Adv. Exp. Med. Biol. 2018;1076:1–10. PubMed
Panacek A., Prucek R., Safarova D., Dittrich M., Richtrova J., Benickova K., Zboril R., Kvitek L. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol. 2011;45:4974–4979. doi: 10.1021/es104216b. PubMed DOI
Carmona E.R., Escobar B., Vales G., Marcos R. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat. Res. Toxicol. Environ. Mutagen. 2015;778:12–21. doi: 10.1016/j.mrgentox.2014.12.004. PubMed DOI
Krebs R.A., Roberts S.P., Bettencourt B.R., Feder M.E. Changes in thermotolerance and Hsp70 expression with domestication in Drosophila melanogaster. J. Evol. Biol. 2001;14:75–82. doi: 10.1046/j.1420-9101.2001.00256.x. PubMed DOI
Jakubowski B.R., Longoria R.A., Shubeita G.T. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin) 2012;6:303–308. doi: 10.4161/fly.21582. PubMed DOI PMC
Nichols C.D., Becnel J., Pandey U.B. Methods to assay Drosophila behavior. JoVE J. Vis. Exp. 2012:e3795. doi: 10.3791/3795. PubMed DOI PMC
Mishra M., Barik B.K. Behavioral teratogenesis in Drosophila melanogaster. Methods Mol. Biol. 2018;1797:277–298. PubMed
Sabat D., Patnaik A., Ekka B., Dash P., Mishra M. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol. Behav. 2016;167:76–85. doi: 10.1016/j.physbeh.2016.08.032. PubMed DOI
Priyadarsini S., Sahoo S.K., Sahu S., Mukherjee S., Hota G., Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 2019;26:19560–19574. doi: 10.1007/s11356-019-05357-x. PubMed DOI
Pappus S.A., Ekka B., Sahu S., Sabat D., Dash P., Mishra M. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J. Nanopart. Res. 2017;19:136. doi: 10.1007/s11051-017-3824-8. DOI
Anwar M., Akhter S., Mallick N., Mohapatra S., Zafar S., Rizvi M.M.A., Ali A., Ahmad F.J. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Pharmacol. Res. 2016;113:146–165. doi: 10.1016/j.phrs.2016.08.025. PubMed DOI
Pappus S.A., Mishra M. A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Adv. Exp. Med. Biol. 2018;1048:311–322. PubMed
Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitiveshibire allele in defined neurons. J. Neurobiol. 2001;47:81–92. doi: 10.1002/neu.1018. PubMed DOI
Pulver S.R., Pashkovski S.L., Hornstein N.J., Garrity P.A., Griffith L.C. Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 2009;101:3075–3088. doi: 10.1152/jn.00071.2009. PubMed DOI PMC
Ariano P., Zamburlin P., Gilardino A., Mortera R., Onida B., Tomatis M., Ghiazza M., Fubini B., Lovisolo D. Interaction of spherical silica nanoparticles with neuronal cells: Size-dependent toxicity and perturbation of calcium homeostasis. Small. 2011;7:766–774. doi: 10.1002/smll.201002287. PubMed DOI
Barik B.K., Mishra M. Nanoparticles as a potential teratogen: A lesson learnt from fruit fly. Nanotoxicology. 2018;13:258–284. doi: 10.1080/17435390.2018.1530393. PubMed DOI
Posgai R., Cipolla-McCulloch C.B., Murphy K.R., Hussain S.M., Rowe J.J., Nielsen M.G. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: Size, coatings and antioxidants matter. Chemosphere. 2011;85:34–42. doi: 10.1016/j.chemosphere.2011.06.040. PubMed DOI
Montell C. Drosophila TRP channels. Pflügers Arch. Eur. J. Physiol. 2005;451:19–28. doi: 10.1007/s00424-005-1426-2. PubMed DOI
Neely G.G., Keene A.C., Duchek P., Chang E.C., Wang Q.-P., Aksoy Y.A., Rosenzweig M., Costigan M., Woolf C.J., Garrity P.A., et al. TrpA1 regulates thermal nociception in Drosophila. PLoS ONE. 2011;6:e24343. doi: 10.1371/journal.pone.0024343. PubMed DOI PMC
Tracey W.D., Wilson R.I., Laurent G., Benzer S. Painless, a Drosophila gene essential for nociception. Cell. 2003;113:261–273. doi: 10.1016/S0092-8674(03)00272-1. PubMed DOI
Fowler M.A., Montell C. Drosophila TRP channels and animal behavior. Life Sci. 2013;92:394–403. doi: 10.1016/j.lfs.2012.07.029. PubMed DOI PMC
Klein M., Afonso B., Vonner A.J., Hernandez-Nunez L., Berck M., Tabone C.J., Kane E.A., Pieribone V.A., Nitabach M.N., Cardona A., et al. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proc. Natl. Acad. Sci. USA. 2014;112:E220–E229. doi: 10.1073/pnas.1416212112. PubMed DOI PMC
Mohammadpour R., Yazdimamaghani M., Reilly C., Ghandehari H. Transient receptor potential (TRP) ion channel—Dependent toxicity of silica nanoparticles and poly(amido amine) (PAMAM) dendrimers. J. Pharmacol. Exp. Ther. 2018 doi: 10.1124/jpet.118.253682. PubMed DOI PMC
Gong Z., Liu J., Guo C., Zhou Y., Teng Y., Liu L. Two pairs of neurons in the central brain control Drosophila innate light preference. Science. 2010;330:499–502. doi: 10.1126/science.1195993. PubMed DOI
Keene A.C., Mazzoni E.O., Zhen J., Younger M.A., Yamaguchi S., Blau J., Desplan C., Sprecher S.G. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J. Neurosci. 2011;31:6527–6534. doi: 10.1523/JNEUROSCI.6165-10.2011. PubMed DOI PMC
Yamanaka N., Romero N.M., Martin F.A., Rewitz K.F., Sun M., O’Connor M.B., Leopold P. Neuroendocrine control of Drosophila larval light preference. Science. 2013;341:1113–1116. doi: 10.1126/science.1241210. PubMed DOI PMC
Key S.C.S., Reaves D., Turner F., Bang J.J. Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J. Biol. 2011;1:52–61.
Raj A., Shah P., Agrawal N. Ingestion of gold nanoparticles (AuNPs) affects survival in Drosophila in a dose-dependent manner. Int. J. Sci. Res. 2016;5 doi: 10.15373/22778179. DOI
Berthold H.K., Unverdorben S., Degenhardt R., Unverdorben M., Gouni-Berthold I. Effect of a cellulose-containing weight-loss supplement on gastric emptying and sensory functions. Obesity. 2008;16:2272–2280. doi: 10.1038/oby.2008.355. PubMed DOI
Papathanasopoulos A., Camilleri M. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138:65–72. doi: 10.1053/j.gastro.2009.11.045. PubMed DOI PMC
An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols