• This record comes from PubMed

Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster

. 2019 Aug 13 ; 9 (8) : . [epub] 20190813

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.

See more in PubMed

Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today. 2017;22:1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI

Mishra P.K., Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials. 2019;9:243. doi: 10.3390/nano9020243. PubMed DOI PMC

Sharma H., Mishra P.K., Talegaonkar S., Vaidya B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov. Today. 2015;20:1143–1151. doi: 10.1016/j.drudis.2015.05.009. PubMed DOI

Thomas S.C., Harshita, Mishra P.K., Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015;21:6165–6188. doi: 10.2174/1381612821666151027153246. PubMed DOI

Mishra P.K., Ekielski A. A simple method to synthesize lignin nanoparticles. Colloids Interfaces. 2019;3:52. doi: 10.3390/colloids3020052. DOI

Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI

Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI

Mishra P.K., Gregor T., Wimmer R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. BioResources. 2017;12:107–116. doi: 10.15376/biores.12.1.107-116. DOI

Azizi Samir M.A.S., Alloin F., Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–626. doi: 10.1021/bm0493685. PubMed DOI

Klemm D., Schumann D., Kramer F., Heßler N., Koth D., Sultanova B. Nanocellulose materials—Different cellulose, different functionality. Macromol. Symp. 2009;280:60–71. doi: 10.1002/masy.200950608. DOI

Crowley M.M., Schroeder B., Fredersdorf A., Obara S., Talarico M., Kucera S., McGinity J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 2004;269:509–522. doi: 10.1016/j.ijpharm.2003.09.037. PubMed DOI

Entwistle C., Rowe R. Plasticization of cellulose ethers used in the film coating of tablets. J. Pharm. Pharmacol. 1979;31:269–272. doi: 10.1111/j.2042-7158.1979.tb13499.x. PubMed DOI

Grosswald R.R., Anderson J.B., Andrew C.S. Method for the Manufacture of Pharmaceutical Cellulose Capsules. EP0587773A1. European Patent. 1997 Jul 30;

Vueba M., De Carvalho L.B., Veiga F., Sousa J., Pina M. Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. Eur. J. Pharm. Biopharm. 2004;58:51–59. doi: 10.1016/j.ejpb.2004.03.006. PubMed DOI

Lin N., Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014;59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025. DOI

Abe K., Yano H. Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 2011;85:733–737. doi: 10.1016/j.carbpol.2011.03.028. DOI

Fischer F., Rigacci A., Pirard R., Berthon-Fabry S., Achard P. Cellulose-based aerogels. Polymer. 2006;47:7636–7645. doi: 10.1016/j.polymer.2006.09.004. DOI

Anderson R.L., Owens J.W., Timms C.W. The toxicity of purified cellulose in studies with laboratory animals. Cancer Lett. 1992;63:83–92. doi: 10.1016/0304-3835(92)90057-3. PubMed DOI

Cullen R.T., Miller B.G., Jones A.D., Davis J.M.G. Toxicity of cellulose fibres. Ann. Occup. Hyg. 2002;46:81–84.

Ilves M., Vilske S., Aimonen K., Lindberg H.K., Pesonen S., Wedin I., Nuopponen M., Vanhala E., Højgaard C., Winther J.R., et al. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology. 2018;12:729–746. doi: 10.1080/17435390.2018.1472312. PubMed DOI

Catalán J., Rydman E., Aimonen K., Hannukainen K.-S., Suhonen S., Vanhala E., Moreno C., Meyer V., da Silva Perez D., Sneck A., et al. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis. 2016;32:23–31. doi: 10.1093/mutage/gew035. PubMed DOI

Ogonowski M., Edlund U., Gorokhova E., Linde M., Ek K., Liewenborg B., Könnecke O., Navarro J.R.G., Breitholtz M. Multi-level toxicity assessment of engineered cellulose nanofibrils in Daphnia magna. Nanotoxicology. 2018;12:509–521. doi: 10.1080/17435390.2018.1464229. PubMed DOI

Bhandari J., Mishra H., Mishra P.K., Wimmer R.W., Ahmad F.J., Talegaonkar S. Cellulose Nanofiber Aerogel as a Promising Biomaterial for Customized Oral Drug Delivery. [(accessed on 27 March 2017)]; Available online: https://www.dovepress.com/cellulose-nanofiber-aerogel-as-a-promising-biomaterial-for-customized--peer-reviewed-article-IJN. PubMed PMC

Pandey U.B., Nichols C.D. Human Disease Models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011;63:411–436. doi: 10.1124/pr.110.003293. PubMed DOI PMC

Yamaguchi M., Yoshida H. Drosophila as a model organism. Adv. Exp. Med. Biol. 2018;1076:1–10. PubMed

Panacek A., Prucek R., Safarova D., Dittrich M., Richtrova J., Benickova K., Zboril R., Kvitek L. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol. 2011;45:4974–4979. doi: 10.1021/es104216b. PubMed DOI

Carmona E.R., Escobar B., Vales G., Marcos R. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat. Res. Toxicol. Environ. Mutagen. 2015;778:12–21. doi: 10.1016/j.mrgentox.2014.12.004. PubMed DOI

Krebs R.A., Roberts S.P., Bettencourt B.R., Feder M.E. Changes in thermotolerance and Hsp70 expression with domestication in Drosophila melanogaster. J. Evol. Biol. 2001;14:75–82. doi: 10.1046/j.1420-9101.2001.00256.x. PubMed DOI

Jakubowski B.R., Longoria R.A., Shubeita G.T. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin) 2012;6:303–308. doi: 10.4161/fly.21582. PubMed DOI PMC

Nichols C.D., Becnel J., Pandey U.B. Methods to assay Drosophila behavior. JoVE J. Vis. Exp. 2012:e3795. doi: 10.3791/3795. PubMed DOI PMC

Mishra M., Barik B.K. Behavioral teratogenesis in Drosophila melanogaster. Methods Mol. Biol. 2018;1797:277–298. PubMed

Sabat D., Patnaik A., Ekka B., Dash P., Mishra M. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol. Behav. 2016;167:76–85. doi: 10.1016/j.physbeh.2016.08.032. PubMed DOI

Priyadarsini S., Sahoo S.K., Sahu S., Mukherjee S., Hota G., Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 2019;26:19560–19574. doi: 10.1007/s11356-019-05357-x. PubMed DOI

Pappus S.A., Ekka B., Sahu S., Sabat D., Dash P., Mishra M. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J. Nanopart. Res. 2017;19:136. doi: 10.1007/s11051-017-3824-8. DOI

Anwar M., Akhter S., Mallick N., Mohapatra S., Zafar S., Rizvi M.M.A., Ali A., Ahmad F.J. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Pharmacol. Res. 2016;113:146–165. doi: 10.1016/j.phrs.2016.08.025. PubMed DOI

Pappus S.A., Mishra M. A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Adv. Exp. Med. Biol. 2018;1048:311–322. PubMed

Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitiveshibire allele in defined neurons. J. Neurobiol. 2001;47:81–92. doi: 10.1002/neu.1018. PubMed DOI

Pulver S.R., Pashkovski S.L., Hornstein N.J., Garrity P.A., Griffith L.C. Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 2009;101:3075–3088. doi: 10.1152/jn.00071.2009. PubMed DOI PMC

Ariano P., Zamburlin P., Gilardino A., Mortera R., Onida B., Tomatis M., Ghiazza M., Fubini B., Lovisolo D. Interaction of spherical silica nanoparticles with neuronal cells: Size-dependent toxicity and perturbation of calcium homeostasis. Small. 2011;7:766–774. doi: 10.1002/smll.201002287. PubMed DOI

Barik B.K., Mishra M. Nanoparticles as a potential teratogen: A lesson learnt from fruit fly. Nanotoxicology. 2018;13:258–284. doi: 10.1080/17435390.2018.1530393. PubMed DOI

Posgai R., Cipolla-McCulloch C.B., Murphy K.R., Hussain S.M., Rowe J.J., Nielsen M.G. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: Size, coatings and antioxidants matter. Chemosphere. 2011;85:34–42. doi: 10.1016/j.chemosphere.2011.06.040. PubMed DOI

Montell C. Drosophila TRP channels. Pflügers Arch. Eur. J. Physiol. 2005;451:19–28. doi: 10.1007/s00424-005-1426-2. PubMed DOI

Neely G.G., Keene A.C., Duchek P., Chang E.C., Wang Q.-P., Aksoy Y.A., Rosenzweig M., Costigan M., Woolf C.J., Garrity P.A., et al. TrpA1 regulates thermal nociception in Drosophila. PLoS ONE. 2011;6:e24343. doi: 10.1371/journal.pone.0024343. PubMed DOI PMC

Tracey W.D., Wilson R.I., Laurent G., Benzer S. Painless, a Drosophila gene essential for nociception. Cell. 2003;113:261–273. doi: 10.1016/S0092-8674(03)00272-1. PubMed DOI

Fowler M.A., Montell C. Drosophila TRP channels and animal behavior. Life Sci. 2013;92:394–403. doi: 10.1016/j.lfs.2012.07.029. PubMed DOI PMC

Klein M., Afonso B., Vonner A.J., Hernandez-Nunez L., Berck M., Tabone C.J., Kane E.A., Pieribone V.A., Nitabach M.N., Cardona A., et al. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proc. Natl. Acad. Sci. USA. 2014;112:E220–E229. doi: 10.1073/pnas.1416212112. PubMed DOI PMC

Mohammadpour R., Yazdimamaghani M., Reilly C., Ghandehari H. Transient receptor potential (TRP) ion channel—Dependent toxicity of silica nanoparticles and poly(amido amine) (PAMAM) dendrimers. J. Pharmacol. Exp. Ther. 2018 doi: 10.1124/jpet.118.253682. PubMed DOI PMC

Gong Z., Liu J., Guo C., Zhou Y., Teng Y., Liu L. Two pairs of neurons in the central brain control Drosophila innate light preference. Science. 2010;330:499–502. doi: 10.1126/science.1195993. PubMed DOI

Keene A.C., Mazzoni E.O., Zhen J., Younger M.A., Yamaguchi S., Blau J., Desplan C., Sprecher S.G. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J. Neurosci. 2011;31:6527–6534. doi: 10.1523/JNEUROSCI.6165-10.2011. PubMed DOI PMC

Yamanaka N., Romero N.M., Martin F.A., Rewitz K.F., Sun M., O’Connor M.B., Leopold P. Neuroendocrine control of Drosophila larval light preference. Science. 2013;341:1113–1116. doi: 10.1126/science.1241210. PubMed DOI PMC

Key S.C.S., Reaves D., Turner F., Bang J.J. Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J. Biol. 2011;1:52–61.

Raj A., Shah P., Agrawal N. Ingestion of gold nanoparticles (AuNPs) affects survival in Drosophila in a dose-dependent manner. Int. J. Sci. Res. 2016;5 doi: 10.15373/22778179. DOI

Berthold H.K., Unverdorben S., Degenhardt R., Unverdorben M., Gouni-Berthold I. Effect of a cellulose-containing weight-loss supplement on gastric emptying and sensory functions. Obesity. 2008;16:2272–2280. doi: 10.1038/oby.2008.355. PubMed DOI

Papathanasopoulos A., Camilleri M. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138:65–72. doi: 10.1053/j.gastro.2009.11.045. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...