The cytotoxicity of methacrylate-based biopolymers crosslinked by in situ photopolymerization has been attributed mainly to residual methacrylate monomers released due to incomplete polymerization. The residual monomers, primarily triethyleneglycol dimethacrylate or 2-hydroxyethyl methacrylate, may irritate adjacent tissue, or be released into the bloodstream and reach practically all tissues. Increased production of reactive oxygen species, which may be connected to concomitant glutathione depletion, has been the most noticeable effect observed in vitro following the exposure of cells to methacrylates. Radical scavengers such as glutathione or N-acetylcysteine represent the most important cellular strategy against methacrylate-induced toxicity by direct adduct formation, resulting in monomer detoxification. Reactive oxygen species may participate in methacrylate-induced genotoxic or pro-apoptotic effects and cell-cycle arrest via induction of corresponding molecular pathways in cells. A deeper understanding of the biological mechanisms and effects of methacrylates widely used in various bioapplications may enable a better estimation of potential risks and thus, selection of a more appropriate composition of polymer material to eliminate potentially harmful substances such as triethyleneglycol dimethacrylate.
- MeSH
- acetylcystein farmakologie MeSH
- biokompatibilní materiály chemie toxicita MeSH
- glutathion metabolismus MeSH
- kyseliny polymethakrylové chemie toxicita MeSH
- lidé MeSH
- methakryláty chemie toxicita MeSH
- polyethylenglykoly chemie toxicita MeSH
- reaktivní formy kyslíku metabolismus MeSH
- scavengery volných radikálů farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We synthesized Fe foams using water suspensions of micrometric Fe2O3 powder by reducing and sintering the sublimated Fe oxide green body to Fe under 5% H2/Ar gas. The resultant Fe foam showed aligned lamellar macropores replicating the ice dendrites. The compressive behavior and deformation mechanism of the synthesized Fe foam were studied using an acoustic emission (AE) method, with which we detected sudden localized structural changes in the Fe foam material. The evolution of the deformation mechanism was elucidated using the adaptive sequential k-means (ASK) algorithm; specifically, the plastic deformation of the cell struts was followed by localized cell collapse, which eventually led to fracturing of the cell walls. For potential biomedical applications, the corrosion and biocompatibility characteristics of the two synthesized Fe foams with different porosities (50% vs. 44%) were examined and compared. Despite its larger porosity, the superior corrosion behavior of the Fe foam with 50% porosity can be attributed to its larger pore size and smaller microscopic surface area. Based on the cytotoxicity tests for the extracts of the foams, the Fe foam with 44% porosity showed better cytocompatibility than that with 50% porosity.
- MeSH
- akustika * MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- difrakce rentgenového záření MeSH
- elektrochemie metody MeSH
- fibroblasty MeSH
- koroze MeSH
- myši MeSH
- pevnost v tlaku MeSH
- poréznost MeSH
- testování materiálů MeSH
- viskoelastické látky chemie MeSH
- železité sloučeniny chemie MeSH
- železo chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- celulosa chemie toxicita MeSH
- chování zvířat účinky léků MeSH
- dřevo chemie MeSH
- Drosophila melanogaster účinky léků MeSH
- nanovlákna chemie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- difrakce rentgenového záření MeSH
- koroze MeSH
- mangan chemie toxicita MeSH
- myši MeSH
- pevnost v tahu MeSH
- pevnost v tlaku MeSH
- viabilita buněk účinky léků MeSH
- železo chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chromium-enriched diamond-like carbon (DLC) layers were prepared by a hybrid technology using a combination of pulsed laser deposition (PLD) and magnetron sputtering. XRD revealed no chromium peaks, indicating that the layers are mostly amorphous. Carbon (sp(2) and sp(3) bonds) and chromium bonds were determined by XPS from C 1s, O 1s, and Cr 2p photoelectron peaks. Depending on the deposition conditions, the concentration of Cr in DLC layers moved from zero to 10 at.% for as-received sample surfaces, and to about 31 at.% after mild sputter-cleaning by argon ion cluster beam. It should be noted that the most stable Cr(3+) bonding state is in Cr2O3 and Cr(OH)3, and that there is the toxic Cr(6+) state in CrO3. The surface content of hexavalent chromium in the Cr 2p3/2 spectra is rather low, but discernible. The population density of Saos-2 cells was the highest in samples containing higher concentrations of chromium 7.7 and 10 at.%. This means that higher concentrations of chromium supported the cell adhesion and proliferation. In addition, as revealed by a LIVE/DEAD viability/cytotoxicity kit, the cells on all Cr-containing samples maintained high viability (96 to 99%) on days 1 and 3 after seeding. However, this seemingly positive cell behavior could be associated with the risk of dedifferentiation and oncogenic transformation of cells.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- chrom chemie MeSH
- diamant chemie MeSH
- lasery MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- hořčík chemie toxicita MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- poškození DNA účinky léků MeSH
- slitiny chemie toxicita MeSH
- viabilita buněk účinky léků MeSH
- zinek chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Four novel bile acid ethyl amides were synthetized using a well-known method. All the four compounds were characterized by IR, SEM, and X-ray crystal analyses. In addition, the cytotoxicity of the compounds was tested. Two of the prepared compounds formed organogels. Lithocholic acid derivative 1 formed hydrogels as 1% and 2% (w/v) in four different aqueous solutions. This is very intriguing regarding possible uses in biomedicine.
- MeSH
- amidy chemie MeSH
- biokompatibilní materiály chemická syntéza chemie toxicita MeSH
- buňky 3T3 MeSH
- hydrogely chemie MeSH
- kyselina lithocholová chemická syntéza chemie toxicita MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- myši MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2-3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine.
- MeSH
- biokompatibilní materiály * chemie toxicita MeSH
- chirurgické síťky * MeSH
- incizní kýla chirurgie MeSH
- myši MeSH
- nanovlákna * chemie toxicita MeSH
- polyestery * chemie toxicita MeSH
- polypropyleny * chemie toxicita MeSH
- proliferace buněk účinky léků MeSH
- trombocyty cytologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polymers based on 2-oxazoline, such as poly(2-ethyl-2-oxazolines) (PETOx), are considered to be a type of 'pseudopeptide' with the ability to form novel biomaterials. The hydrolysis of PETOx was carried out to evaluate its use in biomedical applications. In the present work, PETOx samples with a range of molar masses were prepared by living cationic polymerization. Hydrolysis was carried out at time intervals ranging from 15 to 180 min to prepare copolymers with different amounts of ethylene imine units. (1)H NMR spectroscopy was used to identify the structure of the hydrolyzed polymers. The dependence of in vitro cell viability on the degree of hydrolysis was determined using three different model cell lines, namely, mouse embryonic 3T3 fibroblasts, pancreatic βTC3 cells, and mouse lymphoid macrophages P388.D1. It was demonstrated that increasing the degree of hydrolysis decreased cell viability for all cell types. Fibroblast cells displayed the highest tolerance; additionally, the effect of polymer size showed no observable significance. Macrophage cells, immune system representatives, displayed the highest sensitivity to contact with hydrolyzed PETOx. The effect of polymer hydrolysis, polymer concentration and the incubation time on cell viability was experimentally observed. Confocal laser-scanning microscopy provided evidence of cellular uptake of pyrene-labeled (co)polymers.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- buňky 3T3 MeSH
- hydrolýza MeSH
- kultivované buňky účinky léků metabolismus MeSH
- myši MeSH
- polyaminy chemie toxicita MeSH
- testování materiálů MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH