-
Je něco špatně v tomto záznamu ?
Illuminating the cellular and molecular mechanism of the potential toxicity of methacrylate monomers used in biomaterials
J. Juráňová,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy
- MeSH
- acetylcystein farmakologie MeSH
- biokompatibilní materiály chemie toxicita MeSH
- glutathion metabolismus MeSH
- kyseliny polymethakrylové chemie toxicita MeSH
- lidé MeSH
- methakryláty chemie toxicita MeSH
- polyethylenglykoly chemie toxicita MeSH
- reaktivní formy kyslíku metabolismus MeSH
- scavengery volných radikálů farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The cytotoxicity of methacrylate-based biopolymers crosslinked by in situ photopolymerization has been attributed mainly to residual methacrylate monomers released due to incomplete polymerization. The residual monomers, primarily triethyleneglycol dimethacrylate or 2-hydroxyethyl methacrylate, may irritate adjacent tissue, or be released into the bloodstream and reach practically all tissues. Increased production of reactive oxygen species, which may be connected to concomitant glutathione depletion, has been the most noticeable effect observed in vitro following the exposure of cells to methacrylates. Radical scavengers such as glutathione or N-acetylcysteine represent the most important cellular strategy against methacrylate-induced toxicity by direct adduct formation, resulting in monomer detoxification. Reactive oxygen species may participate in methacrylate-induced genotoxic or pro-apoptotic effects and cell-cycle arrest via induction of corresponding molecular pathways in cells. A deeper understanding of the biological mechanisms and effects of methacrylates widely used in various bioapplications may enable a better estimation of potential risks and thus, selection of a more appropriate composition of polymer material to eliminate potentially harmful substances such as triethyleneglycol dimethacrylate.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028204
- 003
- CZ-PrNML
- 005
- 20210114153223.0
- 007
- ta
- 008
- 210105s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1080/01480545.2018.1488860 $2 doi
- 035 __
- $a (PubMed)30607995
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Juráňová, Jana $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, Olomouc, Czech Republic. Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Hněvotínská 5, Olomouc, Czech Republic.
- 245 10
- $a Illuminating the cellular and molecular mechanism of the potential toxicity of methacrylate monomers used in biomaterials / $c J. Juráňová,
- 520 9_
- $a The cytotoxicity of methacrylate-based biopolymers crosslinked by in situ photopolymerization has been attributed mainly to residual methacrylate monomers released due to incomplete polymerization. The residual monomers, primarily triethyleneglycol dimethacrylate or 2-hydroxyethyl methacrylate, may irritate adjacent tissue, or be released into the bloodstream and reach practically all tissues. Increased production of reactive oxygen species, which may be connected to concomitant glutathione depletion, has been the most noticeable effect observed in vitro following the exposure of cells to methacrylates. Radical scavengers such as glutathione or N-acetylcysteine represent the most important cellular strategy against methacrylate-induced toxicity by direct adduct formation, resulting in monomer detoxification. Reactive oxygen species may participate in methacrylate-induced genotoxic or pro-apoptotic effects and cell-cycle arrest via induction of corresponding molecular pathways in cells. A deeper understanding of the biological mechanisms and effects of methacrylates widely used in various bioapplications may enable a better estimation of potential risks and thus, selection of a more appropriate composition of polymer material to eliminate potentially harmful substances such as triethyleneglycol dimethacrylate.
- 650 _2
- $a acetylcystein $x farmakologie $7 D000111
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biokompatibilní materiály $x chemie $x toxicita $7 D001672
- 650 _2
- $a scavengery volných radikálů $x farmakologie $7 D016166
- 650 _2
- $a glutathion $x metabolismus $7 D005978
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a methakryláty $x chemie $x toxicita $7 D008689
- 650 _2
- $a polyethylenglykoly $x chemie $x toxicita $7 D011092
- 650 _2
- $a kyseliny polymethakrylové $x chemie $x toxicita $7 D011109
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 773 0_
- $w MED00001436 $t Drug and chemical toxicology $x 1525-6014 $g Roč. 43, č. 3 (2020), s. 266-278
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30607995 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114153221 $b ABA008
- 999 __
- $a ok $b bmc $g 1608539 $s 1119384
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 43 $c 3 $d 266-278 $e 20190104 $i 1525-6014 $m Drug and chemical toxicology $n Drug Chem Toxicol $x MED00001436
- LZP __
- $a Pubmed-20210105