Preparation and Complex Characterisation of Stabilised Gold Nanoparticles: Biodistribution and Application for High Resolution In Vivo Imaging

. 2024 Nov 03 ; 17 (11) : . [epub] 20241103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39598391

Grantová podpora
NU21-08-00510. The Ministry of Health of the Czech Republic, AZV

The Turkevich method was optimized to prepare gold nanoparticles (AuNP) stabilized by polyethyleneglycol (PEG) for µCT. Using various independent modalities, we thoroughly characterized the optimized PEG-AuNPs. Here, we show that PEG-AuNPs are retained in the blood and provide a high contrast in the high-resolution µCT imaging of blood vessels and inner organs. The biodistribution is characterized by prolonged circulation in the blood and accumulation in the liver, spleen and skin. The accumulation of AuNP in the skin resulted in the blue discoloration of eyes and the whole skin. In vitro experiments using a leukemic monocyte THP-1 cell line model expressing high levels of NLRP3 demonstrated that the NLRP3inflammasome was not activated by PEG AuNP. Over 9 months, the mice were scanned by µCT and were in good health. Scans in mice using PEG-stabilized AuNPs in this study were sharper, with a higher contrast, when compared to a commercial contrasting agent at the same dose. The PEG-AuNPs were morphologically and chemically stable for at least two years when stored in the refrigerator.

Zobrazit více v PubMed

Wang Y., Quinsaat J.E.Q., Ono T., Maeki M., Tokeshi M., Isono T., Tajima K., Satoh T., Sato S.I., Miura Y., et al. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol) Nat. Commun. 2020;11:6089. doi: 10.1038/s41467-020-19947-8. PubMed DOI PMC

Bharti K., Sk M.A., Sadhu K.K. Seed free synthesis of polyethylene glycol stabilized gold nanoprisms exploiting manganese metal at low pH. Nanoscale Adv. 2023;5:3729–3736. doi: 10.1039/D3NA00292F. PubMed DOI PMC

Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012;41:2256–2282. doi: 10.1039/C1CS15166E. PubMed DOI

Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI

Wu Y., Ali M.R.K., Chen K.C., Fang N., El-Sayed M.A. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140. doi: 10.1016/j.nantod.2018.12.006. DOI

Tian Y.Y., Qiang S., Wang L.H. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy. Front. Bioeng. Biotechnol. 2019;7:398. doi: 10.3389/fbioe.2019.00398. PubMed DOI PMC

Bouché M., Hsu J.C., Dong Y.C., Kim J., Taing K., Cormode D.P. Recent advances in molecular imaging with gold nanoparticles. Bioconjugate Chem. 2020;31:303–314. doi: 10.1021/acs.bioconjchem.9b00669. PubMed DOI PMC

Vines J.B., Yoon J.H., Ryu N.E., Lim D.J., Park H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019;7:167. doi: 10.3389/fchem.2019.00167. PubMed DOI PMC

de Freitas L.F., Varca G.H.C., Batista J.G.D., Lugao A.B. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials. 2018;8:939. doi: 10.3390/nano8110939. PubMed DOI PMC

Zhao P.X., Li N., Astruc D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013;257:638–665. doi: 10.1016/j.ccr.2012.09.002. DOI

Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI

Ondrus J., Hubatka F., Kulich P., Odehnalov N., Harabis V., Hesko B., Sychra O., Siroky P., Turanek J., Novobilsky A. A novel approach to imaging engorged ticks: Micro-ct scanning of ixodes ricinus fed on blood enriched with gold nanoparticles. Ticks Tick-Borne Dis. 2021;12:101559. doi: 10.1016/j.ttbdis.2020.101559. PubMed DOI

Aslan K., Pérez-Luna V.H. Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir. 2002;18:6059–6065. doi: 10.1021/la025795x. DOI

Vogel R., Savage J., Muzard J., Della Camera G., Vella G., Law A., Marchioni M., Mehn D., Geiss O., Peacock B., et al. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? J. Extracell. Vesicles. 2021;10:e12052. doi: 10.1002/jev2.12052. PubMed DOI PMC

Loula M., Kana A., Mestek O. Non-spectral interferences in single-particle icp-ms analysis: An underestimated phenomenon. Talanta. 2019;202:565–571. doi: 10.1016/j.talanta.2019.04.073. PubMed DOI

Nanopartz . Using uv-vis as a Tool to Determine Size and Concentration of Spherical Gold Nanoparticles (sgnps) from 5 to 100 nm. Nanopartz; Beijing, China: 2008. pp. 1–3.

Svadlakova T., Hubatka F., Knotigova P.T., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory effect of carbon-based nanomaterials: In vitro study on stimulation of inflammasome nlrp3 via destabilisation of lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC

Effenberg R., Knötigová P.T., Zyka D., Celechovská H., Masek J., Bartheldyová E., Hubatka F., Koudelka S., Lukác R., Kovalová A., et al. Nonpyrogenic molecular adjuvants based on norabu-muramyldipeptide and norabu-glucosaminyl muramyldipeptide: Synthesis, molecular mechanisms of action, and biological activities in vitro and in vivo. J. Med. Chem. 2017;60:7745–7763. doi: 10.1021/acs.jmedchem.7b00593. PubMed DOI

Boudier A., Le Faou A. Nanoparticles and other nanostructures and the control of pathogens: From bench to vaccines. Int. J. Mol. Sci. 2023;24:9063. doi: 10.3390/ijms24109063. PubMed DOI PMC

Gold Nanoparticles for Nanotechnology. [(accessed on 12 September 2024)]. Available online: https://www.nanopartz.com/Technical-Notes/All-About-CTAB-Gold-Nanoparticles.asp.

Omar N.A.S., Fen Y.W., Abdullah J., Kamil Y.M., Daniyal W., Sadrolhosseini A.R., Mahdi M.A. Sensitive detection of dengue virus type 2 e-proteins signals using self-assembled monolayers/reduced graphene oxide-pamam dendrimer thin film-spr optical sensor. Sci. Rep. 2020;10:2374. doi: 10.1038/s41598-020-59388-3. PubMed DOI PMC

Fekete L., Kusová K., Petrák V., Kratochvílová I. Afm topographies of densely packed nanoparticles: A quick way to determine the lateral size distribution by autocorrelation function analysis. J. Nanoparticle Res. 2012;14:1062. doi: 10.1007/s11051-012-1062-7. DOI

Zhu M., Du L., Zhao R., Wang H.Y., Zhao Y., Nie G., Wang R.F. Cell-penetrating nanoparticles activate the inflammasome to enhance antibody production by targeting microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020;14:3703–3717. doi: 10.1021/acsnano.0c00962. PubMed DOI PMC

Reznickova A., Slavikova N., Kolska Z., Kolarova K., Belinova T., Kalbacova M.H., Cieslar M., Svorcik V. Pegylated gold nanoparticles: Stability, cytotoxicity and antibacterial activity. Colloid Surf. A. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI

Bitragunta S.P., Menon S.A., Ganesh P.S. Recent advances in toxicology of gold nanoparticles. In: Hussain C.M., editor. Handbook of Environmental Materials Management. Springer; Cham, Switzerland: 2017.

Fleming C.J., Salisbury E.L.C., Kirwan P., Painter D.M., Barnetson R.S.C. Chrysiasis after low-dose gold and uv light exposure. J. Am. Acad. Dermatol. 1996;34:349–351. doi: 10.1016/S0190-9622(07)80006-5. PubMed DOI

Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (aunps): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC

Knötigová P.T., Masek J., Hubatka F., Kotoucek J., Kulich P., Simecková P., Bartheldyová E., Machala M., Svadláková T., Krejsek J., et al. Application of advanced microscopic methods to study the interaction of carboxylated fluorescent nanodiamonds with membrane structures in thp-1 cells: Activation of inflammasome nlrp3 as the result of lysosome destabilization. Mol. Pharm. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...