Preparation and Complex Characterisation of Stabilised Gold Nanoparticles: Biodistribution and Application for High Resolution In Vivo Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-08-00510.
The Ministry of Health of the Czech Republic, AZV
PubMed
39598391
PubMed Central
PMC11597195
DOI
10.3390/ph17111479
PII: ph17111479
Knihovny.cz E-zdroje
- Klíčová slova
- biodistribution, gold nanoparticles, in vivo imaging, microcomputer tomography, nanotoxicology,
- Publikační typ
- časopisecké články MeSH
The Turkevich method was optimized to prepare gold nanoparticles (AuNP) stabilized by polyethyleneglycol (PEG) for µCT. Using various independent modalities, we thoroughly characterized the optimized PEG-AuNPs. Here, we show that PEG-AuNPs are retained in the blood and provide a high contrast in the high-resolution µCT imaging of blood vessels and inner organs. The biodistribution is characterized by prolonged circulation in the blood and accumulation in the liver, spleen and skin. The accumulation of AuNP in the skin resulted in the blue discoloration of eyes and the whole skin. In vitro experiments using a leukemic monocyte THP-1 cell line model expressing high levels of NLRP3 demonstrated that the NLRP3inflammasome was not activated by PEG AuNP. Over 9 months, the mice were scanned by µCT and were in good health. Scans in mice using PEG-stabilized AuNPs in this study were sharper, with a higher contrast, when compared to a commercial contrasting agent at the same dose. The PEG-AuNPs were morphologically and chemically stable for at least two years when stored in the refrigerator.
Institute of Physics Czech Academy of Sciences Na Slovance 2 18200 Prague 8 Czech Republic
Institute of Scientific Instruments v v i AS CR Královopolská 147 612 00 Brno Czech Republic
Veterinary Research Institute v v i Hudcova 296 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Wang Y., Quinsaat J.E.Q., Ono T., Maeki M., Tokeshi M., Isono T., Tajima K., Satoh T., Sato S.I., Miura Y., et al. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol) Nat. Commun. 2020;11:6089. doi: 10.1038/s41467-020-19947-8. PubMed DOI PMC
Bharti K., Sk M.A., Sadhu K.K. Seed free synthesis of polyethylene glycol stabilized gold nanoprisms exploiting manganese metal at low pH. Nanoscale Adv. 2023;5:3729–3736. doi: 10.1039/D3NA00292F. PubMed DOI PMC
Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012;41:2256–2282. doi: 10.1039/C1CS15166E. PubMed DOI
Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI
Wu Y., Ali M.R.K., Chen K.C., Fang N., El-Sayed M.A. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140. doi: 10.1016/j.nantod.2018.12.006. DOI
Tian Y.Y., Qiang S., Wang L.H. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy. Front. Bioeng. Biotechnol. 2019;7:398. doi: 10.3389/fbioe.2019.00398. PubMed DOI PMC
Bouché M., Hsu J.C., Dong Y.C., Kim J., Taing K., Cormode D.P. Recent advances in molecular imaging with gold nanoparticles. Bioconjugate Chem. 2020;31:303–314. doi: 10.1021/acs.bioconjchem.9b00669. PubMed DOI PMC
Vines J.B., Yoon J.H., Ryu N.E., Lim D.J., Park H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019;7:167. doi: 10.3389/fchem.2019.00167. PubMed DOI PMC
de Freitas L.F., Varca G.H.C., Batista J.G.D., Lugao A.B. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials. 2018;8:939. doi: 10.3390/nano8110939. PubMed DOI PMC
Zhao P.X., Li N., Astruc D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013;257:638–665. doi: 10.1016/j.ccr.2012.09.002. DOI
Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI
Ondrus J., Hubatka F., Kulich P., Odehnalov N., Harabis V., Hesko B., Sychra O., Siroky P., Turanek J., Novobilsky A. A novel approach to imaging engorged ticks: Micro-ct scanning of ixodes ricinus fed on blood enriched with gold nanoparticles. Ticks Tick-Borne Dis. 2021;12:101559. doi: 10.1016/j.ttbdis.2020.101559. PubMed DOI
Aslan K., Pérez-Luna V.H. Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir. 2002;18:6059–6065. doi: 10.1021/la025795x. DOI
Vogel R., Savage J., Muzard J., Della Camera G., Vella G., Law A., Marchioni M., Mehn D., Geiss O., Peacock B., et al. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? J. Extracell. Vesicles. 2021;10:e12052. doi: 10.1002/jev2.12052. PubMed DOI PMC
Loula M., Kana A., Mestek O. Non-spectral interferences in single-particle icp-ms analysis: An underestimated phenomenon. Talanta. 2019;202:565–571. doi: 10.1016/j.talanta.2019.04.073. PubMed DOI
Nanopartz . Using uv-vis as a Tool to Determine Size and Concentration of Spherical Gold Nanoparticles (sgnps) from 5 to 100 nm. Nanopartz; Beijing, China: 2008. pp. 1–3.
Svadlakova T., Hubatka F., Knotigova P.T., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory effect of carbon-based nanomaterials: In vitro study on stimulation of inflammasome nlrp3 via destabilisation of lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC
Effenberg R., Knötigová P.T., Zyka D., Celechovská H., Masek J., Bartheldyová E., Hubatka F., Koudelka S., Lukác R., Kovalová A., et al. Nonpyrogenic molecular adjuvants based on norabu-muramyldipeptide and norabu-glucosaminyl muramyldipeptide: Synthesis, molecular mechanisms of action, and biological activities in vitro and in vivo. J. Med. Chem. 2017;60:7745–7763. doi: 10.1021/acs.jmedchem.7b00593. PubMed DOI
Boudier A., Le Faou A. Nanoparticles and other nanostructures and the control of pathogens: From bench to vaccines. Int. J. Mol. Sci. 2023;24:9063. doi: 10.3390/ijms24109063. PubMed DOI PMC
Gold Nanoparticles for Nanotechnology. [(accessed on 12 September 2024)]. Available online: https://www.nanopartz.com/Technical-Notes/All-About-CTAB-Gold-Nanoparticles.asp.
Omar N.A.S., Fen Y.W., Abdullah J., Kamil Y.M., Daniyal W., Sadrolhosseini A.R., Mahdi M.A. Sensitive detection of dengue virus type 2 e-proteins signals using self-assembled monolayers/reduced graphene oxide-pamam dendrimer thin film-spr optical sensor. Sci. Rep. 2020;10:2374. doi: 10.1038/s41598-020-59388-3. PubMed DOI PMC
Fekete L., Kusová K., Petrák V., Kratochvílová I. Afm topographies of densely packed nanoparticles: A quick way to determine the lateral size distribution by autocorrelation function analysis. J. Nanoparticle Res. 2012;14:1062. doi: 10.1007/s11051-012-1062-7. DOI
Zhu M., Du L., Zhao R., Wang H.Y., Zhao Y., Nie G., Wang R.F. Cell-penetrating nanoparticles activate the inflammasome to enhance antibody production by targeting microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020;14:3703–3717. doi: 10.1021/acsnano.0c00962. PubMed DOI PMC
Reznickova A., Slavikova N., Kolska Z., Kolarova K., Belinova T., Kalbacova M.H., Cieslar M., Svorcik V. Pegylated gold nanoparticles: Stability, cytotoxicity and antibacterial activity. Colloid Surf. A. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI
Bitragunta S.P., Menon S.A., Ganesh P.S. Recent advances in toxicology of gold nanoparticles. In: Hussain C.M., editor. Handbook of Environmental Materials Management. Springer; Cham, Switzerland: 2017.
Fleming C.J., Salisbury E.L.C., Kirwan P., Painter D.M., Barnetson R.S.C. Chrysiasis after low-dose gold and uv light exposure. J. Am. Acad. Dermatol. 1996;34:349–351. doi: 10.1016/S0190-9622(07)80006-5. PubMed DOI
Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (aunps): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC
Knötigová P.T., Masek J., Hubatka F., Kotoucek J., Kulich P., Simecková P., Bartheldyová E., Machala M., Svadláková T., Krejsek J., et al. Application of advanced microscopic methods to study the interaction of carboxylated fluorescent nanodiamonds with membrane structures in thp-1 cells: Activation of inflammasome nlrp3 as the result of lysosome destabilization. Mol. Pharm. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI