Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421
Ministry of Education, Youth and Sports of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministry of Education, Youth and Sports of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001829
Ministry of Education, Youth and Sports of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministry of Education, Youth and Sports of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education, Youth and Sports of the Czech Republic and European Regional Development Fund
LM2015088
Ministry of Education, Youth and Sports of the Czech Republic
MZE-RO0518
Ministry of Agriculture of the Czech Republic
GAP503/12/G147
Grantová Agentura České Republiky
PROGRES Q40/10
Charles University
PROGRES Q40/09
Charles University
PubMed
32120988
PubMed Central
PMC7152843
DOI
10.3390/nano10030418
PII: nano10030418
Knihovny.cz E-zdroje
- Klíčová slova
- THP-1, carbon nanotubes, cathepsin B, graphene platelets, inflammasome NLRP3, macrophages,
- Publikační typ
- časopisecké články MeSH
Carbon-based nanomaterials (C-BNM) have recently attracted an increased attention as the materials with potential applications in industry and medicine. Bioresistance and proinflammatory potential of C-BNM is the main obstacle for their medicinal application which was documented in vivo and in vitro. However, there are still limited data especially on graphene derivatives such as graphene platelets (GP). In this work, we compared multi-walled carbon nanotubes (MWCNT) and two different types of pristine GP in their potential to activate inflammasome NLRP3 (The nod-like receptor family pyrin domain containing 3) in vitro. Our study is focused on exposure of THP-1/THP1-null cells and peripheral blood monocytes to C-BNM as representative models of canonical and alternative pathways, respectively. Although all nanomaterials were extensively accumulated in the cytoplasm, increasing doses of all C-BNM did not lead to cell death. We observed direct activation of NLRP3 via destabilization of lysosomes and release of cathepsin B into cytoplasm only in the case of MWCNTs. Direct activation of NLRP3 by both GP was statistically insignificant but could be induced by synergic action with muramyl dipeptide (MDP), as a representative molecule of the family of pathogen-associated molecular patterns (PAMPs). This study demonstrates a possible proinflammatory potential of GP and MWCNT acting through NLRP3 activation.
Zobrazit více v PubMed
Raphey V.R., Henna T.K., Nivitha K.P., Mufeedha P., Sabu C., Pramod K. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;100:616–630. doi: 10.1016/j.msec.2019.03.043. PubMed DOI
Bei H.P., Yang Y., Zhang Q., Tian Y., Luo X., Yang M., Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules. 2019;24:658. doi: 10.3390/molecules24040658. PubMed DOI PMC
Tadyszak K., Wychowaniec J.K., Litowczenko J. Biomedical Applications of Graphene-Based Structures. Nanomaterials. 2018;8:944. doi: 10.3390/nano8110944. PubMed DOI PMC
Li Q., Wen J., Liu C., Jia Y., Wu Y., Shan Y., Qian Z., Liao J. Graphene-Nanoparticle-Based Self-Healing Hydrogel in Preventing Postoperative Recurrence of Breast Cancer. ACS Biomater. Sci. Eng. 2019;5:768–779. doi: 10.1021/acsbiomaterials.8b01475. PubMed DOI
Kratochvílová I., Šebera J., Ashcheulov P., Golan M., Ledvina M., Míčová J., Mravec F., Kovalenko A., Zverev D., Yavkin B., et al. Magnetical and Optical Properties of Nanodiamonds Can Be Tuned by Particles Surface Chemistry: Theoretical and Experimental Study. J. Phys. Chem. C. 2014;118:25245–25252. doi: 10.1021/jp507581c. DOI
Knötigová P.T., Mašek J., Hubatka F., Kotouček J., Kulich P., Šimečková P., Bartheldyová E., Machala M., Švadláková T., Krejsek J., et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol. Pharma. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI
Møller P., Christophersen D.V., Jensen D.M., Kermanizadeh A., Roursgaard M., Jacobsen N.R., Hemmingsen J.G., Danielsen P.H., Cao Y., Jantzen K., et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch. Toxicol. 2014;88:1939–1964. doi: 10.1007/s00204-014-1356-x. PubMed DOI
Wan B., Wang Z.X., Lv Q.Y., Dong P.X., Zhao L.X., Yang Y., Guo L.H. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol. Lett. 2013;221:118–127. doi: 10.1016/j.toxlet.2013.06.208. PubMed DOI
Duke K.S., Bonner J.C. Mechanisms of carbon nanotube-induced pulmonary fibrosis: A physicochemical characteristic perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018;10:e1498. doi: 10.1002/wnan.1498. PubMed DOI PMC
Brown D.M., Kinloch I.A., Bangert U., Windle A.H., Walter D.M., Walker G.S., Scotchford C.A., Donaldson K., Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45:1743–1756. doi: 10.1016/j.carbon.2007.05.011. DOI
Schinwald A., Donaldson K. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part. Fibre Toxicol. 2012;9:34. doi: 10.1186/1743-8977-9-34. PubMed DOI PMC
Ghanbari F., Nasarzadeh P., Seydi E., Ghasemi A., Taghi Joghataei M., Ashtari K., Akbari M. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: A comparative study. J. Biomed. Mater. Res. Part A. 2017;105:2047–2055. doi: 10.1002/jbm.a.36063. PubMed DOI
Akhavan O., Ghaderi E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano. 2010;4:5731–5736. doi: 10.1021/nn101390x. PubMed DOI
Matesanz M.C., Vila M., Feito M.J., Linares J., Goncalves G., Vallet-Regi M., Marques P.A., Portoles M.T. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials. 2013;34:1562–1569. doi: 10.1016/j.biomaterials.2012.11.001. PubMed DOI
Chen G.Y., Yang H.J., Lu C.H., Chao Y.C., Hwang S.M., Chen C.L., Lo K.W., Sung L.Y., Luo W.Y., Tuan H.Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI
Russier J., Treossi E., Scarsi A., Perrozzi F., Dumortier H., Ottaviano L., Meneghetti M., Palermo V., Bianco A. Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale. 2013;5:11234–11247. doi: 10.1039/c3nr03543c. PubMed DOI
Qu G., Liu S., Zhang S., Wang L., Wang X., Sun B., Yin N., Gao X., Xia T., Chen J.-J., et al. Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano. 2013;7:5732–5745. doi: 10.1021/nn402330b. PubMed DOI
Tkach A.V., Yanamala N., Stanley S., Shurin M.R., Shurin G.V., Kisin E.R., Murray A.R., Pareso S., Khaliullin T., Kotchey G.P., et al. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small. 2013;9:1686–1690. doi: 10.1002/smll.201201546. PubMed DOI PMC
Wibroe P.P., Petersen S.V., Bovet N., Laursen B.W., Moghimi S.M. Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials. 2016;78:20–26. doi: 10.1016/j.biomaterials.2015.11.028. PubMed DOI
Jarosz A., Skoda M., Dudek I., Szukiewicz D. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells. Oxid. Med. Cell. Longev. 2016;2016:5851035. doi: 10.1155/2016/5851035. PubMed DOI PMC
Orecchioni M., Jasim D.A., Pescatori M., Manetti R., Fozza C., Sgarrella F., Bedognetti D., Bianco A., Kostarelos K., Delogu L.G. Molecular and Genomic Impact of Large and Small Lateral Dimension Graphene Oxide Sheets on Human Immune Cells from Healthy Donors. Adv. Healthc. Mater. 2016;5:276–287. doi: 10.1002/adhm.201500606. PubMed DOI
Fahmi T., Branch D., Nima Z.A., Jang D.S., Savenka A.V., Biris A.S., Basnakian A.G. Mechanism of graphene-induced cytotoxicity: Role of endonucleases. J. Appl. Toxicol. 2017;37:1325–1332. doi: 10.1002/jat.3462. PubMed DOI
Kang Y., Liu J., Wu J., Yin Q., Liang H., Chen A., Shao L. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int. J. Nanomed. 2017;12:5501–5510. doi: 10.2147/IJN.S141032. PubMed DOI PMC
Mohammadinejad R., Moosavi M.A., Tavakol S., Vardar D.O., Hosseini A., Rahmati M., Dini L., Hussain S., Mandegary A., Klionsky D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 2019;15:4–33. doi: 10.1080/15548627.2018.1509171. PubMed DOI PMC
Fadeel B., Bussy C., Merino S., Vázquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS. Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI
Wang E.N., Karnik R. Graphene cleans up water. Nat. Nanotechnol. 2012;7:552. doi: 10.1038/nnano.2012.153. PubMed DOI
Petersen E.J., Zhang L., Mattison N.T., O’Carroll D.M., Whelton A.J., Uddin N., Nguyen T., Huang Q., Henry T.B., Holbrook R.D., et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 2011;45:9837–9856. doi: 10.1021/es201579y. PubMed DOI
Schinwald A., Murphy F.A., Jones A., MacNee W., Donaldson K. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2012;6:736–746. doi: 10.1021/nn204229f. PubMed DOI
Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Kim J.S., Lee G.H., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI
Schinwald A., Murphy F., Askounis A., Koutsos V., Sefiane K., Donaldson K., Campbell C.J. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8:824–832. doi: 10.3109/17435390.2013.831502. PubMed DOI
Lee J.K., Jeong A.Y., Bae J., Seok J.H., Yang J.-Y., Roh H.S., Jeong J., Han Y., Jeong J., Cho W.-S. The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats. Arch. Toxicol. 2017;91:667–676. doi: 10.1007/s00204-016-1706-y. PubMed DOI
Lammel T., Navas J.M. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1. Aquat. Toxicol. 2014;150:55–65. doi: 10.1016/j.aquatox.2014.02.016. PubMed DOI
Park E.J., Lee S.J., Lee K., Choi Y.C., Lee B.S., Lee G.H., Kim D.W. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J. Appl. Toxicol. 2017;37:296–309. doi: 10.1002/jat.3361. PubMed DOI
Katsumiti A., Tomovska R., Cajaraville M.P. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat. Toxicol. 2017;188:138–147. doi: 10.1016/j.aquatox.2017.04.016. PubMed DOI
Li J., Zhang X., Jiang J., Wang Y., Jiang H., Zhang J., Nie X., Liu B. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicol. Sci. 2019;167:269–281. doi: 10.1093/toxsci/kfy235. PubMed DOI
Drasler B., Kucki M., Delhaes F., Buerki-Thurnherr T., Vanhecke D., Korejwo D., Chortarea S., Barosova H., Hirsch C., Petri-Fink A., et al. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 2018;137:125–135. doi: 10.1016/j.carbon.2018.05.012. DOI
Guo H., Callaway J.B., Ting J.P. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Sun B., Wang X., Ji Z., Wang M., Liao Y.-P., Chang C.H., Li R., Zhang H., Nel A.E., Xia T. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small. 2015;11:2087–2097. doi: 10.1002/smll.201402859. PubMed DOI PMC
Leso V., Fontana L., Iavicoli I. Nanomaterial exposure and sterile inflammatory reactions. Toxicol. Appl. Pharmacol. 2018;355:80–92. doi: 10.1016/j.taap.2018.06.021. PubMed DOI
Sun B., Wang X., Ji Z., Li R., Xia T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9:1595–1607. doi: 10.1002/smll.201201962. PubMed DOI PMC
Mukherjee S.P., Bottini M., Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC
Wen K.P., Chen Y.C., Chuang C.H., Chang H.Y., Lee C.Y., Tai N.H. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J. Appl. Toxicol. 2015;35:1211–1218. doi: 10.1002/jat.3187. PubMed DOI
Li B., Zhang X.Y., Yang J.Z., Zhang Y.J., Li W.X., Fan C.H., Huang Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomed. 2014;9:4697–4707. doi: 10.2147/IJN.S66591. PubMed DOI PMC
Li Y., Yuan H., von dem Bussche A., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC
Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2017;13 doi: 10.1002/smll.201602133. PubMed DOI
Wang Y., Xu J., Xu L., Tan X., Feng L., Luo Y., Liu J., Liu Z., Peng R. Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon. 2018;129:495–503. doi: 10.1016/j.carbon.2017.12.012. DOI
Gonzalez-Carter D., Goode A.E., Kiryushko D., Masuda S., Hu S., Lopes-Rodrigues R., Dexter D.T., Shaffer M.S.P., Porter A.E. Quantification of blood–brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale. 2019;11:22054–22069. doi: 10.1039/C9NR02866H. PubMed DOI
Muñoz-López R., Guzmán E., Velázquez M.M., Fernández-Peña L., Merchán M.D., Maestro A., Ortega F., Rubio R.G. Influence of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes. 2020;8:94. doi: 10.3390/pr8010094. DOI
He Y., Hara H., Nunez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci. 2016;41:1012–1021. doi: 10.1016/j.tibs.2016.09.002. PubMed DOI PMC
Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C. The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity. 2018;48:35–44.e6. doi: 10.1016/j.immuni.2017.11.013. PubMed DOI PMC
Li Y., Liu Y., Fu Y., Wei T., Le Guyader L., Gao G., Liu R.S., Chang Y.Z., Chen C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33:402–411. doi: 10.1016/j.biomaterials.2011.09.091. PubMed DOI
Meunier E., Coste A., Olagnier D., Authier H., Lefevre L., Dardenne C., Bernad J., Beraud M., Flahaut E., Pipy B. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8:987–995. doi: 10.1016/j.nano.2011.11.004. PubMed DOI
Pellegrini C., Antonioli L., Lopez-Castejon G., Blandizzi C., Fornai M. Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Front. Immunol. 2017;8:36. doi: 10.3389/fimmu.2017.00036. PubMed DOI PMC
Zanoni I., Tan Y., Di Gioia M., Broggi A., Ruan J., Shi J., Donado C.A., Shao F., Wu H., Springstead J.R., et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science. 2016;352:1232–1236. doi: 10.1126/science.aaf3036. PubMed DOI PMC
Sasidharan A., Panchakarla L.S., Sadanandan A.R., Ashokan A., Chandran P., Girish C.M., Menon D., Nair S.V., Rao C.N., Koyakutty M. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small. 2012;8:1251–1263. doi: 10.1002/smll.201102393. PubMed DOI
Di Cristo L., Mc Carthy S., Paton K., Movia D., Prina-Mello A. Interplay between oxidative stress and endoplasmic reticulum stress mediated- autophagy in unfunctionalised few-layer graphene-exposed macrophages. 2D Mater. 2018;5:045033. doi: 10.1088/2053-1583/aadf45. DOI
Ou L., Song B., Liang H., Liu J., Feng X., Deng B., Sun T., Shao L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016;13:57. doi: 10.1186/s12989-016-0168-y. PubMed DOI PMC
Peng Z., Liu X., Zhang W., Zeng Z., Liu Z., Zhang C., Liu Y., Shao B., Liang Q., Tang W., et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environ. Int. 2020;134:105298. doi: 10.1016/j.envint.2019.105298. PubMed DOI
Cao Y., Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicol. Appl. Pharmacol. 2019;385:114801. doi: 10.1016/j.taap.2019.114801. PubMed DOI
Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes
The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells
The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study
In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets