In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q40/09
Charles University, Faculty of Medicine in Hradec Kralove
PROGRES Q40/10
Charles University, Faculty of Medicine in Hradec Kralove
SVV-260397/2017
Charles University, Faculty of Medicine in Hradec Kralove
PubMed
34578525
PubMed Central
PMC8470272
DOI
10.3390/nano11092210
PII: nano11092210
Knihovny.cz E-zdroje
- Klíčová slova
- THP-1, cytotoxicity, genotoxicity, immunotoxicity, micronucleus test, oxidative stress, pristine graphene platelets,
- Publikační typ
- časopisecké články MeSH
(1) Background: Graphene is a two-dimensional atomic structure with a wide range of uses, including for biomedical applications. However, knowledge of its hazards is still limited. This work brings new cytotoxic, cytostatic, genotoxic and immunotoxic data concerning the in vitro exposure of human cell line to two types of graphene platelets (GP). It also contributes to the formation of general conclusions about the health risks of GP exposure. (2) Methods: In vitro exposure of a THP-1 cell line to three concentrations of two GP over 40 h. The cytotoxic potential was assessed by the measurement of LDH and glutathione (ROS) and by a trypan blue exclusion assay (TBEA); the cytostatic and genotoxic potential were assessed by the cytokinesis-block micronucleus (CBMN) test; and the immunotoxic potential was assessed by the measurement of IL-6, IL-10 and TNF-α. (3) Results: We found a significant dose-dependent increase in DNA damage (CBMN). The lowest observed genotoxic effect levels (LOGEL) were 5 µg/mL (GP1) and 30 µg/mL (GP2). We found no significant leaking of LDH from cells, increase in dead cells (TBEA), induction of ROS, increased levels of cytostasis, or changes in IL-6, IL-10 and TNF-α levels. (4) Conclusions: The genotoxicity increased during the short-term in vitro exposure of THP-1 to two GP. No increase in cytotoxicity, immunotoxicity, or cytostasis was observed.
Zobrazit více v PubMed
Fadeel B., Bussy C., Merino S., Vázquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI
Lalwani G., D’Agati M., Khan A.M., Sitharaman B. Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 2016;105:109–144. doi: 10.1016/j.addr.2016.04.028. PubMed DOI PMC
Yao J., Wang H., Chen M., Yang M. Recent advances in graphene-based nanomaterials: Properties, toxicity and applications in chemistry, biology and medicine. Mikrochim. Acta. 2019;186:395. doi: 10.1007/s00604-019-3458-x. PubMed DOI
Gurunathan S., Kang M.H., Jeyaraj M., Kim J.H. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1) Int. J. Mol. Sci. 2019;20:247. doi: 10.3390/ijms20020247. PubMed DOI PMC
Liao C., Li Y., Tjong S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC
Zhou H., Zhao K., Li W., Yang N., Liu Y., Chen C., Wei T. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling pathways. Biomaterials. 2012;33:6933–6942. doi: 10.1016/j.biomaterials.2012.06.064. PubMed DOI
Duan G., Zhang Y., Luan B., Weber J.K., Zhou R.W., Yang Z., Zhao L., Xu J., Luo J., Zhou R. Graphene-Induced Pore Formation on Cell Membranes. Sci. Rep. 2017;7:42767. doi: 10.1038/srep42767. PubMed DOI PMC
Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2017;13:1602133. doi: 10.1002/smll.201602133. PubMed DOI
Luo Y., Peng J., Huang C., Cao Y. Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicol. Environ. Saf. 2020;199:110714. doi: 10.1016/j.ecoenv.2020.110714. PubMed DOI
Sasidharan A., Panchakarla L.S., Chandran P., Menon D., Nair S., Rao C.N.R., Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–2464. doi: 10.1039/c1nr10172b. PubMed DOI
Peruzynska M., Cendrowski K., Barylak M., Tkacz M., Piotrowska K., Kurzawski M., Mijowska E., Drozdzik M. Comparative in vitro study of single and four layer graphene oxide nanoflakes—Cytotoxicity and cellular uptake. Toxicol. In Vitro. 2017;41:205–213. doi: 10.1016/j.tiv.2017.03.005. PubMed DOI
Narayanan K.B., Kim H.D., Han S.S. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent. Colloids Surf. B Biointerfaces. 2020;185:110579. doi: 10.1016/j.colsurfb.2019.110579. PubMed DOI
Tabish T.A., Pranjol M.Z.I., Hayat H., Rahat A.A.M., Abdullah T.M., Whatmore J.L., Zhang S. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology. 2017;28:504001. doi: 10.1088/1361-6528/aa95a8. PubMed DOI
Svadlakova T., Hubatka F., Turanek Knotigova P., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC
Zhang Y., Ali S.F., Dervishi E., Xu Y., Li Z., Casciano D., Biris A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–3186. doi: 10.1021/nn1007176. PubMed DOI
Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015;111:A3.B.1–A3.B.3. doi: 10.1002/0471142735.ima03bs111. PubMed DOI PMC
Fenech M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007;2:1084–1104. doi: 10.1038/nprot.2007.77. PubMed DOI
OECD . Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Publishing; Paris, France: 2016.
Jiao G., He X., Li X., Qiu J., Xu H., Zhang N., Liu S. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 2015;5:53240–53244. doi: 10.1039/C5RA08958A. DOI
Ali-Boucetta H., Al-Jamal K.T., Muller K.H., Li S., Porter A.E., Eddaoudi A., Prato M., Bianco A., Kostarelos K. Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small. 2011;7:3230–3238. doi: 10.1002/smll.201101004. PubMed DOI
Guadagnini R., Halamoda Kenzaoui B., Walker L., Pojana G., Magdolenova Z., Bilanicova D., Saunders M., Juillerat-Jeanneret L., Marcomini A., Huk A., et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9((Suppl. 1)):13–24. doi: 10.3109/17435390.2013.829590. PubMed DOI
Seabra A.B., Paula A.J., de Lima R., Alves O.L., Duran N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI
Li Y., Yuan H., von dem Bussche A., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC
Akhavan O., Ghaderi E., Emamy H., Akhavan F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon. 2013;54:419–431. doi: 10.1016/j.carbon.2012.11.058. DOI
Chong Y., Ma Y., Shen H., Tu X., Zhou X., Xu J., Dai J., Fan S., Zhang Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–5048. doi: 10.1016/j.biomaterials.2014.03.021. PubMed DOI
Zhang X.F., Gurunathan S. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: An excellent biocompatible nanomaterial. Int. J. Nanomed. 2016;11:6635–6649. doi: 10.2147/IJN.S121847. PubMed DOI PMC
Burgum M.J., Clift M.J.D., Evans S.J., Hondow N., Tarat A., Jenkins G.J., Doak S.H. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J. Nanobiotechnol. 2021;19:24. doi: 10.1186/s12951-021-00769-9. PubMed DOI PMC
Lin H., Ji D.-K., Lucherelli M.A., Reina G., Ippolito S., Samorì P., Bianco A. Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. Small. 2020;16:2002194. doi: 10.1002/smll.202002194. PubMed DOI
Lasocka I., Szulc-Dąbrowska L., Skibniewski M., Skibniewska E., Strupinski W., Pasternak I., Kmieć H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. In Vitro. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI
Demir E., Marcos R. Toxic and genotoxic effects of graphene and multi-walled carbon nanotubes. J. Toxicol. Environ. Health Part A. 2018;81:645–660. doi: 10.1080/15287394.2018.1477314. PubMed DOI
Malanagahalli S., Murera D., Martín C., Lin H., Wadier N., Dumortier H., Vázquez E., Bianco A. Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials. 2020;10:228. doi: 10.3390/nano10020228. PubMed DOI PMC
Zhang B., Wei P., Zhou Z., Wei T. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev. 2016;105:145–162. doi: 10.1016/j.addr.2016.08.009. PubMed DOI
Lushchak V.I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J. Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837. PubMed DOI PMC
Burgum M.J., Clift M.J.D., Evans S.J., Hondow N., Miller M., Lopez S.B., Williams A., Tarat A., Jenkins G.J., Doak S.H. In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene. Small. 2020;17:2002551. doi: 10.1002/smll.202002551. PubMed DOI
Qu G., Liu S., Zhang S., Wang L., Wang X., Sun B., Yin N., Gao X., Xia T., Chen J.J., et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano. 2013;7:5732–5745. doi: 10.1021/nn402330b. PubMed DOI
Gill R., Tsung A., Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free. Radic. Biol. Med. 2010;48:1121–1132. doi: 10.1016/j.freeradbiomed.2010.01.006. PubMed DOI PMC
Ruiz-Ruiz B., Arellano-García M.E., Radilla-Chávez P., Salas-Vargas D.S., Toledano-Magaña Y., Casillas-Figueroa F., Luna Vazquez-Gomez R., Pestryakov A., García-Ramos J.C., Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS Omega. 2020;5:12005–12015. doi: 10.1021/acsomega.0c00149. PubMed DOI PMC
Gonzalez L., Sanderson B.J., Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis. 2011;26:185–191. doi: 10.1093/mutage/geq088. PubMed DOI
Senapati V.A., Kumar A., Gupta G.S., Pandey A.K., Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015;85:61–70. doi: 10.1016/j.fct.2015.06.018. PubMed DOI
O’Donovan M. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis. 2012;27:615–621. doi: 10.1093/mutage/ges045. PubMed DOI
Di Bucchianico S., Fabbrizi M.R., Cirillo S., Uboldi C., Gilliland D., Valsami-Jones E., Migliore L. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int. J. Nanomed. 2014;9:2191–2204. doi: 10.2147/IJN.S58397. PubMed DOI PMC
Ventura C., Pereira J.F.S., Matos P., Marques B., Jordan P., Sousa-Uva A., Silva M.J. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: Assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology. 2020;14:479–503. doi: 10.1080/17435390.2019.1695975. PubMed DOI
Wang Y., Xu J., Xu L., Tan X., Feng L., Luo Y., Liu J., Liu Z., Peng R. Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon. 2018;129:495–503. doi: 10.1016/j.carbon.2017.12.012. DOI
Park E.J., Lee G.H., Han B.S., Lee B.S., Lee S., Cho M.H., Kim J.H., Kim D.W. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch. Toxicol. 2015;89:1557–1568. doi: 10.1007/s00204-014-1303-x. PubMed DOI
Schinwald A., Murphy F.A., Jones A., MacNee W., Donaldson K. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2012;6:736–746. doi: 10.1021/nn204229f. PubMed DOI
Heshmati M., Hajibabae S., Barikrow N. Genotoxicity and Cytotoxicity Assessment of Graphene Oxide Nanosheets on HT29 Cells. J. Kermanshah Univ. Med. Sci. 2018;22:e69641. doi: 10.5812/jkums.69641. DOI
Ursini C.L., Fresegna A.M., Ciervo A., Maiello R., Del Frate V., Folesani G., Galetti M., Poli D., Buresti G., Di Cristo L., et al. Occupational exposure to graphene and silica nanoparticles. Part II: Pilot study to identify a panel of sensitive biomarkers of genotoxic, oxidative and inflammatory effects on suitable biological matrices. Nanotoxicology. 2021;15:223–237. doi: 10.1080/17435390.2020.1850903. PubMed DOI
Ivask A., Voelcker N.H., Seabrook S.A., Hor M., Kirby J.K., Fenech M., Davis T.P., Ke P.C. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem. Res. Toxicol. 2015;28:1023–1035. doi: 10.1021/acs.chemrestox.5b00052. PubMed DOI
Akhavan O., Ghaderi E., Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33:8017–8025. doi: 10.1016/j.biomaterials.2012.07.040. PubMed DOI
Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A., Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6:1682–1686. doi: 10.1021/nl060860z. PubMed DOI
Lahiani M.H., Gokulan K., Williams K., Khodakovskaya M.V., Khare S. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 2017;37:1305–1316. doi: 10.1002/jat.3477. PubMed DOI
Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC
Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Kim J.S., Lee G.H., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI
Chen G.Y., Yang H.J., Lu C.H., Chao Y.C., Hwang S.M., Chen C.L., Lo K.W., Sung L.Y., Luo W.Y., Tuan H.Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI
Schinwald A., Murphy F., Askounis A., Koutsos V., Sefiane K., Donaldson K., Campbell C.J. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8:824–832. doi: 10.3109/17435390.2013.831502. PubMed DOI
Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes
The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells