In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets

. 2021 Aug 27 ; 11 (9) : . [epub] 20210827

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578525

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421 Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q40/09 Charles University, Faculty of Medicine in Hradec Kralove
PROGRES Q40/10 Charles University, Faculty of Medicine in Hradec Kralove
SVV-260397/2017 Charles University, Faculty of Medicine in Hradec Kralove

(1) Background: Graphene is a two-dimensional atomic structure with a wide range of uses, including for biomedical applications. However, knowledge of its hazards is still limited. This work brings new cytotoxic, cytostatic, genotoxic and immunotoxic data concerning the in vitro exposure of human cell line to two types of graphene platelets (GP). It also contributes to the formation of general conclusions about the health risks of GP exposure. (2) Methods: In vitro exposure of a THP-1 cell line to three concentrations of two GP over 40 h. The cytotoxic potential was assessed by the measurement of LDH and glutathione (ROS) and by a trypan blue exclusion assay (TBEA); the cytostatic and genotoxic potential were assessed by the cytokinesis-block micronucleus (CBMN) test; and the immunotoxic potential was assessed by the measurement of IL-6, IL-10 and TNF-α. (3) Results: We found a significant dose-dependent increase in DNA damage (CBMN). The lowest observed genotoxic effect levels (LOGEL) were 5 µg/mL (GP1) and 30 µg/mL (GP2). We found no significant leaking of LDH from cells, increase in dead cells (TBEA), induction of ROS, increased levels of cytostasis, or changes in IL-6, IL-10 and TNF-α levels. (4) Conclusions: The genotoxicity increased during the short-term in vitro exposure of THP-1 to two GP. No increase in cytotoxicity, immunotoxicity, or cytostasis was observed.

Zobrazit více v PubMed

Fadeel B., Bussy C., Merino S., Vázquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI

Lalwani G., D’Agati M., Khan A.M., Sitharaman B. Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 2016;105:109–144. doi: 10.1016/j.addr.2016.04.028. PubMed DOI PMC

Yao J., Wang H., Chen M., Yang M. Recent advances in graphene-based nanomaterials: Properties, toxicity and applications in chemistry, biology and medicine. Mikrochim. Acta. 2019;186:395. doi: 10.1007/s00604-019-3458-x. PubMed DOI

Gurunathan S., Kang M.H., Jeyaraj M., Kim J.H. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1) Int. J. Mol. Sci. 2019;20:247. doi: 10.3390/ijms20020247. PubMed DOI PMC

Liao C., Li Y., Tjong S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC

Zhou H., Zhao K., Li W., Yang N., Liu Y., Chen C., Wei T. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling pathways. Biomaterials. 2012;33:6933–6942. doi: 10.1016/j.biomaterials.2012.06.064. PubMed DOI

Duan G., Zhang Y., Luan B., Weber J.K., Zhou R.W., Yang Z., Zhao L., Xu J., Luo J., Zhou R. Graphene-Induced Pore Formation on Cell Membranes. Sci. Rep. 2017;7:42767. doi: 10.1038/srep42767. PubMed DOI PMC

Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2017;13:1602133. doi: 10.1002/smll.201602133. PubMed DOI

Luo Y., Peng J., Huang C., Cao Y. Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicol. Environ. Saf. 2020;199:110714. doi: 10.1016/j.ecoenv.2020.110714. PubMed DOI

Sasidharan A., Panchakarla L.S., Chandran P., Menon D., Nair S., Rao C.N.R., Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–2464. doi: 10.1039/c1nr10172b. PubMed DOI

Peruzynska M., Cendrowski K., Barylak M., Tkacz M., Piotrowska K., Kurzawski M., Mijowska E., Drozdzik M. Comparative in vitro study of single and four layer graphene oxide nanoflakes—Cytotoxicity and cellular uptake. Toxicol. In Vitro. 2017;41:205–213. doi: 10.1016/j.tiv.2017.03.005. PubMed DOI

Narayanan K.B., Kim H.D., Han S.S. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent. Colloids Surf. B Biointerfaces. 2020;185:110579. doi: 10.1016/j.colsurfb.2019.110579. PubMed DOI

Tabish T.A., Pranjol M.Z.I., Hayat H., Rahat A.A.M., Abdullah T.M., Whatmore J.L., Zhang S. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology. 2017;28:504001. doi: 10.1088/1361-6528/aa95a8. PubMed DOI

Svadlakova T., Hubatka F., Turanek Knotigova P., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC

Zhang Y., Ali S.F., Dervishi E., Xu Y., Li Z., Casciano D., Biris A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–3186. doi: 10.1021/nn1007176. PubMed DOI

Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015;111:A3.B.1–A3.B.3. doi: 10.1002/0471142735.ima03bs111. PubMed DOI PMC

Fenech M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007;2:1084–1104. doi: 10.1038/nprot.2007.77. PubMed DOI

OECD . Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Publishing; Paris, France: 2016.

Jiao G., He X., Li X., Qiu J., Xu H., Zhang N., Liu S. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 2015;5:53240–53244. doi: 10.1039/C5RA08958A. DOI

Ali-Boucetta H., Al-Jamal K.T., Muller K.H., Li S., Porter A.E., Eddaoudi A., Prato M., Bianco A., Kostarelos K. Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small. 2011;7:3230–3238. doi: 10.1002/smll.201101004. PubMed DOI

Guadagnini R., Halamoda Kenzaoui B., Walker L., Pojana G., Magdolenova Z., Bilanicova D., Saunders M., Juillerat-Jeanneret L., Marcomini A., Huk A., et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9((Suppl. 1)):13–24. doi: 10.3109/17435390.2013.829590. PubMed DOI

Seabra A.B., Paula A.J., de Lima R., Alves O.L., Duran N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI

Li Y., Yuan H., von dem Bussche A., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC

Akhavan O., Ghaderi E., Emamy H., Akhavan F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon. 2013;54:419–431. doi: 10.1016/j.carbon.2012.11.058. DOI

Chong Y., Ma Y., Shen H., Tu X., Zhou X., Xu J., Dai J., Fan S., Zhang Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–5048. doi: 10.1016/j.biomaterials.2014.03.021. PubMed DOI

Zhang X.F., Gurunathan S. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: An excellent biocompatible nanomaterial. Int. J. Nanomed. 2016;11:6635–6649. doi: 10.2147/IJN.S121847. PubMed DOI PMC

Burgum M.J., Clift M.J.D., Evans S.J., Hondow N., Tarat A., Jenkins G.J., Doak S.H. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J. Nanobiotechnol. 2021;19:24. doi: 10.1186/s12951-021-00769-9. PubMed DOI PMC

Lin H., Ji D.-K., Lucherelli M.A., Reina G., Ippolito S., Samorì P., Bianco A. Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. Small. 2020;16:2002194. doi: 10.1002/smll.202002194. PubMed DOI

Lasocka I., Szulc-Dąbrowska L., Skibniewski M., Skibniewska E., Strupinski W., Pasternak I., Kmieć H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. In Vitro. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI

Demir E., Marcos R. Toxic and genotoxic effects of graphene and multi-walled carbon nanotubes. J. Toxicol. Environ. Health Part A. 2018;81:645–660. doi: 10.1080/15287394.2018.1477314. PubMed DOI

Malanagahalli S., Murera D., Martín C., Lin H., Wadier N., Dumortier H., Vázquez E., Bianco A. Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials. 2020;10:228. doi: 10.3390/nano10020228. PubMed DOI PMC

Zhang B., Wei P., Zhou Z., Wei T. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev. 2016;105:145–162. doi: 10.1016/j.addr.2016.08.009. PubMed DOI

Lushchak V.I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J. Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837. PubMed DOI PMC

Burgum M.J., Clift M.J.D., Evans S.J., Hondow N., Miller M., Lopez S.B., Williams A., Tarat A., Jenkins G.J., Doak S.H. In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene. Small. 2020;17:2002551. doi: 10.1002/smll.202002551. PubMed DOI

Qu G., Liu S., Zhang S., Wang L., Wang X., Sun B., Yin N., Gao X., Xia T., Chen J.J., et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano. 2013;7:5732–5745. doi: 10.1021/nn402330b. PubMed DOI

Gill R., Tsung A., Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free. Radic. Biol. Med. 2010;48:1121–1132. doi: 10.1016/j.freeradbiomed.2010.01.006. PubMed DOI PMC

Ruiz-Ruiz B., Arellano-García M.E., Radilla-Chávez P., Salas-Vargas D.S., Toledano-Magaña Y., Casillas-Figueroa F., Luna Vazquez-Gomez R., Pestryakov A., García-Ramos J.C., Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS Omega. 2020;5:12005–12015. doi: 10.1021/acsomega.0c00149. PubMed DOI PMC

Gonzalez L., Sanderson B.J., Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis. 2011;26:185–191. doi: 10.1093/mutage/geq088. PubMed DOI

Senapati V.A., Kumar A., Gupta G.S., Pandey A.K., Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015;85:61–70. doi: 10.1016/j.fct.2015.06.018. PubMed DOI

O’Donovan M. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis. 2012;27:615–621. doi: 10.1093/mutage/ges045. PubMed DOI

Di Bucchianico S., Fabbrizi M.R., Cirillo S., Uboldi C., Gilliland D., Valsami-Jones E., Migliore L. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int. J. Nanomed. 2014;9:2191–2204. doi: 10.2147/IJN.S58397. PubMed DOI PMC

Ventura C., Pereira J.F.S., Matos P., Marques B., Jordan P., Sousa-Uva A., Silva M.J. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: Assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology. 2020;14:479–503. doi: 10.1080/17435390.2019.1695975. PubMed DOI

Wang Y., Xu J., Xu L., Tan X., Feng L., Luo Y., Liu J., Liu Z., Peng R. Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon. 2018;129:495–503. doi: 10.1016/j.carbon.2017.12.012. DOI

Park E.J., Lee G.H., Han B.S., Lee B.S., Lee S., Cho M.H., Kim J.H., Kim D.W. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch. Toxicol. 2015;89:1557–1568. doi: 10.1007/s00204-014-1303-x. PubMed DOI

Schinwald A., Murphy F.A., Jones A., MacNee W., Donaldson K. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2012;6:736–746. doi: 10.1021/nn204229f. PubMed DOI

Heshmati M., Hajibabae S., Barikrow N. Genotoxicity and Cytotoxicity Assessment of Graphene Oxide Nanosheets on HT29 Cells. J. Kermanshah Univ. Med. Sci. 2018;22:e69641. doi: 10.5812/jkums.69641. DOI

Ursini C.L., Fresegna A.M., Ciervo A., Maiello R., Del Frate V., Folesani G., Galetti M., Poli D., Buresti G., Di Cristo L., et al. Occupational exposure to graphene and silica nanoparticles. Part II: Pilot study to identify a panel of sensitive biomarkers of genotoxic, oxidative and inflammatory effects on suitable biological matrices. Nanotoxicology. 2021;15:223–237. doi: 10.1080/17435390.2020.1850903. PubMed DOI

Ivask A., Voelcker N.H., Seabrook S.A., Hor M., Kirby J.K., Fenech M., Davis T.P., Ke P.C. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem. Res. Toxicol. 2015;28:1023–1035. doi: 10.1021/acs.chemrestox.5b00052. PubMed DOI

Akhavan O., Ghaderi E., Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33:8017–8025. doi: 10.1016/j.biomaterials.2012.07.040. PubMed DOI

Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A., Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6:1682–1686. doi: 10.1021/nl060860z. PubMed DOI

Lahiani M.H., Gokulan K., Williams K., Khodakovskaya M.V., Khare S. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 2017;37:1305–1316. doi: 10.1002/jat.3477. PubMed DOI

Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC

Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Kim J.S., Lee G.H., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI

Chen G.Y., Yang H.J., Lu C.H., Chao Y.C., Hwang S.M., Chen C.L., Lo K.W., Sung L.Y., Luo W.Y., Tuan H.Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI

Schinwald A., Murphy F., Askounis A., Koutsos V., Sefiane K., Donaldson K., Campbell C.J. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8:824–832. doi: 10.3109/17435390.2013.831502. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...