Effect of Mycotoxins in Silage on Biogas Production
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
The Long-Term Conception of the Development of Research Organization Agricultural Research, Ltd. Troubsko 2023
Ministry of Agriculture of the Czech Republic
PubMed
38135978
PubMed Central
PMC10740816
DOI
10.3390/bioengineering10121387
PII: bioengineering10121387
Knihovny.cz E-resources
- Keywords
- anaerobic biogas, anaerobic digestion, digestate, maize silage, methane, mycotoxins,
- Publication type
- Journal Article MeSH
Mycotoxins can pose a threat to biogas production as they can contaminate the feedstock used in biogas production, such as agricultural crops and other organic materials. This research study evaluated the contents of deoxynivalenol (DON), zearalenone (ZEA), fumonisin (FUM), and aflatoxin (AFL) mycotoxins in maize silage prior to it being processed in a biogas plant and in digestate produced at the end of the anaerobic digestion (AD) process. In the experiment, three samples of silage were collected from one silage warehouse: Variant 1 = low contamination, Variant 2 = medium contamination, and Variant 3 = heavy contamination, which were subjected to investigation. A significantly reduced biogas production was recorded that was proportional to the increasing contamination with molds, which was primarily due to the AD of silage caused by technologically erroneous silage treatment. The AD was connected with changes in silage composition expressed by the values of VS content, sugar content, lactic acid content, acetic acid content, and the ratio of lactic acid content to acetic acid content. The production of biogas and methane decreased with the increasing contents of NDF, ADF, CF, and lignin. The only exception was Variant 2, in which the content of ADF, CF, and lignin was lower (by 8-11%) than that in Variant 1, and only the content of NDF was higher (by 9%) than that in Variant 1. A secondary factor that also correlated with changes in the composition of the substrate was the development of undesirable organisms, which further contributed to its degradation and to the production of mycotoxins. It was also demonstrated in this study that during the AD process, the tested mycotoxins were degraded, and their content was reduced by 27-100%. Only the variant with low mold contamination showed a DON concentration increase of 27.8%.
Agricultural Research Ltd Zahradní 1 664 41 Troubsko Czech Republic
Agrovyzkum Rapotin Ltd Vyzkumniku 267 788 13 Rapotin Czech Republic
See more in PubMed
Ferrara M., Haidukowski M., D’Imperio M., Parente A., De Angelis E., Monaci L., Logrieco A.F., Mulè G. New insight into microbial degradation of mycotoxins during anaerobic digestion. Waste Manag. 2021;119:215–225. doi: 10.1016/j.wasman.2020.09.048. PubMed DOI
FAO . Agricultural Production Statistics. FAO; Rome, IT, USA: 2020.
Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018;10:3980–4000. doi: 10.3168/jds.2017-13839. PubMed DOI
Binder E.M., Tan L.M., Chin L.J., Handl J., Richard J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007;137:265–282. doi: 10.1016/j.anifeedsci.2007.06.005. DOI
Miller J.D., Greenhalgh R. Metabolites of fungal pathogens and plant resistance. Acs. Sym. Ser. 1988;379:117–129.
Glenn A.E. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol. 2007;137:213–240. doi: 10.1016/j.anifeedsci.2007.06.003. DOI
Adegoke O.G., Letum P. Strategies for the Prevention and Reduction of Mycotoxins in Developing Countries. In: Makun H.A., editor. Mycotoxin and Food Safety in Developing Countries. InTech; Rijeka, Croatia: 2013.
Magan N., Sachis V., Aldred D. Role of spoilage fungi in seed deterioration. In: Aurora D.K., editor. Fungal Biotechnology in Agricultural, Food and Environmental Applications. Marcell Dekker; New York, NY, USA: 2004. pp. 311–323.
Balazs E., Schepers J.S. The mycotoxin threat to food safety. Int. J. Food Microbiol. 2007;119:1–2. doi: 10.1016/j.ijfoodmicro.2007.07.018. PubMed DOI
Creppy E.E. Update of survey, regulation and toxic effects of mycotoxins in Europ. Toxicol. Lett. 2002;127:19–28. doi: 10.1016/S0378-4274(01)00479-9. PubMed DOI
Fink-Gremmels J., Malekinejad H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007;137:326–341. doi: 10.1016/j.anifeedsci.2007.06.008. DOI
Morgavi D.P., Riley R.T. An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol. 2007;137:201–212. doi: 10.1016/j.anifeedsci.2007.06.002. DOI
Focker M., Van der Fels-Klerx H.J., Oude Lansink A.G.J.M. Financial losses for Dutch stakeholders during the 2013 aflatoxin incident in Maize in Europe. Mycotoxin Res. 2021;37:193–204. doi: 10.1007/s12550-021-00429-9. PubMed DOI PMC
Huwig A., Freimund S., Kappeli O., Dutler H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001;122:179–188. doi: 10.1016/S0378-4274(01)00360-5. PubMed DOI
Weiland P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. PubMed
Appels L., Lauwers J., Degrève J., Helsen L., Lievens B., Willems K., Van Impe J., Dewil R. Anaerobic digestion in global bioenergy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011;15:4295–4301. doi: 10.1016/j.rser.2011.07.121. DOI
Cucina M., Zadra C., Marcotullio M.C., Di Maria F., Sordi S., Curini M., Gigliotti G. Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: Integration of anaerobic digestion and composting. J. Environ. Chem. Eng. 2017;5:3051–3057. doi: 10.1016/j.jece.2017.06.003. DOI
Tambone F., Scaglia B., D’Imporzano G., Schievano A., Orzi V., Salati S., Adani F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere. 2010;81:577–583. doi: 10.1016/j.chemosphere.2010.08.034. PubMed DOI
Liedl B.E., Bombardiere J., Williams M.L., Stowers A., Postalwait C., Chatfield J.M. Solid effluent from thermophilic anaerobic digestion of poultry litter as a potential fertilizer. Hort Sci. 2004;39:877B–877. doi: 10.21273/HORTSCI.39.4.877B. DOI
Elbl J., Sláma P., Vaverková M.D., Plošek L., Adamcová D., Škarpa P., Kynický J., Havlíček Z., Dvořáčková H., Brtnický M., et al. Jatropa seed cake and organic waste compost: The potential improvement of soil fertility. Ecol. Chem. Eng. S. 2016;23:131–141.
Gutser R., Ebertseder T., Weber A., Schraml M., Schmidhalter U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J. Plant Nutr. Soil Sci. 2005;168:439–446. doi: 10.1002/jpln.200520510. DOI
Merrettig-Bruns U., Sayder B. Impact of Mycotoxins and Moldy Maize Silage on the Biogas Process. [(accessed on 2nd October 2023)];Heliyon. 2022 doi: 10.2139/ssrn.4084331. Under Review . Available online: https://ssrn.com/abstract=4084331. DOI
Salati S., D’Imporzano G., Panseri S., Pasquale E., Adani F. Degradation of aflatoxin B1 during anaerobic digestion and its effect on process stability. Int. Biodet. Biodeg. 2014;94:19–23. doi: 10.1016/j.ibiod.2014.06.011. DOI
De Gelder L., Audenaert K., Willems B., Schelfhout K., De Saeger S., De Boevre M. Processing of mycotoxin contaminated waste streams through anaerobic digestion. Waste Manag. 2018;71:122–128. doi: 10.1016/j.wasman.2017.09.039. PubMed DOI
Giorni P., Pietri A., Bertuzzi T., Soldano M., Piccinini S., Rossi L., Battilani P. Fate of mycotoxins and related fungi in the anaerobic digestion process. Bioresour. Technol. 2018;265:554–557. doi: 10.1016/j.biortech.2018.05.077. PubMed DOI
Vanhoutte I., Audenaert K., Gelder De L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016;7:561. doi: 10.3389/fmicb.2016.00561. PubMed DOI PMC
Soldano M., Pietri A., Bertuzzi T., Fabbri C., Piccinini S., Gallucci F., Aureli G. Anaerobic digestion of mycotoxin-contaminated wheat: Effects on methane yield and contamination level. BioEnergy Res. 2021;14:313–321. doi: 10.1007/s12155-020-10161-4. DOI
Tacconi C., Cucina M., Pezzolla D., Zadra C., Gigliotti G. Effect of the mycotoxin aflatoxin B1 on a semi-continuous anaerobic digestion process. Waste Manag. 2018;78:467–473. doi: 10.1016/j.wasman.2018.06.014. PubMed DOI
Lošák T., Válka T., Elbl J., Kintl A., Keutgen A., Keutgen N., Demková L., Árvay J., Varga L., Hnátková H., et al. Fertilization with Magnesium-and Sulfur-Supplemented Digestate Increases the Yield and Quality of Kohlrabi. Sustainability. 2020;12:5733. doi: 10.3390/su12145733. DOI
Brtnicky M., Kintl A., Holatko J., Hammerschmiedt T., Mustafa A., Kucerik J., Kucerik J., Vitez T., Prichystalova J., Baltazar T., et al. Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chem. Biol. Technol. Agric. 2022;9:43. doi: 10.1186/s40538-022-00310-6. DOI
Holatko J., Hammerschmiedt T., Kintl A., Danish S., Skarpa P., Latal O., Baltazar T., Fahad S., Akça H., Taban S., et al. Effect of carbon-enriched digestate on the microbial soil activity. PLoS ONE. 2021;16:e0274148. doi: 10.1371/journal.pone.0252262. PubMed DOI PMC
Kolackova I., Smolkova B., Latal O., Skalickova S., Skladanka J., Horky P., Knot P., Hammerschmiedt T., Kintl A., Holatko J., et al. Does Digestate Dose Affect Fodder Security and Nutritive Value? Agriculture. 2022;12:133. doi: 10.3390/agriculture12020133. DOI
Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. International Organization for Standardization (ISO); Geneva, Switzerland: 2013.
Ruiz-Jiménez J., Priego-capote F., Luque de Castro M.D. Identification and quantification of trans fatty acids in bakery products by gas chromatography–mass spectrometry after dynamic ultrasound-assisted extraction. J. Chromatogr. A. 2004;1045:203–210. doi: 10.1016/j.chroma.2004.06.050. PubMed DOI
Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization (ISO); Geneva, Switzerland: 2000.
Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. International Organization for Standardization (ISO); Geneva, Switzerland: 2008.
Animal Feeding Stuffs—Determination of Amylase-Treated Neutral Detergent Fibre Content. International Organization for Standardization (ISO); Geneva, Switzerland: 2006.
Sludges, Treated Biowaste, Soils and Wastes—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. Czech Standardization Agency (ČSN); Praha, Czech Republic: 2013.
Sludges, Treated Biowaste, Soils and Wastes—Determination of Loss on Ignition. Czech Standardization Agency (ČSN); Praha, Czech Republic: 2013.
Hunady I., Ondrísková V., Hutyrová H., Kubíková Z., Hammerschmiedt T., Mezera J. Use of Wild Plant Species: A Potential for Methane Production in Biogas Plants. Int. J. Renew. Energy Res. 2021;11:920–932.
Kintl A., Huňady I., Holátko J., Vítěz T., Hammerschmiedt T., Brtnický M., Ondrisková V., Elbl J. Using the Mixed Culture of Fodder Mallow (Malva verticillata L.) and White Sweet Clover (Melilotus albus Medik.) for Methane Production. Fermentation. 2022;8:94. doi: 10.3390/fermentation8030094. DOI
Animal Feeding Stuffs—Determination of Starch Content—Polarimetric Method. International Organization for Standardization (ISO); Geneva, Switzerland: 2000.
García-Ayuso L.E., Luque de Castro M.D. A multivariate study of the performance of a microwave-assisted Soxhlet extractor for olive seeds. Anal. Chim. Acta. 1999;382:309–316. doi: 10.1016/S0003-2670(98)00795-8. DOI
Pomeranz Y., Meloan E.C. Food Analysis: Theory and Practice. 3rd ed. Chapman and Hall; New York, NY, USA: 1994.
Marrubini G., Papetti A., Genorini E., Ulrici A. Determination of the sugar content in commercial plant milks by near infrared spectroscopy and Luff-Schoorl total glucose titration. Food Anal. Methods. 2017;10:1556–1567. doi: 10.1007/s12161-016-0713-1. DOI
Kintl A., Hammerschmiedt T., Vítěz T., Brtnický M., Vejražka K., Huňady I., Látal O., Elbl J. Possibility of using tannins to control greenhouse gas production during digestate storage. Waste Manag. 2023;156:75–83. doi: 10.1016/j.wasman.2022.11.025. PubMed DOI
Testing Methods for Feeding Stuffs—Part 42: Quality Testing of Silages. Czech Standardization Agency (ČSN); Praha, Czech Republic: 1998.
Stringer R. ELECTROPHORESIS|Overview. In: Stringer R., Worsfold P., Townshend A., Poole C., editors. Encyclopedia of Analytical Science. Elsevier; Oxford, UK: 2005.
Kintl A., Elbl J., Vítěz T., Brtnický M., Skládanka J., Hammerschmiedt T., Vítězová M. Possibilities of Using White Sweetclover Grown in Mixture with Maize for Biomethane Production. Agronomy. 2020;10:1407. doi: 10.3390/agronomy10091407. DOI
Kintl A., Vítěz T., Elbl J., Vítězová M., Dokulilová T., Nedělník J., Skládanka J., Brtnický M. Mixed culture of corn and white lupine as an alternative to silage made from corn monoculture intended for biogas production. BioEnergy Res. 2019;12:694–702. doi: 10.1007/s12155-019-10003-y. DOI
Skladanka J., Nedelnik J., Adam V., Dolezal P., Moravcova H., Dohnal V. Forage as a Primary Source of Mycotoxins in Animal Diets. Int. J. Environ. Res. Public Health. 2011;8:37–50. doi: 10.3390/ijerph8010037. PubMed DOI PMC
Kintl A., Zímová N., Brtnický M., Hammerschmiedt T., Smutný V., Kincl D., Nerušil P., Huňady I., Elbl J. Effect of cover crops undersown in maize on the mycotoxin content in maize biomass. Acta Fytotech. 2023;26 doi: 10.15414/afz.2023.26.01.78-92. in press . DOI
Stefanon B., Procida G. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripening. J. Dairy Res. 2004;71:58–65. doi: 10.1017/S0022029903006563. PubMed DOI
Wilkinson J.M. Silage. Chalcombe Publications; Southampton, UK: 2005.
Kung L., Shaver R., Grant R., Schmidt R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018;101:4020–4033. doi: 10.3168/jds.2017-13909. PubMed DOI
González-Pereyra M.L., Alonso V.A., Sager R., Morlaco M.B., Magnoli C.E., Astoreca A.L., Rosa C.A.R., Chiacchiera S.M., Dalcero A.M., Cavaglieri L.R. Fungi and select mycotoxins from pre- and postfermented corn silage. J. Appl. Microbiol. 2008;104:1034–1041. doi: 10.1111/j.1365-2672.2007.03634.x. PubMed DOI
Kung L., Shaver R. Interpretation and use of silage fermentation analysis reports. Focus Forage. 2001;3:20–28.
Meiske J.C., Linn J.G., Goodrich R.D. Proceedings of the 2nd International Silage Research Conference. National Silo Association, Inc.; Waterloo, IA, USA: 1975. Types of laboratory silos and an evaluation of their usefulness; pp. 99–126.
Cherney D., Cherney J.H., Cox W.J. Fermentation Characteristics of Corn Forage Ensiled in Mini-Silos. J. Dairy Sci. 2005;87:42–46. doi: 10.3168/jds.S0022-0302(04)73569-9. PubMed DOI
Heuzé V., Tran G., Edouard N., Lebas F. Maize Silage. Animal Feed Resources Information System. Feedipedia, a Program by INRAE, CIRAD, AFZ and FAO. [(accessed on 12 January 2023)]. Last Updated on 22 June 2017. Available online: https://www.feedipedia.org/node/13883.
Massefera D.A., Florention L.A., Rabelo C.H.S., Härter C.J., Rezende A.V., Reis R.A. Replacement of aruana grass by gliricidia (Gliricidia sepium) on silage quality. R. Bras. Zootec. 2015;44:231–239. doi: 10.1590/S1806-92902015000700001. DOI
Amara A.A., El-Baky N.A. Fungi as a source of edible proteins and Animal Feed. J. Fungi. 2023;9:73. doi: 10.3390/jof9010073. PubMed DOI PMC
Chahal D.S. Production of protein-rich mycelial biomass of a mushroom, Pleurotus sajorcaju, on corn stover. J. Ferment. Bioeng. 1989;68:334–338. doi: 10.1016/0922-338X(89)90008-1. DOI
Bakratsas G., Polydera A., Nilson O., Chatzikonstantinou A.V., Xiros C., Katapodis P., Stamatis H. Mycoprotein production by submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor using agro-industrial hydrolysate. Food. 2023;12:2295. doi: 10.3390/foods12122295. PubMed DOI PMC
Scholtmeijer K., van den Broek L.A., Fischer A.R.H., van Peer A. Potential protein production from lignocellulosic materials using edible mushroom forming fungi. J. Agric. Food Chem. 2023;71:4450–4457. doi: 10.1021/acs.jafc.2c08828. PubMed DOI PMC
García-Chávez I., Meraz-Romero E., Castelán-Ortega O., Zaragoza Esparza J., Osorio Avalos J., Robles Jimenez L.E., González-Ronquillo M. Corn Silage, Meta-Analysis of The Quality and Yield of Different Regions in the World. Preprints. 2020:2020100094.
Storm I.M., Kristensen N.B., Raun B.M.L., Smedsgaard J., Thrane U. Dynamics in the microbiology of maize silage during whole-season storage. J. Appl. Microbiol. 2010;109:1017–1026. doi: 10.1111/j.1365-2672.2010.04729.x. PubMed DOI
Storm I.M., Rasmussen R.R., Rasmussen P.H. Occurrence of Pre- and Post-Harvest Mycotoxins and Other Secondary Metabolites in Danish Maize Silage. Toxins. 2014;6:2256–2269. doi: 10.3390/toxins6082256. PubMed DOI PMC
Driehuis F., Spanjer M.C., Scholten J., Giffel M.C. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit. Contam. Part B Surveill. 2008;1:41. doi: 10.1080/19393210802236927. PubMed DOI
Kosicki R., Błajet-Kosicka A., Grajewski J., Twaruzek M. Multiannual mycotoxin survey in feed materials and feeding stuffs. Anim. Feed Sci. Technol. 2016;215:165–180. doi: 10.1016/j.anifeedsci.2016.03.012. DOI
Storm I.M., Sørensen J.L., Rasmussen R.R., Nielsen K.F. Mycotoxins in silage. Stewart Postharvest Rev. 2008;4:1–12.
Gallo A., Giuberti G., Frisvad J.C., Bertuzzi T., Nielsen K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins. 2015;7:3057–3111. doi: 10.3390/toxins7083057. PubMed DOI PMC
Rodrigues I., Naehrer K. A three-year survey on the world-wide occurrence of mycotoxins in feedstuffs and feed. Toxins. 2012;4:663–675. doi: 10.3390/toxins4090663. PubMed DOI PMC
Schollenberger M., Müller H.M., Rüfle M., Suchy S., Plank S., Drochner W. Natural occurrence of 16 Fusarium toxins ingrains and feedstuffs of plant origin from Germany. Mycopathologia. 2006;161:43–52. doi: 10.1007/s11046-005-0199-7. PubMed DOI
Vigier B., Reid L.M., Seifert K.A., Stewart D.W., Hamilton R.I. Distribution and prediction of Fusarium species associated with maize ear rot in Ontario. Can. J. Plant Pathol. 1997;19:60–65. doi: 10.1080/07060669709500574. DOI
Whitlow L.W., Hagler W.M. Mycotoxins in dairy cattle: Occurrence, toxicity, prevention and treatment. Proc. Southwest Nutr. Conf. 2005:124–138.
Mansfield M.A., Wolf E.D., Kuladau G.A. Relationships between weather conditions, agronomic practices, and fermentation characteristics with deoxynivalenol content in fresh and ensiled maize. Plant Dis. 2005;89:1151–1157. doi: 10.1094/PD-89-1151. PubMed DOI
Schmidt P., Novins K.I.C.O., Junges D., Almeida R., de Souza C.M. Concentration of mycotoxins and chemical composition of corn silage: A farm survey using infrared thermography. J. Dairy Sci. 2015;98:6609–6619. doi: 10.3168/jds.2014-8617. PubMed DOI
Keller L.A.M., González Pereyra M.L., Keller K.M., Alonso V.A., Oliveira A.A., Almeida T.X., Barbosa T.S., Nunes L.M.T., Cavaglieri L.R., Rosa C.A.R. Fungal and mycotoxinscontamination in corn silage: Monitoring risk before and after fer-mentation. J. Stored Prod. Res. 2013;52:42–47. doi: 10.1016/j.jspr.2012.09.001. DOI
Tsitsigiannis D.I., Dimakopoulu M., Antoniou P.P., Tjamos E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol. Mediterr. 2012;51:158–174.
Cheli F., Campagnoli A., Dell’Orto V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013;183:1–16. doi: 10.1016/j.anifeedsci.2013.01.013. DOI
McDonald P., Henderson A.R., Heron S.J.E. The Bio-Chemistry of Silage. 2nd ed. Chalcombe Publications; Marlow, UK: 1991.
Baath H., Knabe O., Lepom P. Occurrence of Fusari-um species and their mycotoxins in maize silage. Studies on the Fusarium infestation of maize silage plants. Arch. Anim. Nutr. 1990;40:397–405. PubMed
Garon D., Richard E., Sage L., Bouchart V., Pottier D., Lebailly P. Microflora and multi mycotoxin detection in corn silage: Experimental study. J. Agric. Food Chem. 2006;54:3479–3484. doi: 10.1021/jf060179i. PubMed DOI
Alonso V.A., Pereya C.M., Keller L.A.M., Dalcero A.M., Rosa C.A.R., Chiacchiera S.M., Cavaglieri L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013;115:637–643. doi: 10.1111/jam.12178. PubMed DOI
Zain M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011;15:129–144. doi: 10.1016/j.jscs.2010.06.006. DOI
Abraham Z.J. Fusarium Species—Their Biology and Toxicology. John Wiley & Sons; New York, NY, USA: Chichester, UK: 1986.
Richter W.I.F., Schuster M., Rattenberger E. Einfluss der fermentation von silomais auf die nachweisbarkeit von Deoxynivalenol (DON) Mycotoxin Res. 2002;18:16–19. doi: 10.1007/BF02946054. PubMed DOI
Rada V., Vlková E. Silage Inoculants. Institute of Animal Science; Laguna, Philippines: 2010. 58p.
Weinberg Z.G., Muck R.E., Weimer P.J., Chen Y., Gamburg M. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol. 2004;118:1–9. doi: 10.1385/ABAB:118:1-3:001. PubMed DOI
Weinberg Z.G., Muck R.E., Weimer P.J. The survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003;94:1066–1071. doi: 10.1046/j.1365-2672.2003.01942.x. PubMed DOI
Xu Y., Aung M., Sun Z., Zhou Y., Xue T., Cheng X., Cheng Y., Hao L., Zhu W., Degen A. Ensiling of rice straw enhances the nutritive quality, improves average daily gain, reduces in vitro methane production and increases ruminal bacterial diversity in growing Hu lambs. Anim. Feed Sci. Technol. 2023;295:115513. doi: 10.1016/j.anifeedsci.2022.115513. DOI