• This record comes from PubMed

Effect of Mycotoxins in Silage on Biogas Production

. 2023 Dec 02 ; 10 (12) : . [epub] 20231202

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
The Long-Term Conception of the Development of Research Organization Agricultural Research, Ltd. Troubsko 2023 Ministry of Agriculture of the Czech Republic

Links

PubMed 38135978
PubMed Central PMC10740816
DOI 10.3390/bioengineering10121387
PII: bioengineering10121387
Knihovny.cz E-resources

Mycotoxins can pose a threat to biogas production as they can contaminate the feedstock used in biogas production, such as agricultural crops and other organic materials. This research study evaluated the contents of deoxynivalenol (DON), zearalenone (ZEA), fumonisin (FUM), and aflatoxin (AFL) mycotoxins in maize silage prior to it being processed in a biogas plant and in digestate produced at the end of the anaerobic digestion (AD) process. In the experiment, three samples of silage were collected from one silage warehouse: Variant 1 = low contamination, Variant 2 = medium contamination, and Variant 3 = heavy contamination, which were subjected to investigation. A significantly reduced biogas production was recorded that was proportional to the increasing contamination with molds, which was primarily due to the AD of silage caused by technologically erroneous silage treatment. The AD was connected with changes in silage composition expressed by the values of VS content, sugar content, lactic acid content, acetic acid content, and the ratio of lactic acid content to acetic acid content. The production of biogas and methane decreased with the increasing contents of NDF, ADF, CF, and lignin. The only exception was Variant 2, in which the content of ADF, CF, and lignin was lower (by 8-11%) than that in Variant 1, and only the content of NDF was higher (by 9%) than that in Variant 1. A secondary factor that also correlated with changes in the composition of the substrate was the development of undesirable organisms, which further contributed to its degradation and to the production of mycotoxins. It was also demonstrated in this study that during the AD process, the tested mycotoxins were degraded, and their content was reduced by 27-100%. Only the variant with low mold contamination showed a DON concentration increase of 27.8%.

See more in PubMed

Ferrara M., Haidukowski M., D’Imperio M., Parente A., De Angelis E., Monaci L., Logrieco A.F., Mulè G. New insight into microbial degradation of mycotoxins during anaerobic digestion. Waste Manag. 2021;119:215–225. doi: 10.1016/j.wasman.2020.09.048. PubMed DOI

FAO . Agricultural Production Statistics. FAO; Rome, IT, USA: 2020.

Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018;10:3980–4000. doi: 10.3168/jds.2017-13839. PubMed DOI

Binder E.M., Tan L.M., Chin L.J., Handl J., Richard J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007;137:265–282. doi: 10.1016/j.anifeedsci.2007.06.005. DOI

Miller J.D., Greenhalgh R. Metabolites of fungal pathogens and plant resistance. Acs. Sym. Ser. 1988;379:117–129.

Glenn A.E. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol. 2007;137:213–240. doi: 10.1016/j.anifeedsci.2007.06.003. DOI

Adegoke O.G., Letum P. Strategies for the Prevention and Reduction of Mycotoxins in Developing Countries. In: Makun H.A., editor. Mycotoxin and Food Safety in Developing Countries. InTech; Rijeka, Croatia: 2013.

Magan N., Sachis V., Aldred D. Role of spoilage fungi in seed deterioration. In: Aurora D.K., editor. Fungal Biotechnology in Agricultural, Food and Environmental Applications. Marcell Dekker; New York, NY, USA: 2004. pp. 311–323.

Balazs E., Schepers J.S. The mycotoxin threat to food safety. Int. J. Food Microbiol. 2007;119:1–2. doi: 10.1016/j.ijfoodmicro.2007.07.018. PubMed DOI

Creppy E.E. Update of survey, regulation and toxic effects of mycotoxins in Europ. Toxicol. Lett. 2002;127:19–28. doi: 10.1016/S0378-4274(01)00479-9. PubMed DOI

Fink-Gremmels J., Malekinejad H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007;137:326–341. doi: 10.1016/j.anifeedsci.2007.06.008. DOI

Morgavi D.P., Riley R.T. An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol. 2007;137:201–212. doi: 10.1016/j.anifeedsci.2007.06.002. DOI

Focker M., Van der Fels-Klerx H.J., Oude Lansink A.G.J.M. Financial losses for Dutch stakeholders during the 2013 aflatoxin incident in Maize in Europe. Mycotoxin Res. 2021;37:193–204. doi: 10.1007/s12550-021-00429-9. PubMed DOI PMC

Huwig A., Freimund S., Kappeli O., Dutler H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001;122:179–188. doi: 10.1016/S0378-4274(01)00360-5. PubMed DOI

Weiland P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. PubMed

Appels L., Lauwers J., Degrève J., Helsen L., Lievens B., Willems K., Van Impe J., Dewil R. Anaerobic digestion in global bioenergy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011;15:4295–4301. doi: 10.1016/j.rser.2011.07.121. DOI

Cucina M., Zadra C., Marcotullio M.C., Di Maria F., Sordi S., Curini M., Gigliotti G. Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: Integration of anaerobic digestion and composting. J. Environ. Chem. Eng. 2017;5:3051–3057. doi: 10.1016/j.jece.2017.06.003. DOI

Tambone F., Scaglia B., D’Imporzano G., Schievano A., Orzi V., Salati S., Adani F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere. 2010;81:577–583. doi: 10.1016/j.chemosphere.2010.08.034. PubMed DOI

Liedl B.E., Bombardiere J., Williams M.L., Stowers A., Postalwait C., Chatfield J.M. Solid effluent from thermophilic anaerobic digestion of poultry litter as a potential fertilizer. Hort Sci. 2004;39:877B–877. doi: 10.21273/HORTSCI.39.4.877B. DOI

Elbl J., Sláma P., Vaverková M.D., Plošek L., Adamcová D., Škarpa P., Kynický J., Havlíček Z., Dvořáčková H., Brtnický M., et al. Jatropa seed cake and organic waste compost: The potential improvement of soil fertility. Ecol. Chem. Eng. S. 2016;23:131–141.

Gutser R., Ebertseder T., Weber A., Schraml M., Schmidhalter U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J. Plant Nutr. Soil Sci. 2005;168:439–446. doi: 10.1002/jpln.200520510. DOI

Merrettig-Bruns U., Sayder B. Impact of Mycotoxins and Moldy Maize Silage on the Biogas Process. [(accessed on 2nd October 2023)];Heliyon. 2022 doi: 10.2139/ssrn.4084331. Under Review . Available online: https://ssrn.com/abstract=4084331. DOI

Salati S., D’Imporzano G., Panseri S., Pasquale E., Adani F. Degradation of aflatoxin B1 during anaerobic digestion and its effect on process stability. Int. Biodet. Biodeg. 2014;94:19–23. doi: 10.1016/j.ibiod.2014.06.011. DOI

De Gelder L., Audenaert K., Willems B., Schelfhout K., De Saeger S., De Boevre M. Processing of mycotoxin contaminated waste streams through anaerobic digestion. Waste Manag. 2018;71:122–128. doi: 10.1016/j.wasman.2017.09.039. PubMed DOI

Giorni P., Pietri A., Bertuzzi T., Soldano M., Piccinini S., Rossi L., Battilani P. Fate of mycotoxins and related fungi in the anaerobic digestion process. Bioresour. Technol. 2018;265:554–557. doi: 10.1016/j.biortech.2018.05.077. PubMed DOI

Vanhoutte I., Audenaert K., Gelder De L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016;7:561. doi: 10.3389/fmicb.2016.00561. PubMed DOI PMC

Soldano M., Pietri A., Bertuzzi T., Fabbri C., Piccinini S., Gallucci F., Aureli G. Anaerobic digestion of mycotoxin-contaminated wheat: Effects on methane yield and contamination level. BioEnergy Res. 2021;14:313–321. doi: 10.1007/s12155-020-10161-4. DOI

Tacconi C., Cucina M., Pezzolla D., Zadra C., Gigliotti G. Effect of the mycotoxin aflatoxin B1 on a semi-continuous anaerobic digestion process. Waste Manag. 2018;78:467–473. doi: 10.1016/j.wasman.2018.06.014. PubMed DOI

Lošák T., Válka T., Elbl J., Kintl A., Keutgen A., Keutgen N., Demková L., Árvay J., Varga L., Hnátková H., et al. Fertilization with Magnesium-and Sulfur-Supplemented Digestate Increases the Yield and Quality of Kohlrabi. Sustainability. 2020;12:5733. doi: 10.3390/su12145733. DOI

Brtnicky M., Kintl A., Holatko J., Hammerschmiedt T., Mustafa A., Kucerik J., Kucerik J., Vitez T., Prichystalova J., Baltazar T., et al. Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chem. Biol. Technol. Agric. 2022;9:43. doi: 10.1186/s40538-022-00310-6. DOI

Holatko J., Hammerschmiedt T., Kintl A., Danish S., Skarpa P., Latal O., Baltazar T., Fahad S., Akça H., Taban S., et al. Effect of carbon-enriched digestate on the microbial soil activity. PLoS ONE. 2021;16:e0274148. doi: 10.1371/journal.pone.0252262. PubMed DOI PMC

Kolackova I., Smolkova B., Latal O., Skalickova S., Skladanka J., Horky P., Knot P., Hammerschmiedt T., Kintl A., Holatko J., et al. Does Digestate Dose Affect Fodder Security and Nutritive Value? Agriculture. 2022;12:133. doi: 10.3390/agriculture12020133. DOI

Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. International Organization for Standardization (ISO); Geneva, Switzerland: 2013.

Ruiz-Jiménez J., Priego-capote F., Luque de Castro M.D. Identification and quantification of trans fatty acids in bakery products by gas chromatography–mass spectrometry after dynamic ultrasound-assisted extraction. J. Chromatogr. A. 2004;1045:203–210. doi: 10.1016/j.chroma.2004.06.050. PubMed DOI

Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization (ISO); Geneva, Switzerland: 2000.

Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. International Organization for Standardization (ISO); Geneva, Switzerland: 2008.

Animal Feeding Stuffs—Determination of Amylase-Treated Neutral Detergent Fibre Content. International Organization for Standardization (ISO); Geneva, Switzerland: 2006.

Sludges, Treated Biowaste, Soils and Wastes—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. Czech Standardization Agency (ČSN); Praha, Czech Republic: 2013.

Sludges, Treated Biowaste, Soils and Wastes—Determination of Loss on Ignition. Czech Standardization Agency (ČSN); Praha, Czech Republic: 2013.

Hunady I., Ondrísková V., Hutyrová H., Kubíková Z., Hammerschmiedt T., Mezera J. Use of Wild Plant Species: A Potential for Methane Production in Biogas Plants. Int. J. Renew. Energy Res. 2021;11:920–932.

Kintl A., Huňady I., Holátko J., Vítěz T., Hammerschmiedt T., Brtnický M., Ondrisková V., Elbl J. Using the Mixed Culture of Fodder Mallow (Malva verticillata L.) and White Sweet Clover (Melilotus albus Medik.) for Methane Production. Fermentation. 2022;8:94. doi: 10.3390/fermentation8030094. DOI

Animal Feeding Stuffs—Determination of Starch Content—Polarimetric Method. International Organization for Standardization (ISO); Geneva, Switzerland: 2000.

García-Ayuso L.E., Luque de Castro M.D. A multivariate study of the performance of a microwave-assisted Soxhlet extractor for olive seeds. Anal. Chim. Acta. 1999;382:309–316. doi: 10.1016/S0003-2670(98)00795-8. DOI

Pomeranz Y., Meloan E.C. Food Analysis: Theory and Practice. 3rd ed. Chapman and Hall; New York, NY, USA: 1994.

Marrubini G., Papetti A., Genorini E., Ulrici A. Determination of the sugar content in commercial plant milks by near infrared spectroscopy and Luff-Schoorl total glucose titration. Food Anal. Methods. 2017;10:1556–1567. doi: 10.1007/s12161-016-0713-1. DOI

Kintl A., Hammerschmiedt T., Vítěz T., Brtnický M., Vejražka K., Huňady I., Látal O., Elbl J. Possibility of using tannins to control greenhouse gas production during digestate storage. Waste Manag. 2023;156:75–83. doi: 10.1016/j.wasman.2022.11.025. PubMed DOI

Testing Methods for Feeding Stuffs—Part 42: Quality Testing of Silages. Czech Standardization Agency (ČSN); Praha, Czech Republic: 1998.

Stringer R. ELECTROPHORESIS|Overview. In: Stringer R., Worsfold P., Townshend A., Poole C., editors. Encyclopedia of Analytical Science. Elsevier; Oxford, UK: 2005.

Kintl A., Elbl J., Vítěz T., Brtnický M., Skládanka J., Hammerschmiedt T., Vítězová M. Possibilities of Using White Sweetclover Grown in Mixture with Maize for Biomethane Production. Agronomy. 2020;10:1407. doi: 10.3390/agronomy10091407. DOI

Kintl A., Vítěz T., Elbl J., Vítězová M., Dokulilová T., Nedělník J., Skládanka J., Brtnický M. Mixed culture of corn and white lupine as an alternative to silage made from corn monoculture intended for biogas production. BioEnergy Res. 2019;12:694–702. doi: 10.1007/s12155-019-10003-y. DOI

Skladanka J., Nedelnik J., Adam V., Dolezal P., Moravcova H., Dohnal V. Forage as a Primary Source of Mycotoxins in Animal Diets. Int. J. Environ. Res. Public Health. 2011;8:37–50. doi: 10.3390/ijerph8010037. PubMed DOI PMC

Kintl A., Zímová N., Brtnický M., Hammerschmiedt T., Smutný V., Kincl D., Nerušil P., Huňady I., Elbl J. Effect of cover crops undersown in maize on the mycotoxin content in maize biomass. Acta Fytotech. 2023;26 doi: 10.15414/afz.2023.26.01.78-92. in press . DOI

Stefanon B., Procida G. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripening. J. Dairy Res. 2004;71:58–65. doi: 10.1017/S0022029903006563. PubMed DOI

Wilkinson J.M. Silage. Chalcombe Publications; Southampton, UK: 2005.

Kung L., Shaver R., Grant R., Schmidt R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018;101:4020–4033. doi: 10.3168/jds.2017-13909. PubMed DOI

González-Pereyra M.L., Alonso V.A., Sager R., Morlaco M.B., Magnoli C.E., Astoreca A.L., Rosa C.A.R., Chiacchiera S.M., Dalcero A.M., Cavaglieri L.R. Fungi and select mycotoxins from pre- and postfermented corn silage. J. Appl. Microbiol. 2008;104:1034–1041. doi: 10.1111/j.1365-2672.2007.03634.x. PubMed DOI

Kung L., Shaver R. Interpretation and use of silage fermentation analysis reports. Focus Forage. 2001;3:20–28.

Meiske J.C., Linn J.G., Goodrich R.D. Proceedings of the 2nd International Silage Research Conference. National Silo Association, Inc.; Waterloo, IA, USA: 1975. Types of laboratory silos and an evaluation of their usefulness; pp. 99–126.

Cherney D., Cherney J.H., Cox W.J. Fermentation Characteristics of Corn Forage Ensiled in Mini-Silos. J. Dairy Sci. 2005;87:42–46. doi: 10.3168/jds.S0022-0302(04)73569-9. PubMed DOI

Heuzé V., Tran G., Edouard N., Lebas F. Maize Silage. Animal Feed Resources Information System. Feedipedia, a Program by INRAE, CIRAD, AFZ and FAO. [(accessed on 12 January 2023)]. Last Updated on 22 June 2017. Available online: https://www.feedipedia.org/node/13883.

Massefera D.A., Florention L.A., Rabelo C.H.S., Härter C.J., Rezende A.V., Reis R.A. Replacement of aruana grass by gliricidia (Gliricidia sepium) on silage quality. R. Bras. Zootec. 2015;44:231–239. doi: 10.1590/S1806-92902015000700001. DOI

Amara A.A., El-Baky N.A. Fungi as a source of edible proteins and Animal Feed. J. Fungi. 2023;9:73. doi: 10.3390/jof9010073. PubMed DOI PMC

Chahal D.S. Production of protein-rich mycelial biomass of a mushroom, Pleurotus sajorcaju, on corn stover. J. Ferment. Bioeng. 1989;68:334–338. doi: 10.1016/0922-338X(89)90008-1. DOI

Bakratsas G., Polydera A., Nilson O., Chatzikonstantinou A.V., Xiros C., Katapodis P., Stamatis H. Mycoprotein production by submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor using agro-industrial hydrolysate. Food. 2023;12:2295. doi: 10.3390/foods12122295. PubMed DOI PMC

Scholtmeijer K., van den Broek L.A., Fischer A.R.H., van Peer A. Potential protein production from lignocellulosic materials using edible mushroom forming fungi. J. Agric. Food Chem. 2023;71:4450–4457. doi: 10.1021/acs.jafc.2c08828. PubMed DOI PMC

García-Chávez I., Meraz-Romero E., Castelán-Ortega O., Zaragoza Esparza J., Osorio Avalos J., Robles Jimenez L.E., González-Ronquillo M. Corn Silage, Meta-Analysis of The Quality and Yield of Different Regions in the World. Preprints. 2020:2020100094.

Storm I.M., Kristensen N.B., Raun B.M.L., Smedsgaard J., Thrane U. Dynamics in the microbiology of maize silage during whole-season storage. J. Appl. Microbiol. 2010;109:1017–1026. doi: 10.1111/j.1365-2672.2010.04729.x. PubMed DOI

Storm I.M., Rasmussen R.R., Rasmussen P.H. Occurrence of Pre- and Post-Harvest Mycotoxins and Other Secondary Metabolites in Danish Maize Silage. Toxins. 2014;6:2256–2269. doi: 10.3390/toxins6082256. PubMed DOI PMC

Driehuis F., Spanjer M.C., Scholten J., Giffel M.C. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit. Contam. Part B Surveill. 2008;1:41. doi: 10.1080/19393210802236927. PubMed DOI

Kosicki R., Błajet-Kosicka A., Grajewski J., Twaruzek M. Multiannual mycotoxin survey in feed materials and feeding stuffs. Anim. Feed Sci. Technol. 2016;215:165–180. doi: 10.1016/j.anifeedsci.2016.03.012. DOI

Storm I.M., Sørensen J.L., Rasmussen R.R., Nielsen K.F. Mycotoxins in silage. Stewart Postharvest Rev. 2008;4:1–12.

Gallo A., Giuberti G., Frisvad J.C., Bertuzzi T., Nielsen K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins. 2015;7:3057–3111. doi: 10.3390/toxins7083057. PubMed DOI PMC

Rodrigues I., Naehrer K. A three-year survey on the world-wide occurrence of mycotoxins in feedstuffs and feed. Toxins. 2012;4:663–675. doi: 10.3390/toxins4090663. PubMed DOI PMC

Schollenberger M., Müller H.M., Rüfle M., Suchy S., Plank S., Drochner W. Natural occurrence of 16 Fusarium toxins ingrains and feedstuffs of plant origin from Germany. Mycopathologia. 2006;161:43–52. doi: 10.1007/s11046-005-0199-7. PubMed DOI

Vigier B., Reid L.M., Seifert K.A., Stewart D.W., Hamilton R.I. Distribution and prediction of Fusarium species associated with maize ear rot in Ontario. Can. J. Plant Pathol. 1997;19:60–65. doi: 10.1080/07060669709500574. DOI

Whitlow L.W., Hagler W.M. Mycotoxins in dairy cattle: Occurrence, toxicity, prevention and treatment. Proc. Southwest Nutr. Conf. 2005:124–138.

Mansfield M.A., Wolf E.D., Kuladau G.A. Relationships between weather conditions, agronomic practices, and fermentation characteristics with deoxynivalenol content in fresh and ensiled maize. Plant Dis. 2005;89:1151–1157. doi: 10.1094/PD-89-1151. PubMed DOI

Schmidt P., Novins K.I.C.O., Junges D., Almeida R., de Souza C.M. Concentration of mycotoxins and chemical composition of corn silage: A farm survey using infrared thermography. J. Dairy Sci. 2015;98:6609–6619. doi: 10.3168/jds.2014-8617. PubMed DOI

Keller L.A.M., González Pereyra M.L., Keller K.M., Alonso V.A., Oliveira A.A., Almeida T.X., Barbosa T.S., Nunes L.M.T., Cavaglieri L.R., Rosa C.A.R. Fungal and mycotoxinscontamination in corn silage: Monitoring risk before and after fer-mentation. J. Stored Prod. Res. 2013;52:42–47. doi: 10.1016/j.jspr.2012.09.001. DOI

Tsitsigiannis D.I., Dimakopoulu M., Antoniou P.P., Tjamos E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol. Mediterr. 2012;51:158–174.

Cheli F., Campagnoli A., Dell’Orto V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013;183:1–16. doi: 10.1016/j.anifeedsci.2013.01.013. DOI

McDonald P., Henderson A.R., Heron S.J.E. The Bio-Chemistry of Silage. 2nd ed. Chalcombe Publications; Marlow, UK: 1991.

Baath H., Knabe O., Lepom P. Occurrence of Fusari-um species and their mycotoxins in maize silage. Studies on the Fusarium infestation of maize silage plants. Arch. Anim. Nutr. 1990;40:397–405. PubMed

Garon D., Richard E., Sage L., Bouchart V., Pottier D., Lebailly P. Microflora and multi mycotoxin detection in corn silage: Experimental study. J. Agric. Food Chem. 2006;54:3479–3484. doi: 10.1021/jf060179i. PubMed DOI

Alonso V.A., Pereya C.M., Keller L.A.M., Dalcero A.M., Rosa C.A.R., Chiacchiera S.M., Cavaglieri L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013;115:637–643. doi: 10.1111/jam.12178. PubMed DOI

Zain M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011;15:129–144. doi: 10.1016/j.jscs.2010.06.006. DOI

Abraham Z.J. Fusarium Species—Their Biology and Toxicology. John Wiley & Sons; New York, NY, USA: Chichester, UK: 1986.

Richter W.I.F., Schuster M., Rattenberger E. Einfluss der fermentation von silomais auf die nachweisbarkeit von Deoxynivalenol (DON) Mycotoxin Res. 2002;18:16–19. doi: 10.1007/BF02946054. PubMed DOI

Rada V., Vlková E. Silage Inoculants. Institute of Animal Science; Laguna, Philippines: 2010. 58p.

Weinberg Z.G., Muck R.E., Weimer P.J., Chen Y., Gamburg M. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol. 2004;118:1–9. doi: 10.1385/ABAB:118:1-3:001. PubMed DOI

Weinberg Z.G., Muck R.E., Weimer P.J. The survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003;94:1066–1071. doi: 10.1046/j.1365-2672.2003.01942.x. PubMed DOI

Xu Y., Aung M., Sun Z., Zhou Y., Xue T., Cheng X., Cheng Y., Hao L., Zhu W., Degen A. Ensiling of rice straw enhances the nutritive quality, improves average daily gain, reduces in vitro methane production and increases ruminal bacterial diversity in growing Hu lambs. Anim. Feed Sci. Technol. 2023;295:115513. doi: 10.1016/j.anifeedsci.2022.115513. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...