Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421
Ministry of Education Youth and Sports
Cooperatio Program, research area IMMU
Charles University
PubMed
36012161
PubMed Central
PMC9408998
DOI
10.3390/ijms23168889
PII: ijms23168889
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanotubes, carbon-based nanomaterials, graphene, immunomodulation, immunotoxicity, inflammasome, macrophages, monocytes,
- MeSH
- makrofágy MeSH
- nanostruktury * chemie toxicita MeSH
- uhlík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- uhlík * MeSH
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Zobrazit více v PubMed
Sharma M. Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 2010;14:3–5. doi: 10.4103/0019-5278.64607. PubMed DOI PMC
Negri V., Pacheco-Torres J., Calle D., López-Larrubia P. Carbon Nanotubes in Biomedicine. Top. Curr. Chem. 2020;378:15. doi: 10.1007/s41061-019-0278-8. PubMed DOI
Rao N., Singh R., Bashambu L. Carbon-based nanomaterials: Synthesis and prospective applications. Mater. Today Proc. 2021;44:608–614. doi: 10.1016/j.matpr.2020.10.593. DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C., Hobza P., Zboril R., Kim K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI
Zhang L., Lu Z., Zhao Q., Huang J., Shen H., Zhang Z. Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide. Small. 2011;7:460–464. doi: 10.1002/smll.201001522. PubMed DOI
Yang K., Hu L., Ma X., Ye S., Cheng L., Shi X., Li C., Li Y., Liu Z. Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Adv. Mater. 2012;24:1868–1872. doi: 10.1002/adma.201104964. PubMed DOI
Domenech J., Hernández A., Demir E., Marcos R., Cortés C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci. Rep. 2020;10:2793. doi: 10.1038/s41598-020-59755-0. PubMed DOI PMC
Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009;4:217–224. doi: 10.1038/nnano.2009.58. PubMed DOI
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Younis M.R., He G., Lin J., Huang P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Front. Chem. 2020;8:424. doi: 10.3389/fchem.2020.00424. PubMed DOI PMC
Xu Q., Wang H., Gu W., Xiao N., Ye L. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int. J. Nanomed. 2014;9:1433–1442. doi: 10.2147/IJN.S58783. PubMed DOI PMC
Lin X., Shen X., Zheng Q., Yousefi N., Ye L., Mai Y.-W., Kim J.-K. Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets. ACS Nano. 2012;6:10708–10719. doi: 10.1021/nn303904z. PubMed DOI
Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI
Huang B. Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanuf. Rev. 2020;5:3. doi: 10.1007/s40898-020-00009-x. DOI
Semenov K.N., Charykov N.A., Keskinov V.A., Piartman A.K., Blokhin A.A., Kopyrin A.A. Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data. 2009;55:13–36. doi: 10.1021/je900296s. DOI
Qin J.-X., Yang X.-G., Lv C.-F., Li Y.-Z., Liu K.-K., Zang J.-H., Yang X., Dong L., Shan C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI
Paci J.T., Man H.B., Saha B., Ho D., Schatz G.C. Understanding the Surfaces of Nanodiamonds. J. Phys. Chem. C. 2013;117:17256–17267. doi: 10.1021/jp404311a. DOI
Nagl A., Hemelaar S.R., Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—A review. Anal. Bioanal. Chem. 2015;407:7521–7536. doi: 10.1007/s00216-015-8849-1. PubMed DOI PMC
Liu J., Li R., Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Sci. 2020;6:2179–2195. doi: 10.1021/acscentsci.0c01306. PubMed DOI PMC
Lategan K., Fowler J., Bayati M., de Cortalezzi M.F., Pool E. The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line RAW 264.7 and Human Whole Blood Cell Cultures. Nanomaterials. 2018;8:388. doi: 10.3390/nano8060388. PubMed DOI PMC
Ayaz F., Alas M.O., Genc R. Differential Immunomodulatory Effect of Carbon Dots Influenced by the Type of Surface Passivation Agent. Inflammation. 2020;43:777–783. doi: 10.1007/s10753-019-01165-0. PubMed DOI
Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., Omidifar N., Bahrani S., Rao N.V., Babapoor A., Gholami A., Chiang W.-H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers. 2022;14:617. doi: 10.3390/polym14030617. PubMed DOI PMC
Gaur M., Misra C., Yadav A.B., Swaroop S., Maolmhuaidh F., Bechelany M., Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials. 2021;14:5978. doi: 10.3390/ma14205978. PubMed DOI PMC
Mousavi S.M., Low F.W., Hashemi S.A., Lai C.W., Ghasemi Y., Soroshnia S., Savardashtaki A., Babapoor A., Rumjit N.P., Goh S.M., et al. Development of graphene based nanocomposites towards medical and biological applications. Artif. Cells Nanomed. Biotechnol. 2020;48:1189–1205. doi: 10.1080/21691401.2020.1817052. PubMed DOI
Mousavi S.M., Yousefi K., Hashemi S.A., Afsa M., BahranI S., Gholami A., Ghahramani Y., Alizadeh A., Chiang W.-H. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. Nanomaterials. 2021;11:2800. doi: 10.3390/nano11112800. PubMed DOI PMC
Bilal M., Iqbal H.M.N. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics. 2020;7:24. doi: 10.3390/cosmetics7020024. DOI
Angelopoulou P., Giaouris E., Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials. 2022;12:1196. doi: 10.3390/nano12071196. PubMed DOI PMC
Mukherjee S.P., Bottini M., Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC
Tang J., Cheng W., Gao J., Li Y., Yao R., Rothman N., Lan Q., Campen M.J., Zheng Y., Leng S. Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: An implication of an ex vivo biosensor assay. Part. Fibre Toxicol. 2020;17:47. doi: 10.1186/s12989-020-00378-8. PubMed DOI PMC
Di Ianni E., Møller P., Vogel U.B., Jacobsen N.R. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis. 2021;872:503405. doi: 10.1016/j.mrgentox.2021.503405. PubMed DOI
Kinaret P.A.S., Scala G., Federico A., Sund J., Greco D. Carbon Nanomaterials Promote M1/M2 Macrophage Activation. Small. 2020;16:1907609. doi: 10.1002/smll.201907609. PubMed DOI
Park E.-J., Lee S.J., Lee K., Choi Y.C., Lee B.-S., Lee G.-H., Kim D.-W. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J. Appl. Toxicol. 2016;37:296–309. doi: 10.1002/jat.3361. PubMed DOI
Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Lee G.H., Ahn K., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI
Kurapati R., Bianco A. Peroxidase mimicking DNAzymes degrade graphene oxide. Nanoscale. 2018;10:19316–19321. doi: 10.1039/C8NR06535G. PubMed DOI
Elgrabli D., Dachraoui W., Ménard-Moyon C., Liu X.J., Bégin D., Bégin-Colin S., Bianco A., Gazeau F., Alloyeau D. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano. 2015;9:10113–10124. doi: 10.1021/acsnano.5b03708. PubMed DOI
Hussain S., Vanoirbeek J., Hoet P.H.M. Interactions of nanomaterials with the immune system. WIREs Nanomed. Nanobiotechnology. 2011;4:169–183. doi: 10.1002/wnan.166. PubMed DOI
Kuhlbusch T.A., Asbach C., Fissan H., Göhler D., Stintz M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011;8:22. doi: 10.1186/1743-8977-8-22. PubMed DOI PMC
Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Env. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Bhattacharya K., Mukherjee S.P., Gallud A., Burkert S.C., Bistarelli S., Bellucci S., Bottini M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomed. Nanotechnol. Biol. Med. 2016;12:333–351. doi: 10.1016/j.nano.2015.11.011. PubMed DOI PMC
Nguyen V.H., Lee B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017;12:3137–3151. doi: 10.2147/IJN.S129300. PubMed DOI PMC
Chen R., Riviere J.E. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules. Model. Toxic. Nanoparticles. 2017;947:207–253. doi: 10.1007/978-3-319-47754-1_8. PubMed DOI
Graham U.M., Jacobs G., Yokel R.A., Davis B.H., Dozier A.K., Birch M.E., Tseng M.T., Oberdörster G., Elder A., DeLouise L. Modelling the Toxicity of Nanoparticles. Volume 947. Springer; Cham, Switzerland: 2017. From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. (Advances in Experimental Medicine and Biology Series). PubMed DOI PMC
Kondej D., Sosnowski T.R. Interactions of Carbon Nanotubes and Carbon Nanohorns with a Model Membrane Layer and Lung Surfactant In Vitro. J. Nanomater. 2019;2019:9457683. doi: 10.1155/2019/9457683. DOI
Valle R.P., Wu T., Zuo Y.Y. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant. ACS Nano. 2015;9:5413–5421. doi: 10.1021/acsnano.5b01181. PubMed DOI PMC
Czarny B., Georgin D., Berthon F., Plastow G., Pinault M., Patriarche G., Thuleau A., L’Hermite M.M., Taran F., Dive V. Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging. ACS Nano. 2014;8:5715–5724. doi: 10.1021/nn500475u. PubMed DOI
Li B., Yang J., Huang Q., Zhang Y., Peng C., Zhang Y., He Y., Shi J., Li W., Hu J., et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013;5:e44. doi: 10.1038/am.2013.7. DOI
Bergamaschi E., Garzaro G., Jones G.W., Buglisi M., Caniglia M., Godono A., Bosio D., Fenoglio I., Canu I.G. Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. Nanomaterials. 2021;11:745. doi: 10.3390/nano11030745. PubMed DOI PMC
Grosse Y., Loomis D., Guyton K.Z., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Scoccianti C., Mattock H., et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014;15:1427–1428. doi: 10.1016/S1470-2045(14)71109-X. PubMed DOI
Fatkhutdinova L.M., Khaliullin T.O., Zalyalov R.R., Vasilyeva O.L., Valeeva I.K., Mustafin I.G. Workers’ cytokines profiling upon exposure to MWCNT aerosol in occupational settings. IOP Conf. Ser. Mater. Sci. Eng. 2015;98:012031. doi: 10.1088/1757-899X/98/1/012031. DOI
Fatkhutdinova L.M., Khaliullin T.O., Vasil O.L., Zalyalov R.R., Musta I.G., Kisin E.R., Birch M.E., Yanamala N., Shvedova A.A. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 2016;299:125–131. doi: 10.1016/j.taap.2016.02.016. PubMed DOI PMC
Shvedova A.A., Yanamala N., Kisin E.R., Khailullin T.O., Birch M.E., Fatkhutdinova L. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE. 2016;11:e0150628. doi: 10.1371/journal.pone.0150628. PubMed DOI PMC
Vlaanderen J., Pronk A., Rothman N., Hildesheim A., Silverman D., Hosgood H.D., Spaan S., Kuijpers E., Godderis L., Hoet P., et al. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology. 2017;11:395–404. doi: 10.1080/17435390.2017.1308031. PubMed DOI
Kuijpers E., Pronk A., Kleemann R., Vlaanderen J., Lan Q., Rothman N., Silverman D., Hoet P., Godderis L., Vermeulen R. Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occup. Environ. Med. 2018;75:351–358. doi: 10.1136/oemed-2017-104796. PubMed DOI
Berger M., De Boer J.D., Lutter R., Makkee M., Sterk P.J., Kemper E.M., Van Der Zee J.S. Pulmonary challenge with carbon nanoparticles induces a dose-dependent increase in circulating leukocytes in healthy males. BMC Pulm. Med. 2017;17:121. doi: 10.1186/s12890-017-0463-x. PubMed DOI PMC
Yang S.-T., Liu X., Xie J. Biomedical Applications and Toxicology of Carbon Nanomaterials. Wiley; Hoboken, NJ, USA: 2016. Biodistribution and Pharmacokinetics of Carbon Nanomaterials In Vivo; pp. 55–96. DOI
Lin J.-Y., Lai P.-X., Sun Y.-C., Huang C.-C., Su C.-K. Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS. Anal. Chem. 2020;92:13997–14005. doi: 10.1021/acs.analchem.0c02909. PubMed DOI
Yang K., Wan J., Zhang S., Tian B., Zhang Y., Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2011;33:2206–2214. doi: 10.1016/j.biomaterials.2011.11.064. PubMed DOI
Qu G., Wang X., Liu Q., Liu R., Yin N., Ma J., Chen L., He J., Liu S., Jiang G. The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxide’s biocompatibility. J. Environ. Sci. 2013;25:873–881. doi: 10.1016/S1001-0742(12)60252-6. PubMed DOI
Deng X., Yang S., Nie H., Wang H., Liu Y. A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology. 2008;19:075101. doi: 10.1088/0957-4484/19/7/075101. PubMed DOI
Zhang M., Xu Y., Yang M., Yudasaka M., Okazaki T. Comparative assessments of the biodistribution and toxicity of oxidized single-walled carbon nanotubes dispersed with two different reagents after intravenous injection. Nanotoxicology. 2021;15:798–811. doi: 10.1080/17435390.2021.1919778. PubMed DOI
Gharepapagh E., Fakhari A., Firuzyar T., Shomali A., Azimi F. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. N. J. Chem. 2021;45:3909–3919. doi: 10.1039/D0NJ04762G. DOI
Jasim D.A., Newman L., Rodrigues A.F., Vacchi I.A., Lucherelli M.A., Lozano N., Ménard-Moyon C., Bianco A., Kostarelos K. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J. Control. Release. 2021;338:330–340. doi: 10.1016/j.jconrel.2021.08.028. PubMed DOI
Fitzgerald K.A., Kagan J.C. Toll-like Receptors and the Control of Immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC
Gorbet M.B., Sefton M.V. Endotoxin: The uninvited guest. Biomaterials. 2005;26:6811–6817. doi: 10.1016/j.biomaterials.2005.04.063. PubMed DOI
Bromberg L., Chang E.P., Alvarez-Lorenzo C., Magariños B., Concheiro A., Hatton T.A. Binding of Functionalized Paramagnetic Nanoparticles to Bacterial Lipopolysaccharides And DNA. Langmuir. 2010;26:8829–8835. doi: 10.1021/la904589p. PubMed DOI
Darkow R., Groth T., Albrecht W., Lützow K., Paul D. Functionalized nanoparticles for endotoxin binding in aqueous solutions. Biomaterials. 1999;20:1277–1283. doi: 10.1016/S0142-9612(99)00022-8. PubMed DOI
Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A.A., Gabrielsson S. The Importance of an Endotoxin-Free Environment during the Production of Nanoparticles Used in Medical Applications. Nano Lett. 2006;6:1682–1686. doi: 10.1021/nl060860z. PubMed DOI
Lahiani M.H., Gokulan K., Williams K., Khodakovskaya M.V., Khare S. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 2017;37:1305–1316. doi: 10.1002/jat.3477. PubMed DOI
Bianchi M.G., Allegri M., Costa A.L., Blosi M., Gardini D., Del Pivo C., Prina-Mello A., Di Cristo L., Bussolati O., Bergamaschi E. Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol. Res. 2015;4:385–398. doi: 10.1039/C4TX00193A. DOI
Liu Z., Li W., Wang F., Sun C., Wang L., Wang J., Sun F. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale. 2012;4:7135–7142. doi: 10.1039/c2nr31355c. PubMed DOI
Li Y., Shi Z., Radauer-Preiml I., Andosch A., Casals E., Luetz-Meindl U., Cobaleda M., Lin Z., Jaberi-Douraki M., Italiani P., et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 2017;11:1157–1175. doi: 10.1080/17435390.2017.1401142. PubMed DOI
Shi J., Zhao Y., Wang Y., Gao W., Ding J., Li P., Hu L., Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–192. doi: 10.1038/nature13683. PubMed DOI
Groslambert M., Py B.F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 2018;11:359–374. doi: 10.2147/JIR.S141220. PubMed DOI PMC
Svadlakova T., Hubatka F., Turanek Knotigova P., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC
Martinon F., Agostini L., Meylan E., Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 2004;14:1929–1934. doi: 10.1016/j.cub.2004.10.027. PubMed DOI
Smulders S., Kaiser J.-P., Zuin S., Van Landuyt K.L., Golanski L., Vanoirbeek J., Wick P., Hoet P.H.M. Contamination of nanoparticles by endotoxin: Evaluation of different test methods. Part. Fibre Toxicol. 2012;9:41. doi: 10.1186/1743-8977-9-41. PubMed DOI PMC
Yang M., Nie X., Meng J., Liu J., Sun Z., Xu H. Carbon Nanotubes Activate Limulus Amebocyte Lysate Coagulation by Interface Adsorption. ACS Appl. Mater. Interfaces. 2017;9:8450–8454. doi: 10.1021/acsami.7b00543. PubMed DOI
Mukherjee S.P., Lozano N., Kucki M., Del Rio-Castillo A.E., Newman L., Vázquez E., Kostarelos K., Wick P., Fadeel B. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS ONE. 2016;11:e0166816. doi: 10.1371/journal.pone.0166816. PubMed DOI PMC
Svadlakova T., Kolackova M., Vankova R., Karakale R., Malkova A., Kulich P., Hubatka F., Turanek-Knotigova P., Kratochvilova I., Raska M., et al. Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. Nanomaterials. 2021;11:2510. doi: 10.3390/nano11102510. PubMed DOI PMC
Mukherjee S.P., Bondarenko O., Kohonen P., Andón F.T., Brzicová T., Gessner I., Mathur S., Bottini M., Calligari P., Stella L., et al. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci. Rep. 2018;8:1115. doi: 10.1038/s41598-018-19521-9. PubMed DOI PMC
Gustafson H.H., Holt-Casper D., Grainger D.W., Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10:487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC
Locati M., Curtale G., Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. Mech. Dis. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718. PubMed DOI PMC
Cui X., Wan B., Yang Y., Ren X., Guo L.-H. Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells. Sci. Rep. 2017;7:1518. doi: 10.1038/s41598-017-01746-9. PubMed DOI PMC
Wang R., Lohray R., Chow E., Gangupantula P., Smith L., Draper R. Selective Uptake of Carboxylated Multi-Walled Carbon Nanotubes by Class A Type 1 Scavenger Receptors and Impaired Phagocytosis in Alveolar Macrophages. Nanomaterials. 2020;10:2417. doi: 10.3390/nano10122417. PubMed DOI PMC
Huynh M., Mikoryak C., Pantano P., Draper R. Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. Nanomaterials. 2021;11:539. doi: 10.3390/nano11020539. PubMed DOI PMC
Yaron P.N., Holt B.D., Short P.A., Lösche M., Islam M.F., Dahl K.N. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J. Nanobiotechnol. 2011;9:45. doi: 10.1186/1477-3155-9-45. PubMed DOI PMC
Li Y., Yuan H., Bussche A.V.D., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC
Knötigová P.T., Mašek J., Hubatka F., Kotouček J., Kulich P., Šimečková P., Bartheldyová E., Machala M., Švadláková T., Krejsek J., et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol. Pharm. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI
Li L., Chen L., Lu Y., Li B., Hu R., Huang L., Zhang T., Wei X., Yang Z., Mao C. Aggregated carbon dots-loaded macrophages treat sepsis by eliminating multidrug-resistant bacteria and attenuating inflammation. Aggregate. 2022:e200. doi: 10.1002/agt2.200. DOI
Brown D., Kinloch I., Bangert U., Windle A., Walter D., Walker G., Scotchford C., Donaldson K., Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45:1743–1756. doi: 10.1016/j.carbon.2007.05.011. DOI
Boyles M.S., Young L., Brown D.M., MacCalman L., Cowie H., Moisala A., Smail F., Smith P.J., Proudfoot L., Windle A.H., et al. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol. Vitr. 2015;29:1513–1528. doi: 10.1016/j.tiv.2015.06.012. PubMed DOI
Thoo L., Fahmi M.Z., Zulkipli I.N., Keasberry N., Idris A. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages. Central Eur. J. Immunol. 2017;3:324–330. doi: 10.5114/ceji.2017.70978. PubMed DOI PMC
Usman M., Zaheer Y., Younis M.R., Demirdogen R.E., Hussain S.Z., Sarwar Y., Rehman M., Khan W.S., Ihsan A. The effect of surface charge on cellular uptake and inflammatory behavior of carbon dots. Colloids Interface Sci. Commun. 2020;35:100243. doi: 10.1016/j.colcom.2020.100243. DOI
Duan G., Kang S.-G., Tian X., Garate J.A., Zhao L., Ge C., Zhou R. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale. 2015;7:15214–15224. doi: 10.1039/C5NR01839K. PubMed DOI
Yan H., Cacioppo M., Megahed S., Arcudi F., Đorđević L., Zhu D., Schulz F., Prato M., Parak W.J., Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat. Commun. 2021;12:7208. doi: 10.1038/s41467-021-27406-1. PubMed DOI PMC
Chong Y., Ge C., Yang Z., Gárate J.A., Gu Z., Weber J.K., Liu J., Zhou R. Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating. ACS Nano. 2015;9:5713–5724. doi: 10.1021/nn5066606. PubMed DOI
Ge C., Du J., Zhao L., Wang L., Liu Y., Li D., Yang Y., Zhou R., Zhao Y., Chai Z., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA. 2011;108:16968–16973. doi: 10.1073/pnas.1105270108. PubMed DOI PMC
Turabekova M., Rasulev B., Theodore M., Jackman J., Leszczynska D., Leszczynski J. Immunotoxicity of nanoparticles: A computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale. 2014;6:3488–3495. doi: 10.1039/C3NR05772K. PubMed DOI
Park S.J. Protein–Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int. J. Nanomed. 2020;15:5783–5802. doi: 10.2147/IJN.S254808. PubMed DOI PMC
Salvador-Morales C., Flahaut E., Sim E., Sloan J., Green M.L.H., Sim R. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 2006;43:193–201. doi: 10.1016/j.molimm.2005.02.006. PubMed DOI
Belime A., Thielens N., Gravel E., Frachet P., Ancelet S., Tacnet P., Caneiro C., Chuprin J., Gaboriaud C., Schoehn G., et al. Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomed. Nanotechnol. Biol. Med. 2018;18:292–302. doi: 10.1016/j.nano.2018.09.009. PubMed DOI
Wibroe P.P., Petersen S.V., Bovet N., Laursen B.W., Moghimi S.M. Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials. 2016;78:20–26. doi: 10.1016/j.biomaterials.2015.11.028. PubMed DOI
Tan X., Feng L., Zhang J., Yang K., Zhang S., Liu Z., Peng R. Functionalization of Graphene Oxide Generates a Unique Interface for Selective Serum Protein Interactions. ACS Appl. Mater. Interfaces. 2013;5:1370–1377. doi: 10.1021/am302706g. PubMed DOI
Belling J., Jackman J.A., Avsar S.Y., Park J.H., Wang Y., Potroz M.G., Ferhan A.R., Weiss P., Cho N.-J. Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano. 2016;10:10161–10172. doi: 10.1021/acsnano.6b05409. PubMed DOI
Ghosh S., Chatterjee K. Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances. Int. J. Nanomed. 2020;15:5991–6006. doi: 10.2147/IJN.S249717. PubMed DOI PMC
Ravelli D., Merli D., Quartarone E., Profumo A., Mustarelli P., Fagnoni M. PEGylated carbon nanotubes: Preparation, properties and applications. RSC Adv. 2013;3:13569–13582. doi: 10.1039/c3ra40852c. DOI
Luo N., Weber J.K., Wang S., Luan B., Yue H., Xi X., Du J., Yang Z., Wei W., Zhou R., et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 2017;8:14537. doi: 10.1038/ncomms14537. PubMed DOI PMC
Xu M., Zhu J., Wang F., Xiong Y., Wu Y., Wang Q., Weng J., Zhang Z., Chen W., Liu S. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. ACS Nano. 2016;10:3267–3281. doi: 10.1021/acsnano.6b00539. PubMed DOI
Khramtsov P., Bochkova M., Timganova V., Nechaev A., Uzhviyuk S., Shardina K., Maslennikova I., Rayev M., Zamorina S. Interaction of Graphene Oxide Modified with Linear and Branched PEG with Monocytes Isolated from Human Blood. Nanomaterials. 2021;12:126. doi: 10.3390/nano12010126. PubMed DOI PMC
Farrera C., Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur. J. Pharm. Biopharm. 2015;95:3–12. doi: 10.1016/j.ejpb.2015.03.007. PubMed DOI
Fusco L., Avitabile E., Armuzza V., Orecchioni M., Istif A., Bedognetti D., Da Ros T., Delogu L.G. Impact of the surface functionalization on nanodiamond biocompatibility: A comprehensive view on human blood immune cells. Carbon. 2020;160:390–404. doi: 10.1016/j.carbon.2020.01.003. DOI
Malkova A., Svadlakova T., Singh A., Kolackova M., Vankova R., Borsky P., Holmannova D., Karas A., Borska L., Fiala Z. In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. Nanomaterials. 2021;11:2210. doi: 10.3390/nano11092210. PubMed DOI PMC
Drasler B., Kucki M., Delhaes F., Buerki-Thurnherr T., Vanhecke D., Korejwo D., Chortarea S., Barosova H., Hirsch C., Fink A., et al. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 2018;137:125–135. doi: 10.1016/j.carbon.2018.05.012. DOI
Malanagahalli S., Murera D., Martín C., Lin H., Wadier N., Dumortier H., Vázquez E., Bianco A. Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials. 2020;10:228. doi: 10.3390/nano10020228. PubMed DOI PMC
Murera D., Malaganahalli S., Martin C., Reina G., Fauny J.-D., Dumortier H., Vázquez E., Bianco A. Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale. 2019;11:10493–10503. doi: 10.1039/C9NR00846B. PubMed DOI
Meunier E., Coste A., Olagnier D., Authier H., Lefevre L., Dardenne C., Bernad J., Beraud M., Flahaut E., Pipy B. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8:987–995. doi: 10.1016/j.nano.2011.11.004. PubMed DOI
Sun B., Wang X., Ji Z., Wang M., Liao Y.-P., Chang C.H., Li R., Zhang H., Nel A.E., Xiang W. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small. 2015;11:2087–2097. doi: 10.1002/smll.201402859. PubMed DOI PMC
Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Sun B., Wang X., Ji Z., Li R., Xia T. NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small. 2012;9:1595–1607. doi: 10.1002/smll.201201962. PubMed DOI PMC
He Y., Hara H., Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci. 2016;41:1012–1021. doi: 10.1016/j.tibs.2016.09.002. PubMed DOI PMC
Gritsenko A., Yu S., Martin-Sanchez F., Diaz-del-Olmo I., Nichols E.-M., Davis D.M., Brough D., Lopez-Castejon G. Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front. Immunol. 2020;11:565924. doi: 10.3389/fimmu.2020.565924. PubMed DOI PMC
Palomäki J., Välimäki E., Sund J., Vippola M., Clausen P.A., Jensen K.A., Savolainen K., Matikainen S., Alenius H. Long, Needle-like Carbon Nanotubes and Asbestos Activate the NLRP3 Inflammasome through a Similar Mechanism. ACS Nano. 2011;5:6861–6870. doi: 10.1021/nn200595c. PubMed DOI
Keshavan S., Gupta G., Martin S., Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology. 2021;15:1125–1150. doi: 10.1080/17435390.2021.1988171. PubMed DOI
Horie M., Tabei Y., Sugino S., Fukui H., Nishioka A., Hagiwara Y., Sato K., Yoneda T., Tada A., Koyama T. Comparison of the effects of multiwall carbon nanotubes on the epithelial cells and macrophages. Nanotoxicology. 2019;13:861–878. doi: 10.1080/17435390.2019.1592258. PubMed DOI
Wan B., Wang Z.-X., Lv Q.-Y., Dong P.-X., Zhao L.-X., Yang Y., Guo L.-H. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol. Lett. 2013;221:118–127. doi: 10.1016/j.toxlet.2013.06.208. PubMed DOI
Perrotta C., Cattaneo M.G., Molteni R., De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front. Cell Dev. Biol. 2020;8:602901. doi: 10.3389/fcell.2020.602901. PubMed DOI PMC
Zhang X.-J., Chen S., Huang K.-X., Le W.-D. Why should autophagic flux be assessed? Acta Pharmacol. Sin. 2013;34:595–599. doi: 10.1038/aps.2012.184. PubMed DOI PMC
Cohignac V., Landry M.J., Ridoux A., Pinault M., Annangi B., Gerdil A., Herlin-Boime N., Mayne M., Haruta M., Codogno P., et al. Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy. 2018;14:1323–1334. doi: 10.1080/15548627.2018.1474993. PubMed DOI PMC
Chen G.-Y., Yang H.-J., Lu C.-H., Chao Y.-C., Hwang S.-M., Chen C.-L., Lo K.-W., Sung L.-Y., Luo W.-Y., Tuan H.-Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI
Qu G., Liu S., Zhang S., Wang L., Wang X., Sun B., Yin N., Gao X., Xia T., Chen J.-J., et al. Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano. 2013;7:5732–5745. doi: 10.1021/nn402330b. PubMed DOI
Mukherjee S.P., Kostarelos K., Fadeel B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv. Health Mater. 2017;7:1700815. doi: 10.1002/adhm.201700815. PubMed DOI
Zhang X., Cao F., Wu L., Jiang X. Understanding the Synergic Mechanism of Weak Interactions between Graphene Oxide and Lipid Membrane Leading to the Extraction of Lipids. Langmuir. 2019;35:14098–14107. doi: 10.1021/acs.langmuir.9b02536. PubMed DOI
Mukherjee S.P., Lazzaretto B., Hultenby K., Newman L., Rodrigues A., Lozano N., Kostarelos K., Malmberg P., Fadeel B. Graphene Oxide Elicits Membrane Lipid Changes and Neutrophil Extracellular Trap Formation. Chem. 2018;4:334–358. doi: 10.1016/j.chempr.2017.12.017. DOI
Huang S., Li S., Liu Y., Ghalandari B., Hao L., Huang C., Su W., Ke Y., Cui D., Zhi X., et al. Encountering and Wrestling: Neutrophils Recognize and Defensively Degrade Graphene Oxide. Adv. Health Mater. 2021;11:2102439. doi: 10.1002/adhm.202102439. PubMed DOI
Lebre F., Boland J.B., Gouveia P., Gorman A.L., Lundahl M.L.E., Lynch R.I., O’Brien F.J., Coleman J., Lavelle E.C. Pristine graphene induces innate immune training. Nanoscale. 2020;12:11192–11200. doi: 10.1039/C9NR09661B. PubMed DOI
Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V., Giamarellos-Bourboulis E.J., Martens J.H.A., Rao N.A., Aghajanirefah A., et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684. doi: 10.1126/science.1250684. PubMed DOI PMC
Povo-Retana A., Mojena M., Boscá A., Pedrós J., Peraza D.A., Valenzuela C., Laparra J.M., Calle F., Boscá L. Graphene Particles Interfere with Pro-Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence. Adv. Biol. 2021;5:2100882. doi: 10.1002/adbi.202100882. PubMed DOI
Zhang X., Luo M., Zhang J., Yao Z., Zhu J., Yang S., Zhu Q., Shen T. Carbon nanotubes promote alveolar macrophages toward M2 polarization mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Nanotoxicology. 2021;15:588–604. doi: 10.1080/17435390.2021.1905098. PubMed DOI
Zhang Y., Morgan M.J., Chen K., Choksi S., Liu Z.-G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood. 2012;119:2895–2905. doi: 10.1182/blood-2011-08-372383. PubMed DOI PMC
Clarke A., Simon A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2018;19:170–183. doi: 10.1038/s41577-018-0095-2. PubMed DOI
Moujaber O., Stochaj U. The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem. Sci. 2020;45:96–107. doi: 10.1016/j.tibs.2019.11.003. PubMed DOI
Hohmann T., Dehghani F. The Cytoskeleton-A Complex Interacting Meshwork. Cells. 2019;8:362. doi: 10.3390/cells8040362. PubMed DOI PMC
Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2016;13:1602133. doi: 10.1002/smll.201602133. PubMed DOI
Wang J., Wang P., He Y., Liu X., Wang S., Ma C., Tian X., Wu X. Graphene oxide inhibits cell migration and invasion by destroying actin cytoskeleton in cervical cancer cells. Aging. 2020;12:17625–17633. doi: 10.18632/aging.103821. PubMed DOI PMC
Krejsek J., Andrýs C., Krčmová I. Imunologie Člověka. Garamon s.r.o.; Hradec Králové, Czechia: 2016. p. 496.
Yang Z., Pan Y., Chen T., Li L., Zou W., Liu D., Xue D., Wang X., Lin G. Cytotoxicity and Immune Dysfunction of Dendritic Cells Caused by Graphene Oxide. Front. Pharmacol. 2020;11:1206. doi: 10.3389/fphar.2020.01206. PubMed DOI PMC
Zhou Q., Gu H., Sun S., Zhang Y., Hou Y., Li C., Zhao Y., Ma P., Lv L., Aji S., et al. Large-Sized Graphene Oxide Nanosheets Increase DC–T-Cell Synaptic Contact and the Efficacy of DC Vaccines against SARS-CoV-2. Adv. Mater. 2021;33:2102528. doi: 10.1002/adma.202102528. PubMed DOI PMC
Lin H., Peng S., Guo S., Ma B., Lucherelli M.A., Royer C., Ippolito S., Samorì P., Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. Small. 2022;18:2107652. doi: 10.1002/smll.202107652. PubMed DOI
Uzhviyuk S.V., Bochkova M.S., Timganova V.P., Khramtsov P.V., Shardina K.Y., Kropaneva M.D., Nechaev A.I., Raev M.B., Zamorina S.A. The interaction of human dendritic cells with graphene oxide nanoparticles in vitro. Cell Technol. Biol. Med. 2021;172:664–670. doi: 10.47056/1814-3490-2021-4-261-268. PubMed DOI
Park E.-J., Cho W.-S., Jeong J., Yi J., Choi K., Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259:113–121. doi: 10.1016/j.tox.2009.02.009. PubMed DOI
Inoue K.-I., Koike E., Yanagisawa R., Hirano S., Nishikawa M., Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol. Appl. Pharmacol. 2009;237:306–316. doi: 10.1016/j.taap.2009.04.003. PubMed DOI
Nygaard U.C., Hansen J.S., Samuelsen M., Alberg T., Marioara C.D., Løvik M. Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice. Toxicol. Sci. 2009;109:113–123. doi: 10.1093/toxsci/kfp057. PubMed DOI
Shurin M.R., Yanamala N., Kisin E.R., Tkach A.V., Shurin G.V., Murray A.R., Leonard H.D., Reynolds J.S., Gutkin D.W., Star A., et al. Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma. ACS Nano. 2014;8:5585–5599. doi: 10.1021/nn406454u. PubMed DOI PMC
Beyeler S., Steiner S., Wotzkow C., Tschanz S.A., Sengal A.A., Wick P., Haenni B., Alves M.P., von Garnier C., Blank F. Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease. Nanotoxicology. 2019;14:77–96. doi: 10.1080/17435390.2019.1663954. PubMed DOI
Soliman E., Elhassanny A.E., Malur A., McPeek M., Bell A., Leffler N., Van Dross R., Jones J.L., Malur A.G., Thomassen M.J. Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology. 2020;445:152598. doi: 10.1016/j.tox.2020.152598. PubMed DOI PMC
Dellinger A.L., Cunin P., Lee D., Kung A., Brooks D.B., Zhou Z., Nigrovic P.A., Kepley C.L. Inhibition of Inflammatory Arthritis Using Fullerene Nanomaterials. PLoS ONE. 2015;10:e0126290. doi: 10.1371/journal.pone.0126290. PubMed DOI PMC
Mia M.B., Saxena R.K. Poly dispersed acid-functionalized single walled carbon nanotubes target activated T and B cells to suppress acute and chronic GVHD in mouse model. Immunol. Lett. 2020;224:30–37. doi: 10.1016/j.imlet.2020.05.006. PubMed DOI
Tasic J., Stanojevic Z., Vidicevic S., Isakovic A., Ćirić D., Martinović T., Kravic-Stevovic T., Bumbasirevic V., Paunovic V., Jovanovic S., et al. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology. 2018;146:95–108. doi: 10.1016/j.neuropharm.2018.11.030. PubMed DOI
Wang H., Zhang M., Ma Y., Wang B., Huang H., Liu Y., Shao M., Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS Appl. Mater. Interfaces. 2020;12:41088–41095. doi: 10.1021/acsami.0c11735. PubMed DOI
Yavuz E., Dinc S., Kara M. Effects of endogenous molasses carbon dots on macrophages and their potential utilization as anti-inflammatory agents. Appl. Phys. A. 2019;126:22. doi: 10.1007/s00339-019-3189-1. DOI
Chen H., Wang B., Gao D., Guan M., Zheng L., Ouyang H., Chai Z., Zhao Y., Feng W. Broad-Spectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small. 2013;9:2735–2746. doi: 10.1002/smll.201202792. PubMed DOI
Bantun F., Singh R., Alkhanani M.F., Almalki A.H., Alshammary F., Khan S., Haque S., Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. Sci. Total Environ. 2022;830:154789. doi: 10.1016/j.scitotenv.2022.154789. PubMed DOI
Lahiani M.H., Gokulan K., Williams K., Khare S. Impact of Pristine Graphene on Intestinal Microbiota Assessed Using a Bioreactor-Rotary Cell Culture System. ACS Appl. Mater. Interfaces. 2019;11:25708–25719. doi: 10.1021/acsami.9b07635. PubMed DOI
Kotchey G., Allen B.L., Vedala H., Yanamala N., Kapralov O., Tyurina Y., Klein-Seetharaman J., Kagan V.E., Star A. The Enzymatic Oxidation of Graphene Oxide. ACS Nano. 2011;5:2098–2108. doi: 10.1021/nn103265h. PubMed DOI PMC
Kurapati R., Russier J., Squillaci M.A., Treossi E., Menard-Moyon C., Del Rio-Castillo A.E., Vázquez E., Samorì P., Palermo V., Bianco A. Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small. 2015;11:3985–3994. doi: 10.1002/smll.201500038. PubMed DOI
Vlasova I., Vakhrusheva T.V., Sokolov A.V., Kostevich V.A., Gusev A.A., Gusev S.A., Melnikova V.I., Lobach A.S. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol. Appl. Pharm. 2012;264:131–142. doi: 10.1016/j.taap.2012.07.027. PubMed DOI
Shvedova A.A., Kapralov O., Feng W.H., Kisin E.R., Murray A.R., Mercer R.R., Croix C.M.S., Lang M.A., Watkins S., Konduru N.V., et al. Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. PLoS ONE. 2012;7:e30923. doi: 10.1371/journal.pone.0030923. PubMed DOI PMC
Kurapati R., Martìn C., Palermo V., Nishina Y., Bianco A. Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discuss. 2020;227:189–203. doi: 10.1039/C9FD00094A. PubMed DOI
Andón F.T., Kapralov A.A., Yanamala N., Feng W., Baygan A., Chambers B.J., Hultenby K., Ye F., Toprak M.S., Brandner B.D., et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013;9:2721–2729. doi: 10.1002/smll.201202508. PubMed DOI PMC
Kagan V.E., Kapralov A.A., Croix C.M.S., Watkins S.C., Kisin E.R., Kotchey G.P., Balasubramanian K., Vlasova I.I., Yu J., Kim K., et al. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway. ACS Nano. 2014;8:5610–5621. doi: 10.1021/nn406484b. PubMed DOI PMC
Hou J., Wan B., Yang Y., Ren X.-M., Guo L.-H., Liu J.-F. Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation. Int. J. Mol. Sci. 2016;17:409. doi: 10.3390/ijms17030409. PubMed DOI PMC