Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes

. 2022 Aug 10 ; 23 (16) : . [epub] 20220810

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36012161

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421 Ministry of Education Youth and Sports
Cooperatio Program, research area IMMU Charles University

In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.

Zobrazit více v PubMed

Sharma M. Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 2010;14:3–5. doi: 10.4103/0019-5278.64607. PubMed DOI PMC

Negri V., Pacheco-Torres J., Calle D., López-Larrubia P. Carbon Nanotubes in Biomedicine. Top. Curr. Chem. 2020;378:15. doi: 10.1007/s41061-019-0278-8. PubMed DOI

Rao N., Singh R., Bashambu L. Carbon-based nanomaterials: Synthesis and prospective applications. Mater. Today Proc. 2021;44:608–614. doi: 10.1016/j.matpr.2020.10.593. DOI

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C., Hobza P., Zboril R., Kim K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI

Zhang L., Lu Z., Zhao Q., Huang J., Shen H., Zhang Z. Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide. Small. 2011;7:460–464. doi: 10.1002/smll.201001522. PubMed DOI

Yang K., Hu L., Ma X., Ye S., Cheng L., Shi X., Li C., Li Y., Liu Z. Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Adv. Mater. 2012;24:1868–1872. doi: 10.1002/adma.201104964. PubMed DOI

Domenech J., Hernández A., Demir E., Marcos R., Cortés C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci. Rep. 2020;10:2793. doi: 10.1038/s41598-020-59755-0. PubMed DOI PMC

Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009;4:217–224. doi: 10.1038/nnano.2009.58. PubMed DOI

Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Younis M.R., He G., Lin J., Huang P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Front. Chem. 2020;8:424. doi: 10.3389/fchem.2020.00424. PubMed DOI PMC

Xu Q., Wang H., Gu W., Xiao N., Ye L. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int. J. Nanomed. 2014;9:1433–1442. doi: 10.2147/IJN.S58783. PubMed DOI PMC

Lin X., Shen X., Zheng Q., Yousefi N., Ye L., Mai Y.-W., Kim J.-K. Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets. ACS Nano. 2012;6:10708–10719. doi: 10.1021/nn303904z. PubMed DOI

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI

Huang B. Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanuf. Rev. 2020;5:3. doi: 10.1007/s40898-020-00009-x. DOI

Semenov K.N., Charykov N.A., Keskinov V.A., Piartman A.K., Blokhin A.A., Kopyrin A.A. Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data. 2009;55:13–36. doi: 10.1021/je900296s. DOI

Qin J.-X., Yang X.-G., Lv C.-F., Li Y.-Z., Liu K.-K., Zang J.-H., Yang X., Dong L., Shan C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI

Paci J.T., Man H.B., Saha B., Ho D., Schatz G.C. Understanding the Surfaces of Nanodiamonds. J. Phys. Chem. C. 2013;117:17256–17267. doi: 10.1021/jp404311a. DOI

Nagl A., Hemelaar S.R., Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—A review. Anal. Bioanal. Chem. 2015;407:7521–7536. doi: 10.1007/s00216-015-8849-1. PubMed DOI PMC

Liu J., Li R., Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Sci. 2020;6:2179–2195. doi: 10.1021/acscentsci.0c01306. PubMed DOI PMC

Lategan K., Fowler J., Bayati M., de Cortalezzi M.F., Pool E. The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line RAW 264.7 and Human Whole Blood Cell Cultures. Nanomaterials. 2018;8:388. doi: 10.3390/nano8060388. PubMed DOI PMC

Ayaz F., Alas M.O., Genc R. Differential Immunomodulatory Effect of Carbon Dots Influenced by the Type of Surface Passivation Agent. Inflammation. 2020;43:777–783. doi: 10.1007/s10753-019-01165-0. PubMed DOI

Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., Omidifar N., Bahrani S., Rao N.V., Babapoor A., Gholami A., Chiang W.-H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers. 2022;14:617. doi: 10.3390/polym14030617. PubMed DOI PMC

Gaur M., Misra C., Yadav A.B., Swaroop S., Maolmhuaidh F., Bechelany M., Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials. 2021;14:5978. doi: 10.3390/ma14205978. PubMed DOI PMC

Mousavi S.M., Low F.W., Hashemi S.A., Lai C.W., Ghasemi Y., Soroshnia S., Savardashtaki A., Babapoor A., Rumjit N.P., Goh S.M., et al. Development of graphene based nanocomposites towards medical and biological applications. Artif. Cells Nanomed. Biotechnol. 2020;48:1189–1205. doi: 10.1080/21691401.2020.1817052. PubMed DOI

Mousavi S.M., Yousefi K., Hashemi S.A., Afsa M., BahranI S., Gholami A., Ghahramani Y., Alizadeh A., Chiang W.-H. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. Nanomaterials. 2021;11:2800. doi: 10.3390/nano11112800. PubMed DOI PMC

Bilal M., Iqbal H.M.N. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics. 2020;7:24. doi: 10.3390/cosmetics7020024. DOI

Angelopoulou P., Giaouris E., Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials. 2022;12:1196. doi: 10.3390/nano12071196. PubMed DOI PMC

Mukherjee S.P., Bottini M., Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC

Tang J., Cheng W., Gao J., Li Y., Yao R., Rothman N., Lan Q., Campen M.J., Zheng Y., Leng S. Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: An implication of an ex vivo biosensor assay. Part. Fibre Toxicol. 2020;17:47. doi: 10.1186/s12989-020-00378-8. PubMed DOI PMC

Di Ianni E., Møller P., Vogel U.B., Jacobsen N.R. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis. 2021;872:503405. doi: 10.1016/j.mrgentox.2021.503405. PubMed DOI

Kinaret P.A.S., Scala G., Federico A., Sund J., Greco D. Carbon Nanomaterials Promote M1/M2 Macrophage Activation. Small. 2020;16:1907609. doi: 10.1002/smll.201907609. PubMed DOI

Park E.-J., Lee S.J., Lee K., Choi Y.C., Lee B.-S., Lee G.-H., Kim D.-W. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J. Appl. Toxicol. 2016;37:296–309. doi: 10.1002/jat.3361. PubMed DOI

Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Lee G.H., Ahn K., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI

Kurapati R., Bianco A. Peroxidase mimicking DNAzymes degrade graphene oxide. Nanoscale. 2018;10:19316–19321. doi: 10.1039/C8NR06535G. PubMed DOI

Elgrabli D., Dachraoui W., Ménard-Moyon C., Liu X.J., Bégin D., Bégin-Colin S., Bianco A., Gazeau F., Alloyeau D. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano. 2015;9:10113–10124. doi: 10.1021/acsnano.5b03708. PubMed DOI

Hussain S., Vanoirbeek J., Hoet P.H.M. Interactions of nanomaterials with the immune system. WIREs Nanomed. Nanobiotechnology. 2011;4:169–183. doi: 10.1002/wnan.166. PubMed DOI

Kuhlbusch T.A., Asbach C., Fissan H., Göhler D., Stintz M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011;8:22. doi: 10.1186/1743-8977-8-22. PubMed DOI PMC

Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Env. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC

Bhattacharya K., Mukherjee S.P., Gallud A., Burkert S.C., Bistarelli S., Bellucci S., Bottini M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomed. Nanotechnol. Biol. Med. 2016;12:333–351. doi: 10.1016/j.nano.2015.11.011. PubMed DOI PMC

Nguyen V.H., Lee B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017;12:3137–3151. doi: 10.2147/IJN.S129300. PubMed DOI PMC

Chen R., Riviere J.E. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules. Model. Toxic. Nanoparticles. 2017;947:207–253. doi: 10.1007/978-3-319-47754-1_8. PubMed DOI

Graham U.M., Jacobs G., Yokel R.A., Davis B.H., Dozier A.K., Birch M.E., Tseng M.T., Oberdörster G., Elder A., DeLouise L. Modelling the Toxicity of Nanoparticles. Volume 947. Springer; Cham, Switzerland: 2017. From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. (Advances in Experimental Medicine and Biology Series). PubMed DOI PMC

Kondej D., Sosnowski T.R. Interactions of Carbon Nanotubes and Carbon Nanohorns with a Model Membrane Layer and Lung Surfactant In Vitro. J. Nanomater. 2019;2019:9457683. doi: 10.1155/2019/9457683. DOI

Valle R.P., Wu T., Zuo Y.Y. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant. ACS Nano. 2015;9:5413–5421. doi: 10.1021/acsnano.5b01181. PubMed DOI PMC

Czarny B., Georgin D., Berthon F., Plastow G., Pinault M., Patriarche G., Thuleau A., L’Hermite M.M., Taran F., Dive V. Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging. ACS Nano. 2014;8:5715–5724. doi: 10.1021/nn500475u. PubMed DOI

Li B., Yang J., Huang Q., Zhang Y., Peng C., Zhang Y., He Y., Shi J., Li W., Hu J., et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013;5:e44. doi: 10.1038/am.2013.7. DOI

Bergamaschi E., Garzaro G., Jones G.W., Buglisi M., Caniglia M., Godono A., Bosio D., Fenoglio I., Canu I.G. Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. Nanomaterials. 2021;11:745. doi: 10.3390/nano11030745. PubMed DOI PMC

Grosse Y., Loomis D., Guyton K.Z., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Scoccianti C., Mattock H., et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014;15:1427–1428. doi: 10.1016/S1470-2045(14)71109-X. PubMed DOI

Fatkhutdinova L.M., Khaliullin T.O., Zalyalov R.R., Vasilyeva O.L., Valeeva I.K., Mustafin I.G. Workers’ cytokines profiling upon exposure to MWCNT aerosol in occupational settings. IOP Conf. Ser. Mater. Sci. Eng. 2015;98:012031. doi: 10.1088/1757-899X/98/1/012031. DOI

Fatkhutdinova L.M., Khaliullin T.O., Vasil O.L., Zalyalov R.R., Musta I.G., Kisin E.R., Birch M.E., Yanamala N., Shvedova A.A. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 2016;299:125–131. doi: 10.1016/j.taap.2016.02.016. PubMed DOI PMC

Shvedova A.A., Yanamala N., Kisin E.R., Khailullin T.O., Birch M.E., Fatkhutdinova L. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE. 2016;11:e0150628. doi: 10.1371/journal.pone.0150628. PubMed DOI PMC

Vlaanderen J., Pronk A., Rothman N., Hildesheim A., Silverman D., Hosgood H.D., Spaan S., Kuijpers E., Godderis L., Hoet P., et al. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology. 2017;11:395–404. doi: 10.1080/17435390.2017.1308031. PubMed DOI

Kuijpers E., Pronk A., Kleemann R., Vlaanderen J., Lan Q., Rothman N., Silverman D., Hoet P., Godderis L., Vermeulen R. Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occup. Environ. Med. 2018;75:351–358. doi: 10.1136/oemed-2017-104796. PubMed DOI

Berger M., De Boer J.D., Lutter R., Makkee M., Sterk P.J., Kemper E.M., Van Der Zee J.S. Pulmonary challenge with carbon nanoparticles induces a dose-dependent increase in circulating leukocytes in healthy males. BMC Pulm. Med. 2017;17:121. doi: 10.1186/s12890-017-0463-x. PubMed DOI PMC

Yang S.-T., Liu X., Xie J. Biomedical Applications and Toxicology of Carbon Nanomaterials. Wiley; Hoboken, NJ, USA: 2016. Biodistribution and Pharmacokinetics of Carbon Nanomaterials In Vivo; pp. 55–96. DOI

Lin J.-Y., Lai P.-X., Sun Y.-C., Huang C.-C., Su C.-K. Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS. Anal. Chem. 2020;92:13997–14005. doi: 10.1021/acs.analchem.0c02909. PubMed DOI

Yang K., Wan J., Zhang S., Tian B., Zhang Y., Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2011;33:2206–2214. doi: 10.1016/j.biomaterials.2011.11.064. PubMed DOI

Qu G., Wang X., Liu Q., Liu R., Yin N., Ma J., Chen L., He J., Liu S., Jiang G. The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxide’s biocompatibility. J. Environ. Sci. 2013;25:873–881. doi: 10.1016/S1001-0742(12)60252-6. PubMed DOI

Deng X., Yang S., Nie H., Wang H., Liu Y. A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology. 2008;19:075101. doi: 10.1088/0957-4484/19/7/075101. PubMed DOI

Zhang M., Xu Y., Yang M., Yudasaka M., Okazaki T. Comparative assessments of the biodistribution and toxicity of oxidized single-walled carbon nanotubes dispersed with two different reagents after intravenous injection. Nanotoxicology. 2021;15:798–811. doi: 10.1080/17435390.2021.1919778. PubMed DOI

Gharepapagh E., Fakhari A., Firuzyar T., Shomali A., Azimi F. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. N. J. Chem. 2021;45:3909–3919. doi: 10.1039/D0NJ04762G. DOI

Jasim D.A., Newman L., Rodrigues A.F., Vacchi I.A., Lucherelli M.A., Lozano N., Ménard-Moyon C., Bianco A., Kostarelos K. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J. Control. Release. 2021;338:330–340. doi: 10.1016/j.jconrel.2021.08.028. PubMed DOI

Fitzgerald K.A., Kagan J.C. Toll-like Receptors and the Control of Immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC

Gorbet M.B., Sefton M.V. Endotoxin: The uninvited guest. Biomaterials. 2005;26:6811–6817. doi: 10.1016/j.biomaterials.2005.04.063. PubMed DOI

Bromberg L., Chang E.P., Alvarez-Lorenzo C., Magariños B., Concheiro A., Hatton T.A. Binding of Functionalized Paramagnetic Nanoparticles to Bacterial Lipopolysaccharides And DNA. Langmuir. 2010;26:8829–8835. doi: 10.1021/la904589p. PubMed DOI

Darkow R., Groth T., Albrecht W., Lützow K., Paul D. Functionalized nanoparticles for endotoxin binding in aqueous solutions. Biomaterials. 1999;20:1277–1283. doi: 10.1016/S0142-9612(99)00022-8. PubMed DOI

Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A.A., Gabrielsson S. The Importance of an Endotoxin-Free Environment during the Production of Nanoparticles Used in Medical Applications. Nano Lett. 2006;6:1682–1686. doi: 10.1021/nl060860z. PubMed DOI

Lahiani M.H., Gokulan K., Williams K., Khodakovskaya M.V., Khare S. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 2017;37:1305–1316. doi: 10.1002/jat.3477. PubMed DOI

Bianchi M.G., Allegri M., Costa A.L., Blosi M., Gardini D., Del Pivo C., Prina-Mello A., Di Cristo L., Bussolati O., Bergamaschi E. Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol. Res. 2015;4:385–398. doi: 10.1039/C4TX00193A. DOI

Liu Z., Li W., Wang F., Sun C., Wang L., Wang J., Sun F. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale. 2012;4:7135–7142. doi: 10.1039/c2nr31355c. PubMed DOI

Li Y., Shi Z., Radauer-Preiml I., Andosch A., Casals E., Luetz-Meindl U., Cobaleda M., Lin Z., Jaberi-Douraki M., Italiani P., et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 2017;11:1157–1175. doi: 10.1080/17435390.2017.1401142. PubMed DOI

Shi J., Zhao Y., Wang Y., Gao W., Ding J., Li P., Hu L., Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–192. doi: 10.1038/nature13683. PubMed DOI

Groslambert M., Py B.F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 2018;11:359–374. doi: 10.2147/JIR.S141220. PubMed DOI PMC

Svadlakova T., Hubatka F., Turanek Knotigova P., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC

Martinon F., Agostini L., Meylan E., Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 2004;14:1929–1934. doi: 10.1016/j.cub.2004.10.027. PubMed DOI

Smulders S., Kaiser J.-P., Zuin S., Van Landuyt K.L., Golanski L., Vanoirbeek J., Wick P., Hoet P.H.M. Contamination of nanoparticles by endotoxin: Evaluation of different test methods. Part. Fibre Toxicol. 2012;9:41. doi: 10.1186/1743-8977-9-41. PubMed DOI PMC

Yang M., Nie X., Meng J., Liu J., Sun Z., Xu H. Carbon Nanotubes Activate Limulus Amebocyte Lysate Coagulation by Interface Adsorption. ACS Appl. Mater. Interfaces. 2017;9:8450–8454. doi: 10.1021/acsami.7b00543. PubMed DOI

Mukherjee S.P., Lozano N., Kucki M., Del Rio-Castillo A.E., Newman L., Vázquez E., Kostarelos K., Wick P., Fadeel B. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS ONE. 2016;11:e0166816. doi: 10.1371/journal.pone.0166816. PubMed DOI PMC

Svadlakova T., Kolackova M., Vankova R., Karakale R., Malkova A., Kulich P., Hubatka F., Turanek-Knotigova P., Kratochvilova I., Raska M., et al. Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. Nanomaterials. 2021;11:2510. doi: 10.3390/nano11102510. PubMed DOI PMC

Mukherjee S.P., Bondarenko O., Kohonen P., Andón F.T., Brzicová T., Gessner I., Mathur S., Bottini M., Calligari P., Stella L., et al. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci. Rep. 2018;8:1115. doi: 10.1038/s41598-018-19521-9. PubMed DOI PMC

Gustafson H.H., Holt-Casper D., Grainger D.W., Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10:487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC

Locati M., Curtale G., Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. Mech. Dis. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718. PubMed DOI PMC

Cui X., Wan B., Yang Y., Ren X., Guo L.-H. Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells. Sci. Rep. 2017;7:1518. doi: 10.1038/s41598-017-01746-9. PubMed DOI PMC

Wang R., Lohray R., Chow E., Gangupantula P., Smith L., Draper R. Selective Uptake of Carboxylated Multi-Walled Carbon Nanotubes by Class A Type 1 Scavenger Receptors and Impaired Phagocytosis in Alveolar Macrophages. Nanomaterials. 2020;10:2417. doi: 10.3390/nano10122417. PubMed DOI PMC

Huynh M., Mikoryak C., Pantano P., Draper R. Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. Nanomaterials. 2021;11:539. doi: 10.3390/nano11020539. PubMed DOI PMC

Yaron P.N., Holt B.D., Short P.A., Lösche M., Islam M.F., Dahl K.N. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J. Nanobiotechnol. 2011;9:45. doi: 10.1186/1477-3155-9-45. PubMed DOI PMC

Li Y., Yuan H., Bussche A.V.D., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC

Knötigová P.T., Mašek J., Hubatka F., Kotouček J., Kulich P., Šimečková P., Bartheldyová E., Machala M., Švadláková T., Krejsek J., et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol. Pharm. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI

Li L., Chen L., Lu Y., Li B., Hu R., Huang L., Zhang T., Wei X., Yang Z., Mao C. Aggregated carbon dots-loaded macrophages treat sepsis by eliminating multidrug-resistant bacteria and attenuating inflammation. Aggregate. 2022:e200. doi: 10.1002/agt2.200. DOI

Brown D., Kinloch I., Bangert U., Windle A., Walter D., Walker G., Scotchford C., Donaldson K., Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45:1743–1756. doi: 10.1016/j.carbon.2007.05.011. DOI

Boyles M.S., Young L., Brown D.M., MacCalman L., Cowie H., Moisala A., Smail F., Smith P.J., Proudfoot L., Windle A.H., et al. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol. Vitr. 2015;29:1513–1528. doi: 10.1016/j.tiv.2015.06.012. PubMed DOI

Thoo L., Fahmi M.Z., Zulkipli I.N., Keasberry N., Idris A. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages. Central Eur. J. Immunol. 2017;3:324–330. doi: 10.5114/ceji.2017.70978. PubMed DOI PMC

Usman M., Zaheer Y., Younis M.R., Demirdogen R.E., Hussain S.Z., Sarwar Y., Rehman M., Khan W.S., Ihsan A. The effect of surface charge on cellular uptake and inflammatory behavior of carbon dots. Colloids Interface Sci. Commun. 2020;35:100243. doi: 10.1016/j.colcom.2020.100243. DOI

Duan G., Kang S.-G., Tian X., Garate J.A., Zhao L., Ge C., Zhou R. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale. 2015;7:15214–15224. doi: 10.1039/C5NR01839K. PubMed DOI

Yan H., Cacioppo M., Megahed S., Arcudi F., Đorđević L., Zhu D., Schulz F., Prato M., Parak W.J., Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat. Commun. 2021;12:7208. doi: 10.1038/s41467-021-27406-1. PubMed DOI PMC

Chong Y., Ge C., Yang Z., Gárate J.A., Gu Z., Weber J.K., Liu J., Zhou R. Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating. ACS Nano. 2015;9:5713–5724. doi: 10.1021/nn5066606. PubMed DOI

Ge C., Du J., Zhao L., Wang L., Liu Y., Li D., Yang Y., Zhou R., Zhao Y., Chai Z., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA. 2011;108:16968–16973. doi: 10.1073/pnas.1105270108. PubMed DOI PMC

Turabekova M., Rasulev B., Theodore M., Jackman J., Leszczynska D., Leszczynski J. Immunotoxicity of nanoparticles: A computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale. 2014;6:3488–3495. doi: 10.1039/C3NR05772K. PubMed DOI

Park S.J. Protein–Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int. J. Nanomed. 2020;15:5783–5802. doi: 10.2147/IJN.S254808. PubMed DOI PMC

Salvador-Morales C., Flahaut E., Sim E., Sloan J., Green M.L.H., Sim R. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 2006;43:193–201. doi: 10.1016/j.molimm.2005.02.006. PubMed DOI

Belime A., Thielens N., Gravel E., Frachet P., Ancelet S., Tacnet P., Caneiro C., Chuprin J., Gaboriaud C., Schoehn G., et al. Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomed. Nanotechnol. Biol. Med. 2018;18:292–302. doi: 10.1016/j.nano.2018.09.009. PubMed DOI

Wibroe P.P., Petersen S.V., Bovet N., Laursen B.W., Moghimi S.M. Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials. 2016;78:20–26. doi: 10.1016/j.biomaterials.2015.11.028. PubMed DOI

Tan X., Feng L., Zhang J., Yang K., Zhang S., Liu Z., Peng R. Functionalization of Graphene Oxide Generates a Unique Interface for Selective Serum Protein Interactions. ACS Appl. Mater. Interfaces. 2013;5:1370–1377. doi: 10.1021/am302706g. PubMed DOI

Belling J., Jackman J.A., Avsar S.Y., Park J.H., Wang Y., Potroz M.G., Ferhan A.R., Weiss P., Cho N.-J. Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano. 2016;10:10161–10172. doi: 10.1021/acsnano.6b05409. PubMed DOI

Ghosh S., Chatterjee K. Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances. Int. J. Nanomed. 2020;15:5991–6006. doi: 10.2147/IJN.S249717. PubMed DOI PMC

Ravelli D., Merli D., Quartarone E., Profumo A., Mustarelli P., Fagnoni M. PEGylated carbon nanotubes: Preparation, properties and applications. RSC Adv. 2013;3:13569–13582. doi: 10.1039/c3ra40852c. DOI

Luo N., Weber J.K., Wang S., Luan B., Yue H., Xi X., Du J., Yang Z., Wei W., Zhou R., et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 2017;8:14537. doi: 10.1038/ncomms14537. PubMed DOI PMC

Xu M., Zhu J., Wang F., Xiong Y., Wu Y., Wang Q., Weng J., Zhang Z., Chen W., Liu S. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. ACS Nano. 2016;10:3267–3281. doi: 10.1021/acsnano.6b00539. PubMed DOI

Khramtsov P., Bochkova M., Timganova V., Nechaev A., Uzhviyuk S., Shardina K., Maslennikova I., Rayev M., Zamorina S. Interaction of Graphene Oxide Modified with Linear and Branched PEG with Monocytes Isolated from Human Blood. Nanomaterials. 2021;12:126. doi: 10.3390/nano12010126. PubMed DOI PMC

Farrera C., Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur. J. Pharm. Biopharm. 2015;95:3–12. doi: 10.1016/j.ejpb.2015.03.007. PubMed DOI

Fusco L., Avitabile E., Armuzza V., Orecchioni M., Istif A., Bedognetti D., Da Ros T., Delogu L.G. Impact of the surface functionalization on nanodiamond biocompatibility: A comprehensive view on human blood immune cells. Carbon. 2020;160:390–404. doi: 10.1016/j.carbon.2020.01.003. DOI

Malkova A., Svadlakova T., Singh A., Kolackova M., Vankova R., Borsky P., Holmannova D., Karas A., Borska L., Fiala Z. In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. Nanomaterials. 2021;11:2210. doi: 10.3390/nano11092210. PubMed DOI PMC

Drasler B., Kucki M., Delhaes F., Buerki-Thurnherr T., Vanhecke D., Korejwo D., Chortarea S., Barosova H., Hirsch C., Fink A., et al. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 2018;137:125–135. doi: 10.1016/j.carbon.2018.05.012. DOI

Malanagahalli S., Murera D., Martín C., Lin H., Wadier N., Dumortier H., Vázquez E., Bianco A. Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials. 2020;10:228. doi: 10.3390/nano10020228. PubMed DOI PMC

Murera D., Malaganahalli S., Martin C., Reina G., Fauny J.-D., Dumortier H., Vázquez E., Bianco A. Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale. 2019;11:10493–10503. doi: 10.1039/C9NR00846B. PubMed DOI

Meunier E., Coste A., Olagnier D., Authier H., Lefevre L., Dardenne C., Bernad J., Beraud M., Flahaut E., Pipy B. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8:987–995. doi: 10.1016/j.nano.2011.11.004. PubMed DOI

Sun B., Wang X., Ji Z., Wang M., Liao Y.-P., Chang C.H., Li R., Zhang H., Nel A.E., Xiang W. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small. 2015;11:2087–2097. doi: 10.1002/smll.201402859. PubMed DOI PMC

Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC

Sun B., Wang X., Ji Z., Li R., Xia T. NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small. 2012;9:1595–1607. doi: 10.1002/smll.201201962. PubMed DOI PMC

He Y., Hara H., Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci. 2016;41:1012–1021. doi: 10.1016/j.tibs.2016.09.002. PubMed DOI PMC

Gritsenko A., Yu S., Martin-Sanchez F., Diaz-del-Olmo I., Nichols E.-M., Davis D.M., Brough D., Lopez-Castejon G. Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front. Immunol. 2020;11:565924. doi: 10.3389/fimmu.2020.565924. PubMed DOI PMC

Palomäki J., Välimäki E., Sund J., Vippola M., Clausen P.A., Jensen K.A., Savolainen K., Matikainen S., Alenius H. Long, Needle-like Carbon Nanotubes and Asbestos Activate the NLRP3 Inflammasome through a Similar Mechanism. ACS Nano. 2011;5:6861–6870. doi: 10.1021/nn200595c. PubMed DOI

Keshavan S., Gupta G., Martin S., Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology. 2021;15:1125–1150. doi: 10.1080/17435390.2021.1988171. PubMed DOI

Horie M., Tabei Y., Sugino S., Fukui H., Nishioka A., Hagiwara Y., Sato K., Yoneda T., Tada A., Koyama T. Comparison of the effects of multiwall carbon nanotubes on the epithelial cells and macrophages. Nanotoxicology. 2019;13:861–878. doi: 10.1080/17435390.2019.1592258. PubMed DOI

Wan B., Wang Z.-X., Lv Q.-Y., Dong P.-X., Zhao L.-X., Yang Y., Guo L.-H. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol. Lett. 2013;221:118–127. doi: 10.1016/j.toxlet.2013.06.208. PubMed DOI

Perrotta C., Cattaneo M.G., Molteni R., De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front. Cell Dev. Biol. 2020;8:602901. doi: 10.3389/fcell.2020.602901. PubMed DOI PMC

Zhang X.-J., Chen S., Huang K.-X., Le W.-D. Why should autophagic flux be assessed? Acta Pharmacol. Sin. 2013;34:595–599. doi: 10.1038/aps.2012.184. PubMed DOI PMC

Cohignac V., Landry M.J., Ridoux A., Pinault M., Annangi B., Gerdil A., Herlin-Boime N., Mayne M., Haruta M., Codogno P., et al. Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy. 2018;14:1323–1334. doi: 10.1080/15548627.2018.1474993. PubMed DOI PMC

Chen G.-Y., Yang H.-J., Lu C.-H., Chao Y.-C., Hwang S.-M., Chen C.-L., Lo K.-W., Sung L.-Y., Luo W.-Y., Tuan H.-Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI

Qu G., Liu S., Zhang S., Wang L., Wang X., Sun B., Yin N., Gao X., Xia T., Chen J.-J., et al. Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano. 2013;7:5732–5745. doi: 10.1021/nn402330b. PubMed DOI

Mukherjee S.P., Kostarelos K., Fadeel B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv. Health Mater. 2017;7:1700815. doi: 10.1002/adhm.201700815. PubMed DOI

Zhang X., Cao F., Wu L., Jiang X. Understanding the Synergic Mechanism of Weak Interactions between Graphene Oxide and Lipid Membrane Leading to the Extraction of Lipids. Langmuir. 2019;35:14098–14107. doi: 10.1021/acs.langmuir.9b02536. PubMed DOI

Mukherjee S.P., Lazzaretto B., Hultenby K., Newman L., Rodrigues A., Lozano N., Kostarelos K., Malmberg P., Fadeel B. Graphene Oxide Elicits Membrane Lipid Changes and Neutrophil Extracellular Trap Formation. Chem. 2018;4:334–358. doi: 10.1016/j.chempr.2017.12.017. DOI

Huang S., Li S., Liu Y., Ghalandari B., Hao L., Huang C., Su W., Ke Y., Cui D., Zhi X., et al. Encountering and Wrestling: Neutrophils Recognize and Defensively Degrade Graphene Oxide. Adv. Health Mater. 2021;11:2102439. doi: 10.1002/adhm.202102439. PubMed DOI

Lebre F., Boland J.B., Gouveia P., Gorman A.L., Lundahl M.L.E., Lynch R.I., O’Brien F.J., Coleman J., Lavelle E.C. Pristine graphene induces innate immune training. Nanoscale. 2020;12:11192–11200. doi: 10.1039/C9NR09661B. PubMed DOI

Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V., Giamarellos-Bourboulis E.J., Martens J.H.A., Rao N.A., Aghajanirefah A., et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684. doi: 10.1126/science.1250684. PubMed DOI PMC

Povo-Retana A., Mojena M., Boscá A., Pedrós J., Peraza D.A., Valenzuela C., Laparra J.M., Calle F., Boscá L. Graphene Particles Interfere with Pro-Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence. Adv. Biol. 2021;5:2100882. doi: 10.1002/adbi.202100882. PubMed DOI

Zhang X., Luo M., Zhang J., Yao Z., Zhu J., Yang S., Zhu Q., Shen T. Carbon nanotubes promote alveolar macrophages toward M2 polarization mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Nanotoxicology. 2021;15:588–604. doi: 10.1080/17435390.2021.1905098. PubMed DOI

Zhang Y., Morgan M.J., Chen K., Choksi S., Liu Z.-G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood. 2012;119:2895–2905. doi: 10.1182/blood-2011-08-372383. PubMed DOI PMC

Clarke A., Simon A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2018;19:170–183. doi: 10.1038/s41577-018-0095-2. PubMed DOI

Moujaber O., Stochaj U. The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem. Sci. 2020;45:96–107. doi: 10.1016/j.tibs.2019.11.003. PubMed DOI

Hohmann T., Dehghani F. The Cytoskeleton-A Complex Interacting Meshwork. Cells. 2019;8:362. doi: 10.3390/cells8040362. PubMed DOI PMC

Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2016;13:1602133. doi: 10.1002/smll.201602133. PubMed DOI

Wang J., Wang P., He Y., Liu X., Wang S., Ma C., Tian X., Wu X. Graphene oxide inhibits cell migration and invasion by destroying actin cytoskeleton in cervical cancer cells. Aging. 2020;12:17625–17633. doi: 10.18632/aging.103821. PubMed DOI PMC

Krejsek J., Andrýs C., Krčmová I. Imunologie Člověka. Garamon s.r.o.; Hradec Králové, Czechia: 2016. p. 496.

Yang Z., Pan Y., Chen T., Li L., Zou W., Liu D., Xue D., Wang X., Lin G. Cytotoxicity and Immune Dysfunction of Dendritic Cells Caused by Graphene Oxide. Front. Pharmacol. 2020;11:1206. doi: 10.3389/fphar.2020.01206. PubMed DOI PMC

Zhou Q., Gu H., Sun S., Zhang Y., Hou Y., Li C., Zhao Y., Ma P., Lv L., Aji S., et al. Large-Sized Graphene Oxide Nanosheets Increase DC–T-Cell Synaptic Contact and the Efficacy of DC Vaccines against SARS-CoV-2. Adv. Mater. 2021;33:2102528. doi: 10.1002/adma.202102528. PubMed DOI PMC

Lin H., Peng S., Guo S., Ma B., Lucherelli M.A., Royer C., Ippolito S., Samorì P., Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. Small. 2022;18:2107652. doi: 10.1002/smll.202107652. PubMed DOI

Uzhviyuk S.V., Bochkova M.S., Timganova V.P., Khramtsov P.V., Shardina K.Y., Kropaneva M.D., Nechaev A.I., Raev M.B., Zamorina S.A. The interaction of human dendritic cells with graphene oxide nanoparticles in vitro. Cell Technol. Biol. Med. 2021;172:664–670. doi: 10.47056/1814-3490-2021-4-261-268. PubMed DOI

Park E.-J., Cho W.-S., Jeong J., Yi J., Choi K., Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259:113–121. doi: 10.1016/j.tox.2009.02.009. PubMed DOI

Inoue K.-I., Koike E., Yanagisawa R., Hirano S., Nishikawa M., Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol. Appl. Pharmacol. 2009;237:306–316. doi: 10.1016/j.taap.2009.04.003. PubMed DOI

Nygaard U.C., Hansen J.S., Samuelsen M., Alberg T., Marioara C.D., Løvik M. Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice. Toxicol. Sci. 2009;109:113–123. doi: 10.1093/toxsci/kfp057. PubMed DOI

Shurin M.R., Yanamala N., Kisin E.R., Tkach A.V., Shurin G.V., Murray A.R., Leonard H.D., Reynolds J.S., Gutkin D.W., Star A., et al. Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma. ACS Nano. 2014;8:5585–5599. doi: 10.1021/nn406454u. PubMed DOI PMC

Beyeler S., Steiner S., Wotzkow C., Tschanz S.A., Sengal A.A., Wick P., Haenni B., Alves M.P., von Garnier C., Blank F. Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease. Nanotoxicology. 2019;14:77–96. doi: 10.1080/17435390.2019.1663954. PubMed DOI

Soliman E., Elhassanny A.E., Malur A., McPeek M., Bell A., Leffler N., Van Dross R., Jones J.L., Malur A.G., Thomassen M.J. Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology. 2020;445:152598. doi: 10.1016/j.tox.2020.152598. PubMed DOI PMC

Dellinger A.L., Cunin P., Lee D., Kung A., Brooks D.B., Zhou Z., Nigrovic P.A., Kepley C.L. Inhibition of Inflammatory Arthritis Using Fullerene Nanomaterials. PLoS ONE. 2015;10:e0126290. doi: 10.1371/journal.pone.0126290. PubMed DOI PMC

Mia M.B., Saxena R.K. Poly dispersed acid-functionalized single walled carbon nanotubes target activated T and B cells to suppress acute and chronic GVHD in mouse model. Immunol. Lett. 2020;224:30–37. doi: 10.1016/j.imlet.2020.05.006. PubMed DOI

Tasic J., Stanojevic Z., Vidicevic S., Isakovic A., Ćirić D., Martinović T., Kravic-Stevovic T., Bumbasirevic V., Paunovic V., Jovanovic S., et al. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology. 2018;146:95–108. doi: 10.1016/j.neuropharm.2018.11.030. PubMed DOI

Wang H., Zhang M., Ma Y., Wang B., Huang H., Liu Y., Shao M., Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS Appl. Mater. Interfaces. 2020;12:41088–41095. doi: 10.1021/acsami.0c11735. PubMed DOI

Yavuz E., Dinc S., Kara M. Effects of endogenous molasses carbon dots on macrophages and their potential utilization as anti-inflammatory agents. Appl. Phys. A. 2019;126:22. doi: 10.1007/s00339-019-3189-1. DOI

Chen H., Wang B., Gao D., Guan M., Zheng L., Ouyang H., Chai Z., Zhao Y., Feng W. Broad-Spectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small. 2013;9:2735–2746. doi: 10.1002/smll.201202792. PubMed DOI

Bantun F., Singh R., Alkhanani M.F., Almalki A.H., Alshammary F., Khan S., Haque S., Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. Sci. Total Environ. 2022;830:154789. doi: 10.1016/j.scitotenv.2022.154789. PubMed DOI

Lahiani M.H., Gokulan K., Williams K., Khare S. Impact of Pristine Graphene on Intestinal Microbiota Assessed Using a Bioreactor-Rotary Cell Culture System. ACS Appl. Mater. Interfaces. 2019;11:25708–25719. doi: 10.1021/acsami.9b07635. PubMed DOI

Kotchey G., Allen B.L., Vedala H., Yanamala N., Kapralov O., Tyurina Y., Klein-Seetharaman J., Kagan V.E., Star A. The Enzymatic Oxidation of Graphene Oxide. ACS Nano. 2011;5:2098–2108. doi: 10.1021/nn103265h. PubMed DOI PMC

Kurapati R., Russier J., Squillaci M.A., Treossi E., Menard-Moyon C., Del Rio-Castillo A.E., Vázquez E., Samorì P., Palermo V., Bianco A. Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small. 2015;11:3985–3994. doi: 10.1002/smll.201500038. PubMed DOI

Vlasova I., Vakhrusheva T.V., Sokolov A.V., Kostevich V.A., Gusev A.A., Gusev S.A., Melnikova V.I., Lobach A.S. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol. Appl. Pharm. 2012;264:131–142. doi: 10.1016/j.taap.2012.07.027. PubMed DOI

Shvedova A.A., Kapralov O., Feng W.H., Kisin E.R., Murray A.R., Mercer R.R., Croix C.M.S., Lang M.A., Watkins S., Konduru N.V., et al. Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. PLoS ONE. 2012;7:e30923. doi: 10.1371/journal.pone.0030923. PubMed DOI PMC

Kurapati R., Martìn C., Palermo V., Nishina Y., Bianco A. Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discuss. 2020;227:189–203. doi: 10.1039/C9FD00094A. PubMed DOI

Andón F.T., Kapralov A.A., Yanamala N., Feng W., Baygan A., Chambers B.J., Hultenby K., Ye F., Toprak M.S., Brandner B.D., et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013;9:2721–2729. doi: 10.1002/smll.201202508. PubMed DOI PMC

Kagan V.E., Kapralov A.A., Croix C.M.S., Watkins S.C., Kisin E.R., Kotchey G.P., Balasubramanian K., Vlasova I.I., Yu J., Kim K., et al. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway. ACS Nano. 2014;8:5610–5621. doi: 10.1021/nn406484b. PubMed DOI PMC

Hou J., Wan B., Yang Y., Ren X.-M., Guo L.-H., Liu J.-F. Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation. Int. J. Mol. Sci. 2016;17:409. doi: 10.3390/ijms17030409. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...