Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000760
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q40/10
Univerzita Karlova v Praze
PROGRES Q40/09
Univerzita Karlova v Praze
PubMed
34684950
PubMed Central
PMC8537728
DOI
10.3390/nano11102510
PII: nano11102510
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanotubes, cytotoxicity, graphene, immunomodulation, inflammation, monocytes, phagocytosis,
- Publikační typ
- časopisecké články MeSH
The evaluation of carbon-based nanomaterials' (C-BNMs') interactions with the immune system, notably their ability to cause inflammation, is a critical step in C-BNM health risk assessment. Particular attention should be given to those C-BNMs that do not cause direct cytotoxicity or inflammation on their own. However, the intracellular presence of these non-biodegradable nanomaterials could dysregulate additional cell functions. This is even more crucial in the case of phagocytes, which are the main mediators of defensive inflammation towards pathogens. Hence, our study was focused on multi-walled carbon nanotubes (MWCNTs) and two different types of graphene platelets (GPs) and whether their intracellular presence modulates a proinflammatory response from human primary monocytes towards common pathogens. Firstly, we confirmed that all tested C-BNMs caused neither direct cytotoxicity nor the release of tumour necrosis factor α (TNF-α), interleukin (IL)-6 or IL-10. However, such pre-exposed monocytes showed increased responsiveness to additional bacterial stimuli. In response to several types of bacteria, monocytes pre-treated with GP1 produced a significantly higher quantity of TNF-α, IL-6 and IL-10. Monocytes pre-treated with MWCNTs produced increased levels of IL-10. All the tested C-BNMs enhanced monocyte phagocytosis and accelerated their differentiation towards macrophages. This study confirms the immunomodulatory potential of C-BNMs.
C2P NEXARS 62500 Brno Czech Republic
Institute of Physics Czech Academy of Sciences 18200 Prague Czech Republic
Zobrazit více v PubMed
Bei H.P., Yang Y., Zhang Q., Tian Y., Luo X., Yang M., Zhao X. Graphene-based nanocomposites for neural tissue engineering. Molecules. 2019;24:658. doi: 10.3390/molecules24040658. PubMed DOI PMC
Li Q., Wen J., Liu C., Jia Y., Wu Y., Shan Y., Qian Z., Liao J. Graphene-nanoparticle-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater. Sci. Eng. 2019;5:768–779. doi: 10.1021/acsbiomaterials.8b01475. PubMed DOI
Raphey V.R., Henna T.K., Nivitha K.P., Mufeedha P., Sabu C., Pramod K. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C. 2019;100:616–630. doi: 10.1016/j.msec.2019.03.043. PubMed DOI
Gonzalez-Carter D., Goode A.E., Kiryushko D., Masuda S., Hu S., Lopes-Rodrigues R., Dexter D.T., Shaffer M.S.P., Porter A.E. Quantification of blood–brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale. 2019;11:22054–22069. doi: 10.1039/C9NR02866H. PubMed DOI
Yang K., Gong H., Shi X., Wan J., Zhang Y., Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013;34:2787–2795. doi: 10.1016/j.biomaterials.2013.01.001. PubMed DOI
Li J., Zhang X., Jiang J., Wang Y., Jiang H., Zhang J., Nie X., Liu B. Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo. Toxicol. Sci. 2019;167:269–281. doi: 10.1093/toxsci/kfy235. PubMed DOI
Barosova H., Karakocak B.B., Septiadi D., Petri-Fink A., Stone V., Rothen-Rutishauser B. An in vitro lung system to assess the proinflammatory hazard of carbon nanotube aerosols. Int. J. Mol. Sci. 2020;21:5335. doi: 10.3390/ijms21155335. PubMed DOI PMC
Yuan X., Zhang X., Sun L., Wei Y., Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol. 2019;16:18. doi: 10.1186/s12989-019-0299-z. PubMed DOI PMC
Ghanbari F., Nasarzadeh P., Seydi E., Ghasemi A., Taghi Joghataei M., Ashtari K., Akbari M. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: A comparative study. J. Biomed. Mater. Res. Part A. 2017;105:2047–2055. doi: 10.1002/jbm.a.36063. PubMed DOI
Wan B., Wang Z.X., Lv Q.Y., Dong P.X., Zhao L.X., Yang Y., Guo L.H. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol. Lett. 2013;221:118–127. doi: 10.1016/j.toxlet.2013.06.208. PubMed DOI
Svadlakova T., Hubatka F., Turanek Knotigova P., Kulich P., Masek J., Kotoucek J., Macak J., Motola M., Kalbac M., Kolackova M., et al. Proinflammatory effect of carbon-based nanomaterials: In vitro study on stimulation of inflammasome NLRP3 via destabilisation of lysosomes. Nanomaterials. 2020;10:418. doi: 10.3390/nano10030418. PubMed DOI PMC
Drasler B., Kucki M., Delhaes F., Buerki-Thurnherr T., Vanhecke D., Korejwo D., Chortarea S., Barosova H., Hirsch C., Petri-Fink A., et al. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 2018;137:125–135. doi: 10.1016/j.carbon.2018.05.012. DOI
Park E.J., Lee S.J., Lee K., Choi Y.C., Lee B.S., Lee G.H., Kim D.W. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J. Appl. Toxicol. 2017;37:296–309. doi: 10.1002/jat.3361. PubMed DOI
Jaworski S., Sawosz E., Grodzik M., Winnicka A., Prasek M., Wierzbicki M., Chwalibog A. In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int. J. Nanomed. 2013;8:413–420. PubMed PMC
Malanagahalli S., Murera D., Martín C., Lin H., Wadier N., Dumortier H., Vázquez E., Bianco A. Few layer graphene does not affect cellular homeostasis of mouse macrophages. Nanomaterials. 2020;10:228. doi: 10.3390/nano10020228. PubMed DOI PMC
Mao L., Hu M., Pan B., Xie Y., Petersen E.J. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part. Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1. PubMed DOI PMC
Sasidharan A., Swaroop S., Koduri C.K., Girish C.M., Chandran P., Panchakarla L.S., Somasundaram V.H., Gowd G.S., Nair S., Koyakutty M. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: A three month study. Carbon. 2015;95:511–524. doi: 10.1016/j.carbon.2015.08.074. DOI
Jacobsen N.R., Møller P., Clausen P.A., Saber A.T., Micheletti C., Jensen K.A., Wallin H., Vogel U. Biodistribution of carbon nanotubes in animal models. Basic Clin. Pharmacol. Toxicol. 2017;121:30–43. doi: 10.1111/bcpt.12705. PubMed DOI
Cao Y., Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicol. Appl. Pharmacol. 2019;385:114801. doi: 10.1016/j.taap.2019.114801. PubMed DOI
Tadyszak K., Wychowaniec J.K., Litowczenko J. Biomedical applications of graphene-based structures. Nanomaterials. 2018;8:944. doi: 10.3390/nano8110944. PubMed DOI PMC
Dale D.C., Boxer L., Liles W.C. The phagocytes: Neutrophils and monocytes. Blood. 2008;112:935–945. doi: 10.1182/blood-2007-12-077917. PubMed DOI
Meunier E., Coste A., Olagnier D., Authier H., Lefevre L., Dardenne C., Bernad J., Beraud M., Flahaut E., Pipy B. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8:987–995. doi: 10.1016/j.nano.2011.11.004. PubMed DOI
Delogu L.G., Venturelli E., Manetti R., Pinna G.A., Carru C., Madeddu R., Murgia L., Sgarrella F., Dumortier H., Bianco A. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine. 2012;7:231–243. doi: 10.2217/nnm.11.101. PubMed DOI
David C.A.W., Barrow M., Murray P., Rosseinsky M.J., Owen A., Liptrott N.J. In vitro determination of the immunogenic impact of nanomaterials on primary peripheral blood mononuclear cells. Int. J. Mol. Sci. 2020;21:5610. doi: 10.3390/ijms21165610. PubMed DOI PMC
Grosse S., Stenvik J., Nilsen A.M. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes. Int. J. Nanomed. 2016;11:4625–4642. doi: 10.2147/IJN.S113425. PubMed DOI PMC
Laverny G., Casset A., Purohit A., Schaeffer E., Spiegelhalter C., de Blay F., Pons F. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol. Lett. 2013;217:91–101. doi: 10.1016/j.toxlet.2012.12.008. PubMed DOI
Lebre F., Boland J.B., Gouveia P., Gorman A.L., Lundahl M.L.E., Lynch R.I., O’Brien F.J., Coleman J., Lavelle E.C. Pristine graphene induces innate immune training. Nanoscale. 2020;12:11192–11200. doi: 10.1039/C9NR09661B. PubMed DOI
Kinaret P.A.S., Scala G., Federico A., Sund J., Greco D. Carbon nanomaterials promote M1/M2 macrophage activation. Small. 2020;16:1907609. doi: 10.1002/smll.201907609. PubMed DOI
Öner D., Moisse M., Ghosh M., Duca R.C., Poels K., Luyts K., Putzeys E., Cokic S.M., Van Landuyt K., Vanoirbeek J., et al. Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis. 2017;32:181–191. doi: 10.1093/mutage/gew053. PubMed DOI
Yan J., Chen L., Huang C.-C., Lung S.-C.C., Yang L., Wang W.-C., Lin P.-H., Suo G., Lin C.-H. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf. B Biointerfaces. 2017;153:300–309. doi: 10.1016/j.colsurfb.2017.02.036. PubMed DOI
Farrera C., Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur. J. Pharm. Biopharm. 2015;95:3–12. doi: 10.1016/j.ejpb.2015.03.007. PubMed DOI
Knötigová P.T., Mašek J., Hubatka F., Kotouček J., Kulich P., Šimečková P., Bartheldyová E., Machala M., Švadláková T., Krejsek J., et al. Application of advanced microscopic methods to study the interaction of carboxylated fluorescent nanodiamonds with membrane structures in THP-1 cells: Activation of inflammasome NLRP3 as the result of lysosome destabilization. Mol. Pharm. 2019;16:3441–3451. doi: 10.1021/acs.molpharmaceut.9b00225. PubMed DOI
Brown D.M., Kinloch I.A., Bangert U., Windle A.H., Walter D.M., Walker G.S., Scotchford C.A., Donaldson K., Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45:1743–1756. doi: 10.1016/j.carbon.2007.05.011. DOI
Mukherjee S.P., Kostarelos K., Fadeel B. Cytokine profiling of primary human macrophages exposed to endotoxin-free graphene oxide: Size-independent NLRP3 inflammasome activation. Adv. Healthc. Mater. 2018;7:1700815. doi: 10.1002/adhm.201700815. PubMed DOI
Sun B., Wang X., Ji Z., Wang M., Liao Y.-P., Chang C.H., Li R., Zhang H., Nel A.E., Xia T. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 2015;11:2087–2097. doi: 10.1002/smll.201402859. PubMed DOI PMC
Katsumiti A., Tomovska R., Cajaraville M.P. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat. Toxicol. 2017;188:138–147. doi: 10.1016/j.aquatox.2017.04.016. PubMed DOI
Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Kim J.S., Lee G.H., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI
Schinwald A., Murphy F., Askounis A., Koutsos V., Sefiane K., Donaldson K., Campbell C.J. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology. 2014;8:824–832. doi: 10.3109/17435390.2013.831502. PubMed DOI
Schinwald A., Murphy F.A., Jones A., MacNee W., Donaldson K. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2012;6:736–746. doi: 10.1021/nn204229f. PubMed DOI
Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A., Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6:1682–1686. doi: 10.1021/nl060860z. PubMed DOI
Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC
Smulders S., Kaiser J.P., Zuin S., Van Landuyt K.L., Golanski L., Vanoirbeek J., Wick P., Hoet P.H. Contamination of nanoparticles by endotoxin: Evaluation of different test methods. Part. Fibre Toxicol. 2012;9:41. doi: 10.1186/1743-8977-9-41. PubMed DOI PMC
Pellegrini C., Antonioli L., Lopez-Castejon G., Blandizzi C., Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front. Immunol. 2017;8:36. doi: 10.3389/fimmu.2017.00036. PubMed DOI PMC
Sun B., Wang X., Ji Z., Li R., Xia T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9:1595–1607. doi: 10.1002/smll.201201962. PubMed DOI PMC
Yimin, Kohanawa M. A regulatory effect of the balance between TNF-α and IL-6 in the granulomatous and inflammatory response to Rhodococcus aurantiacus infection in mice. J. Immunol. 2006;177:642–650. doi: 10.4049/jimmunol.177.1.642. PubMed DOI
Mukherjee S.P., Bottini M., Fadeel B. Graphene and the Immune System: A romance of many dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC
Li Y., Yuan H., von dem Bussche A., Creighton M., Hurt R.H., Kane A.B., Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. PubMed DOI PMC
Park E.-J., Lee G.-H., Han B.S., Lee B.-S., Lee S., Cho M.-H., Kim J.-H., Kim D.-W. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch. Toxicol. 2015;89:1557–1568. doi: 10.1007/s00204-014-1303-x. PubMed DOI
Di Cristo L., Mc Carthy S., Paton K., Movia D., Prina-Mello A. Interplay between oxidative stress and endoplasmic reticulum stress mediated- autophagy in unfunctionalised few-layer graphene-exposed macrophages. 2D Mater. 2018;5:045033. doi: 10.1088/2053-1583/aadf45. DOI
Boyles M.S., Young L., Brown D.M., MacCalman L., Cowie H., Moisala A., Smail F., Smith P.J., Proudfoot L., Windle A.H., et al. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol. Vitr. 2015;29:1513–1528. doi: 10.1016/j.tiv.2015.06.012. PubMed DOI
Moujaber O., Stochaj U. The cytoskeleton as regulator of cell signaling pathways. Trends Biochem. Sci. 2020;45:96–107. doi: 10.1016/j.tibs.2019.11.003. PubMed DOI
Hohmann T., Dehghani F. The cytoskeleton-a complex interacting meshwork. Cells. 2019;8:362. doi: 10.3390/cells8040362. PubMed DOI PMC
Bekkering S., Blok B.A., Joosten L.A., Riksen N.P., van Crevel R., Netea M.G. In vitro experimental model of trained innate immunity in human primary monocytes. Clin. Vaccine Immunol. 2016;23:926–933. doi: 10.1128/CVI.00349-16. PubMed DOI PMC
Cheng S.C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V., Giamarellos-Bourboulis E.J., Martens J.H., Rao N.A., Aghajanirefah A., et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684. doi: 10.1126/science.1250684. PubMed DOI PMC
Zhang Y., Morgan M.J., Chen K., Choksi S., Liu Z.G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood. 2012;119:2895–2905. doi: 10.1182/blood-2011-08-372383. PubMed DOI PMC
Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 2014;41:14–20. doi: 10.1016/j.immuni.2014.06.008. PubMed DOI PMC
Perrotta C., Cattaneo M.G., Molteni R., De Palma C. Autophagy in the regulation of tissue differentiation and homeostasis. Front. Cell Dev. Biol. 2020;8:1563. doi: 10.3389/fcell.2020.602901. PubMed DOI PMC
Clarke A.J., Simon A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2019;19:170–183. doi: 10.1038/s41577-018-0095-2. PubMed DOI
Zhong C., Yang X., Feng Y., Yu J. Trained immunity: An underlying driver of inflammatory atherosclerosis. Front. Immunol. 2020;11:284. doi: 10.3389/fimmu.2020.00284. PubMed DOI PMC
Kobayashi M., Usui F., Karasawa T., Kawashima A., Kimura H., Mizushina Y., Shirasuna K., Mizukami H., Kasahara T., Hasebe N., et al. NLRP3 deficiency reduces macrophage interleukin-10 production and enhances the susceptibility to doxorubicin-induced cardiotoxicity. Sci. Rep. 2016;6:26489. doi: 10.1038/srep26489. PubMed DOI PMC
Sun Y., Ma J., Li D., Li P., Zhou X., Li Y., He Z., Qin L., Liang L., Luo X. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J. Neuroinflamm. 2019;16:66. doi: 10.1186/s12974-019-1452-1. PubMed DOI PMC
Butcher S.K., O’Carroll C.E., Wells C.A., Carmody R.J. Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages. Front. Immunol. 2018;9:933. doi: 10.3389/fimmu.2018.00933. PubMed DOI PMC
Kwiecień I., Polubiec-Kownacka M., Dziedzic D., Wołosz D., Rzepecki P., Domagała-Kulawik J. CD163 and CCR7 as markers for macrophage polarization in lung cancer microenvironment. Cent.-Eur. J. Immunol. 2019;44:395–402. doi: 10.5114/ceji.2019.92795. PubMed DOI PMC
Tian X., Yang Z., Duan G., Wu A., Gu Z., Zhang L., Chen C., Chai Z., Ge C., Zhou R. Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton. Small. 2017;13:1602133. doi: 10.1002/smll.201602133. PubMed DOI
Wang J., Wang P., He Y., Liu X., Wang S., Ma C., Tian X., Wang J., Wu X. Graphene oxide inhibits cell migration and invasion by destroying actin cytoskeleton in cervical cancer cells. Aging. 2020;12:17625–17633. doi: 10.18632/aging.103821. PubMed DOI PMC
Malkova A., Svadlakova T., Singh A., Kolackova M., Vankova R., Borsky P., Holmannova D., Karas A., Borska L., Fiala Z. In vitro assessment of the genotoxic potential of pristine graphene platelets. Nanomaterials. 2021;11:2210. doi: 10.3390/nano11092210. PubMed DOI PMC
Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes
The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells
The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study