An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N\A
PETA International Science Consortium Ltd.
N\A
Adolphe Merkle Foundation
N\A
European Union's Horizon 2020 Research and Innovation Programme
760813
PATROLS - Physiologically Anchored Tools for Realistic Nanomaterial Hazard Assessment
N\A
Swiss Government Excellence Postdoctoral Scholarship for Foreign Researchers
PubMed
32727099
PubMed Central
PMC7432093
DOI
10.3390/ijms21155335
PII: ijms21155335
Knihovny.cz E-zdroje
- Klíčová slova
- air-liquid interface, carbon nanotubes, co-culture, in vitro, lung, multiwalled carbon nanotubes, profibrotic, proinflammatory, toxicity,
- MeSH
- aerosoly MeSH
- alveolární makrofágy metabolismus patologie MeSH
- biologické modely * MeSH
- buňky A549 MeSH
- fibroblasty metabolismus patologie MeSH
- lidé MeSH
- nanotrubičky uhlíkové škodlivé účinky MeSH
- pneumocyty metabolismus patologie MeSH
- THP-1 buňky MeSH
- zánět chemicky indukované metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- nanotrubičky uhlíkové MeSH
In vitro three-dimensional (3D) lung cell models have been thoroughly investigated in recent years and provide a reliable tool to assess the hazard associated with nanomaterials (NMs) released into the air. In this study, a 3D lung co-culture model was optimized to assess the hazard potential of multiwalled carbon nanotubes (MWCNTs), which is known to provoke inflammation and fibrosis, critical adverse outcomes linked to acute and prolonged NM exposure. The lung co-cultures were exposed to MWCNTs at the air-liquid interface (ALI) using the VITROCELL® Cloud system while considering realistic occupational exposure doses. The co-culture model was composed of three human cell lines: alveolar epithelial cells (A549), fibroblasts (MRC-5), and macrophages (differentiated THP-1). The model was exposed to two types of MWCNTs (Mitsui-7 and Nanocyl) at different concentrations (2-10 μg/cm2) to assess the proinflammatory as well as the profibrotic responses after acute (24 h, one exposure) and prolonged (96 h, repeated exposures) exposure cycles. The results showed that acute or prolonged exposure to different concentrations of the tested MWCNTs did not induce cytotoxicity or apparent profibrotic response; however, suggested the onset of proinflammatory response.
BioNanomaterials Group Adolphe Merkle Institute University of Fribourg 1700 Fribourg Switzerland
Department of Chemistry University of Fribourg 1700 Fribourg Switzerland
Institute of Experimental Medicine of the Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Hayashi T., Endo M. Carbon Nanotubes as Structural Material and Their Application in Composites. Compos. B Eng. 2011;42:2151–2157. doi: 10.1016/j.compositesb.2011.05.011. DOI
Pacurari M., Castranova V., Vallyathan V. Single- and Multi-Wall Carbon Nanotubes Versus Asbestos: Are the Carbon Nanotubes a New Health Risk to Humans? J. Toxicol. Environ. Health A. 2010;73:378–395. doi: 10.1080/15287390903486527. PubMed DOI
Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single-Walled Carbon Nanotube Material. J. Toxicol. Environ. Health Part A. 2004;67:87–107. doi: 10.1080/15287390490253688. PubMed DOI
Baughman R.H., Zakhidov A.A., de Heer W.A. Carbon Nanotubes—The Route toward Applications. Science. 2002;297:787–792. doi: 10.1126/science.1060928. PubMed DOI
Service R.F. Nanotechnology Grows Up. Science. 2004;304:1732–1734. doi: 10.1126/science.304.5678.1732. PubMed DOI
Xie X.-L., Mai Y.-W., Zhou X.-P. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mater. Sci. Eng. R. 2005;49:89–112. doi: 10.1016/j.mser.2005.04.002. DOI
Shvedova A.A., Yanamala N., Kisin E.R., Khailullin T.O., Birch M.E., Fatkhutdinova L.M. Integrated Analysis of Dysregulated Ncrna and Mrna Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE. 2016;11:e0150628. doi: 10.1371/journal.pone.0150628. PubMed DOI PMC
Ma-Hock L., Treumann S., Strauss V., Brill S., Luizi F., Mertler M., Wiench K., Gamer A.O., van Ravenzwaay B., Landsiedel R. Inhalation Toxicity of Multiwall Carbon Nanotubes in Rats Exposed for 3 Months. Toxicol. Sci. 2009;112:468–481. doi: 10.1093/toxsci/kfp146. PubMed DOI
Umeda Y., Kasai T., Saito M., Kondo H., Toya T., Aiso S., Okuda H., Nishizawa T., Fukushima S. Two-Week Toxicity of Multi-Walled Carbon Nanotubes by Whole-Body Inhalation Exposure in Rats. J. Toxicol. Pathol. 2013;26:131–140. doi: 10.1293/tox.26.131. PubMed DOI PMC
Mercer R.R., Scabilloni J.F., Hubbs A.F., Wang L., Battelli L.A., McKinney W., Castranova V., Porter D.W. Extrapulmonary Transport of MWCNT Following Inhalation Exposure. Part. Fibre Toxicol. 2013;10 doi: 10.1186/1743-8977-10-38. PubMed DOI PMC
Mercer R.R., Scabilloni J.F., Hubbs A.F., Battelli L.A., McKinney W., Friend S., Wolfarth M.G., Andrew M., Castranova V., Porter D.W. Distribution and Fibrotic Response Following Inhalation Exposure to Multi-Walled Carbon Nanotubes. Part. Fibre Toxicol. 2013;10 doi: 10.1186/1743-8977-10-33. PubMed DOI PMC
Mercer R.R., Hubbs A.F., Scabilloni J.F., Wang L., Battelli L.A., Friend S., Castranova V., Porter D.W. Pulmonary Fibrotic Response to Aspiration of Multi-Walled Carbon Nanotubes. Part. Fibre Toxicol. 2011;8 doi: 10.1186/1743-8977-8-21. PubMed DOI PMC
Porter D.W., Hubbs A.F., Mercer R.R., Wu N., Wolfarth M.G., Sriram K., Leonard S., Battelli L., Schwegler-Berry D., Friend S., et al. Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes. Toxicology. 2010;269:136–147. doi: 10.1016/j.tox.2009.10.017. PubMed DOI
Funke M.G.T. Idiopathic Pulmonary Fibrosis: The Turning Point Is Now! Swiss Med. Wkly. 2015;145 doi: 10.4414/smw.2015.14139. PubMed DOI
Li R.B., Wang X., Ji Z.X., Sun B.B., Zhang H.Y., Chang C.H., Lin S.J., Meng H., Liao Y.P., Wang M.Y., et al. Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano. 2013;7:2352–2368. doi: 10.1021/nn305567s. PubMed DOI PMC
Mitchell L.A., Gao J., Wal R.V., Gigliotti A., Burchiel S.W., McDonald J.D. Pulmonary and Systemic Immune Response to Inhaled Multiwalled Carbon Nanotubes. Toxicol. Sci. 2007;100:203–214. doi: 10.1093/toxsci/kfm196. PubMed DOI
Deng X., Jia G., Wang H., Sun H., Wang X., Yang S., Wang T., Liu Y. Translocation and Fate of Multi-Walled Carbon Nanotubes in Vivo. Carbon. 2007;45:1419–1424. doi: 10.1016/j.carbon.2007.03.035. DOI
Zavala J., Freedman A.N., Szilagyi J.T., Jaspers I., Wambaugh J.F., Higuchi M., Rager J.E. New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for in Vitro Exposure Testing. Int. J. Environ. Res. Public Health. 2020;17:2124. doi: 10.3390/ijerph17062124. PubMed DOI PMC
Nichols J.E., Niles J.A., Vega S.P., Argueta L.B., Eastaway A., Cortiella J. Modeling the Lung: Design and Development of Tissue-Engineered Macro- and Micro-Physiologic Lung Models for Research Use. Exp. Biol. Med. 2014;239:1135–1169. doi: 10.1177/1535370214536679. PubMed DOI
Rothen-Rutishauser B., Blank F., Mühlfeld C.G.P. In Vitro Models of the Human Epithelial Airway Barrier to Study the Toxic Potential of Particulate Matter. Expert Opin. Drug Metab. Toxicol. 2008;4:1075–1089. doi: 10.1517/17425255.4.8.1075. PubMed DOI
Visalli G., Bertuccio M.P., Iannazzo D., Piperno A., Pistone A., Di Pietro A. Toxicological Assessment of Multi-Walled Carbon Nanotubes on A549 Human Lung Epithelial Cells. Toxicol. Vitro. 2015;29:352–362. doi: 10.1016/j.tiv.2014.12.004. PubMed DOI
Ju L., Zhang G., Zhang X., Jia Z., Gao X., Jiang Y., Yan C., Duerksen-Hughes P.J., Chen F.F., Li H., et al. Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells. PLoS ONE. 2014;9:e84974. doi: 10.1371/journal.pone.0084974. PubMed DOI PMC
Srivastava R.K., Pant A.B., Kashyap M.P., Kumar V., Lohani M., Jonas L., Rahman Q. Multi-Walled Carbon Nanotubes Induce Oxidative Stress and Apoptosis in Human Lung Cancer Cell Line-A549. Nanotoxicology. 2011;5:195–207. doi: 10.3109/17435390.2010.503944. PubMed DOI
Davoren M., Herzog E., Casey A., Cottineau B., Chambers G., Byrne H.J., Lyng F.M. In Vitro Toxicity Evaluation of Single-Walled Carbon Nanotubes on Human A549 Lung Cells. Toxicol. Vitro. 2007;21:438–448. doi: 10.1016/j.tiv.2006.10.007. PubMed DOI
Wang X., Xia T., Ntim S.A., Ji Z., George S., Meng H., Zhang H., Castranova V., Mitra S., Nel A.E. Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano. 2010;4:7241–7252. doi: 10.1021/nn102112b. PubMed DOI PMC
Wang L., Mercer R.R., Rojanasakul Y., Qiu A., Lu Y., Scabilloni J.F., Wu N., Castranova V. Direct Fibrogenic Effects of Dispersed Single-Walled Carbon Nanotubes on Human Lung Fibroblasts. J. Toxicol. Environ. Health A. 2010;73:410–422. doi: 10.1080/15287390903486550. PubMed DOI
Chortarea S., Zerimariam F., Barosova H., Septiadi D., Clift M.J.D., Petri-Fink A., Rothen-Rutishauser B. Profibrotic Activity of Multiwalled Carbon Nanotubes Upon Prolonged Exposures in Different Human Lung Cell Types. Appl. Vitro Toxicol. 2018;5:47–61. doi: 10.1089/aivt.2017.0033. DOI
Vietti G., Ibouraadaten S., Palmai-Pallag M., Yakoub Y., Bailly C., Fenoglio I., Marbaix E., Lison D., van den Brule S. Towards Predicting the Lung Fibrogenic Activity of Nanomaterials: Experimental Validation of an in Vitro Fibroblast Proliferation Assay. Part. Fibre Toxicol. 2013;10:52. doi: 10.1186/1743-8977-10-52. PubMed DOI PMC
Chortarea S., Clift M.J., Vanhecke D., Endes C., Wick P., Petri-Fink A., Rothen-Rutishauser B. Repeated Exposure to Carbon Nanotube-Based Aerosols Does Not Affect the Functional Properties of a 3d Human Epithelial Airway Model. Nanotoxicology. 2015;9:983–993. doi: 10.3109/17435390.2014.993344. PubMed DOI
Barosova H., Maione A.G., Septiadi D., Sharma M., Haeni L., Balog S., O’Connell O., Jackson G.R., Brown D., Clippinger A.J., et al. Use of Epialveolar Lung Model to Predict Fibrotic Potential of Multiwalled Carbon Nanotubes. ACS Nano. 2020 doi: 10.1021/acsnano.9b06860. PubMed DOI
Krug H.F. Nanosafety Research—Are We on the Right Track? Angew. Chem. Int. Ed. 2014;53:12304–12319. doi: 10.1002/anie.201403367. PubMed DOI
Thurnherr T., Brandenberger C., Fischer K., Diener L., Manser P., Maeder-Althaus X., Kaiser J.-P., Krug H.F., Rothen-Rutishauser B., Wick P. A Comparison of Acute and Long-Term Effects of Industrial Multiwalled Carbon Nanotubes on Human Lung and Immune Cells in Vitro. Toxicol. Lett. 2011;200:176–186. doi: 10.1016/j.toxlet.2010.11.012. PubMed DOI
Wang L., Luanpitpong S., Castranova V., Tse W., Lu Y., Pongrakhananon V., Rojanasakul Y. Carbon Nanotubes Induce Malignant Transformation and Tumorigenesis of Human Lung Epithelial Cells. Nano Lett. 2011;11:2796–2803. doi: 10.1021/nl2011214. PubMed DOI PMC
Clift M.J.D., Endes C., Vanhecke D., Wick P., Gehr P., Schins R.P.F., Petri-Fink A., Rothen-Rutishauser B. A Comparative Study of Different in Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes. Toxicol. Sci. 2014;137:55–64. doi: 10.1093/toxsci/kft216. PubMed DOI
Endes C., Schmid O., Kinnear C., Mueller S., Camarero-Espinosa S., Vanhecke D., Foster E.J., Petri-Fink A., Rothen-Rutishauser B., Weder C., et al. An in Vitro Testing Strategy Towards Mimicking the Inhalation of High Aspect Ratio Nanoparticles. Part. Fibre Toxicol. 2014;11:40. doi: 10.1186/s12989-014-0040-x. PubMed DOI PMC
Lenz A.G., Karg E., Lentner B., Dittrich V., Brandenberger C., Rothen-Rutishauser B., Schulz H., Ferron G.A., Schmid O. A Dose-Controlled System for Air-Liquid Interface Cell Exposure and Application to Zinc Oxide Nanoparticles. Part. Fibre Toxicol. 2009;6 doi: 10.1186/1743-8977-6-32. PubMed DOI PMC
Loret T., Peyret E., Dubreuil M., Aguerre-Chariol O., Bressot C., le Bihan O., Amodeo T., Trouiller B., Braun A., Egles C., et al. Air-Liquid Interface Exposure to Aerosols of Poorly Soluble Nanomaterials Induces Different Biological Activation Levels Compared to Exposure to Suspensions. Part. Fibre Toxicol. 2016;13 doi: 10.1186/s12989-016-0171-3. PubMed DOI PMC
Kim J.S., Peters T.M., O’Shaughnessy P.T., Adamcakova-Dodd A., Thorne P.S. Validation of an in Vitro Exposure System for Toxicity Assessment of Air-Delivered Nanomaterials. Toxicol. Vitro. 2013;27:164–173. doi: 10.1016/j.tiv.2012.08.030. PubMed DOI PMC
Polk W.W., Sharma M., Sayes C.M., Hotchkiss J.A., Clippinger A.J. Aerosol Generation and Characterization of Multi-Walled Carbon Nanotubes Exposed to Cells Cultured at the Air-Liquid Interface. Part. Fibre Toxicol. 2016;13:20. doi: 10.1186/s12989-016-0131-y. PubMed DOI PMC
Stacey P., Kauffer E., Moulut J.-C., Dion C., Beauparlant M., Fernandez P., Key-Schwartz R., Friede B., Wake D. An International Comparison of the Crystallinity of Calibration Materials for the Analysis of Respirable A-Quartz Using X-Ray Diffraction and a Comparison with Results from the Infrared Kbr Disc Method. Ann. Work Expo. Health. 2009;53:639–649. doi: 10.1093/annhyg/mep038. PubMed DOI
Rice F. Concise International Chemical Assessment Document 24, Crystalline Silica, Quartz. World Health Organisation (WHO); Geneva, Switzerland: 2000.
Poulsen S.S., Saber A.T., Williams A., Andersen O., Købler C., Atluri R., Pozzebon M.E., Mucelli S.P., Simion M., Rickerby D., et al. MWCNTs of Different Physicochemical Properties Cause Similar Inflammatory Responses, but Differences in Transcriptional and Histological Markers of Fibrosis in Mouse Lungs. Toxicol. Appl. Pharm. 2015;284:16–32. doi: 10.1016/j.taap.2014.12.011. PubMed DOI
Poland C.A., Duffin R., Kinloch I., Maynard A., Wallace W.A., Seaton A. Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study. Nat. Nanotechnol. 2008;3 doi: 10.1038/nnano.2008.111. PubMed DOI
Marchant E.A., Kan B., Sharma A.A., van Zanten A., Kollmann T.R., Brant R., Lavoie P.M. Attenuated Innate Immune Defenses in Very Premature Neonates During the Neonatal Period. Pediatr. Res. 2015;78:492–497. doi: 10.1038/pr.2015.132. PubMed DOI PMC
Bisig C., Voss C., Petri-Fink A., Rothen-Rutishauser B. The Crux of Positive Controls—Proinflammatory Responses in Lung Cell Models. Toxicol. Vitro. 2019;54:189–193. doi: 10.1016/j.tiv.2018.09.021. PubMed DOI
Fernandez I.E., Eickelberg O. The Impact of Tgf-Beta on Lung Fibrosis: From Targeting to Biomarkers. Proc. Am. Thorac Soc. 2012;9:111–116. doi: 10.1513/pats.201203-023AW. PubMed DOI
Hilton G., Barosova H., Petri-Fink A., Rothen-Rutishauser B., Bereman M. Leveraging Proteomics to Compare Submerged Versus Air-Liquid Interface Carbon Nanotube Exposure to a 3d Lung Cell Model. Toxicol. Vitro. 2019;54:58–66. doi: 10.1016/j.tiv.2018.09.010. PubMed DOI
Chortarea S., Barosova H., Clift M.J.D., Wick P., Petri-Fink A., Rothen-Rutishauser B. Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes at Occupationally Relevant Doses Than Healthy Cells. ACS Nano. 2017;11:7615–7625. doi: 10.1021/acsnano.7b01992. PubMed DOI
Rothen-Rutishauser B.M., Kiama S.G., Gehr P. A Three-Dimensional Cellular Model of the Human Respiratory Tract to Study the Interaction with Particles. Am. J. Resp Cell Mol. 2005;32:281–289. doi: 10.1165/rcmb.2004-0187OC. PubMed DOI
Durantie E., Barosova H., Drasler B., Rodriguez-Lorenzo L., Urban D.A., Vanhecke D., Septiadi D., Hirschi-Ackermann L., Petri-Fink A., Rothen-Rutishauser B. Carbon Nanodots: Opportunities and Limitations to Study Their Biodistribution at the Human Lung Epithelial Tissue Barrier. Biointerphases. 2018;13:06D404. doi: 10.1116/1.5043373. PubMed DOI
Drasler B., Kucki M., Delhaes F., Buerki-Thurnherr T., Vanhecke D., Korejwo D., Chortarea S., Barosova H., Hirsch C., Petri-Fink A. Single Exposure to Aerosolized Graphene Oxide and Graphene Nanoplatelets Did Not Initiate an Acute Biological Response in a 3d Human Lung Model. Carbon. 2018;137:125–135. doi: 10.1016/j.carbon.2018.05.012. DOI
Chortarea S., Fytianos K., Rodriguez-Lorenzo L., Petri-Fink A., Rothen-Rutishauser B. Distribution of Polymer-Coated Gold Nanoparticles in a 3d Lung Model and Indication of Apoptosis after Repeated Exposure. Nanomedicine. 2018;13:1169–1185. doi: 10.2217/nnm-2017-0358. PubMed DOI
Gangwal S., Brown J.S., Wang A., Houck K.A., Dix D.J., Kavlock R.J., Hubal E.A.C. Informing Selection of Nanomaterial Concentrations for Toxcast in Vitro Testing Based on Occupational Exposure Potential. Environ. Health Persp. 2011;119:1539–1546. doi: 10.1289/ehp.1103750. PubMed DOI PMC
Snyder-Talkington B.N., Dong C., Porter D.W., Ducatman B., Wolfarth M.G., Andrew M., Battelli L., Raese R., Castranova V., Guo N.L., et al. Multiwalled Carbon Nanotube-Induced Pulmonary Inflammatory and Fibrotic Responses and Genomic Changes Following Aspiration Exposure in Mice: A 1-Year Postexposure Study. J. Toxicol Environ. Health A. 2016;79:352–366. doi: 10.1080/15287394.2016.1159635. PubMed DOI PMC
Pinkerton K.E., Gehr P., Castañeda A., Crapo J.D. Chapter 9—Architecture and Cellular Composition of the Air–Blood Tissue Barrier. In: Parent R.A., editor. Comparative Biology of the Normal Lun. 2nd ed. Academic Press; San Diego, CA, USA: 2015. pp. 105–117.
Barbarin V., Nihoul A., Misson P., Arras M., Delos M., Leclercq I., Lison D., Huaux F. The Role of Pro- and Anti-Inflammatory Responses in Silica-Induced Lung Fibrosis. Respir. Res. 2005;6:112. doi: 10.1186/1465-9921-6-112. PubMed DOI PMC
Du Z.-X., Zhang H.-Y., Meng X., Guan Y., Wang H.-Q. Role of Oxidative Stress and Intracellular Glutathione in the Sensitivity to Apoptosis Induced by Proteasome Inhibitor in Thyroid Cancer Cells. BMC Cancer. 2009;9:56. doi: 10.1186/1471-2407-9-56. PubMed DOI PMC
Aquilano K., Baldelli S., Ciriolo M.R. Glutathione: New Roles in Redox Signaling for an Old Antioxidant. Front. Pharm. 2014;5:196. doi: 10.3389/fphar.2014.00196. PubMed DOI PMC
Rahman I., Kode A., Biswas S.K. Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method. Nat. Protoc. 2006;1:3159–3165. doi: 10.1038/nprot.2006.378. PubMed DOI
Presnell C.E., Bhatti G., Numan L.S., Lerche M., Alkhateeb S.K., Ghalib M., Shammaa M., Kavdia M. Computational Insights into the Role of Glutathione in Oxidative Stress. Curr. Neurovasc. Res. 2013;10:185–194. doi: 10.2174/1567202611310020011. PubMed DOI
Borm P.J.A., Fowler P., Kirkland D. An Updated Review of the Genotoxicity of Respirable Crystalline Silica. Part. Fibre Toxicol. 2018;15:23. doi: 10.1186/s12989-018-0259-z. PubMed DOI PMC
Elsabahy M., Wooley K.L. Cytokines as Biomarkers of Nanoparticle Immunotoxicity. Chem. Soc. Rev. 2013;42:5552–5576. doi: 10.1039/c3cs60064e. PubMed DOI PMC
Beyeler S., Chortarea S., Rothen-Rutishauser B., Petri-Fink A., Wick P., Tschanz S.A., von Garnier C., Blank F. Acute Effects of Multi-Walled Carbon Nanotubes on Primary Bronchial Epithelial Cells from Copd Patients. Nanotoxicology. 2018;12:699–711. doi: 10.1080/17435390.2018.1472310. PubMed DOI
Sato T., Shimosato T., Alvord W., KLinman D. Suppressive Oligodeoxynucleotides Inhibit Silica-Induced Pulmonary Inflammation. J. Immunol. 2008;180:7648–7654. doi: 10.4049/jimmunol.180.11.7648. PubMed DOI PMC
Fehaid A., Taniguchi A. Silver Nanoparticles Reduce the Apoptosis Induced by Tumor Necrosis Factor-A. Sci. Technol. Adv. Mater. 2018;19:526–534. doi: 10.1080/14686996.2018.1487761. PubMed DOI PMC
Byrne J.D., Baugh J.A. The Significance of Nanoparticles in Particle-Induced Pulmonary Fibrosis. Mcgill J. Med. 2008;11:43–50. PubMed PMC
Snyder-Talkington B.N., Dymacek J., Porter D.W., Wolfarth M.G., Mercer R.R., Pacurari M., Denvir J., Castranova V., Qian Y., Guo N.L. System-Based Identification of Toxicity Pathways Associated with Multi-Walled Carbon Nanotube-Induced Pathological Responses. Toxicol. Appl. Pharm. 2013;272:476–489. doi: 10.1016/j.taap.2013.06.026. PubMed DOI PMC
Huaux F., Louahed J., Hudspith B., Meredith C., Delos M., Renauld J.-C., Lison D. Role of Interleukin-10 in the Lung Response to Silica in Mice. Am. J. Respir. Cell Mol. Biol. 1998;18:51–59. doi: 10.1165/ajrcmb.18.1.2911. PubMed DOI
Siddiqui L., Bag J., Mittal D., Leekha A., Mishra H., Mishra M., Verma A.K., Mishra P.K., Ekielski A., Iqbal Z., et al. Assessing the Potential of Lignin Nanoparticles as Drug Carrier: Synthesis, Cytotoxicity and Genotoxicity Studies. Int J. Biol. Macromol. 2020;152:786–802. doi: 10.1016/j.ijbiomac.2020.02.311. PubMed DOI
Siddiqui L., Mishra H., Mishra P.K., Iqbal Z., Talegaonkar S. Novel 4-in-1 Strategy to Combat Colon Cancer, Drug Resistance and Cancer Relapse Utilizing Functionalized Bioinspiring Lignin Nanoparticle. Med. Hypotheses. 2018;121:10–14. doi: 10.1016/j.mehy.2018.09.003. PubMed DOI
Mishra P.K., Ekielski A., Mukherjee S., Sahu S., Chowdhury S., Mishra M., Talegaonkar S., Siddiqui L., Mishra H. Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila Melanogaster. Biomolecules. 2019;9:363. doi: 10.3390/biom9080363. PubMed DOI PMC
Warheit D.B., Webb T.R., Colvin V.L., Reed K.L., Sayes C.M. Pulmonary Bioassay Studies with Nanoscale and Fine-Quartz Particles in Rats: Toxicity Is Not Dependent Upon Particle Size but on Surface Characteristics. Toxicol. Sci. 2007;95:270–280. doi: 10.1093/toxsci/kfl128. PubMed DOI
Clouter A., Brown D., Höhr D., Borm P., Donaldson K. Inflammatory Effects of Respirable Quartz Collected in Workplaces Versus Standard Dq12 Quartz: Particle Surface Correlates. Toxicol. Sci. 2001;63:90–98. doi: 10.1093/toxsci/63.1.90. PubMed DOI
Blake T.L., DiMatteo M., Antonini J.M., McCloud C.M., Reasor M.J. Subchronic Pulmonary Inflammation and Fibrosis Induced by Silica in Rats Are Attenuated by Amiodarone. Exp. Lung Res. 1996;22:113–131. doi: 10.3109/01902149609074021. PubMed DOI
Carter J.M., Driscoll K.E. The Role of Inflammation, Oxidative Stress, and Proliferation in Silica-Induced Lung Disease: A Species Comparison. J. Environ. Pathol. Toxicol. Oncol. 2001;20:33–43. doi: 10.1615/JEnvironPatholToxicolOncol.v20.iSuppl.1.30. PubMed DOI