CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26596764
PubMed Central
PMC4737067
DOI
10.1093/jxb/erv479
PII: erv479
Knihovny.cz E-zdroje
- Klíčová slova
- Bryophyte, Physcomitrella patens, cytokinin, cytokinin receptor, evolution, moss, phytohormone, plant growth regulator, signaling, two-component system.,
- MeSH
- biotest MeSH
- butadieny farmakologie MeSH
- cytokininy farmakologie MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- genový knockout MeSH
- hemiterpeny farmakologie MeSH
- mechy účinky léků genetika metabolismus MeSH
- mutace genetika MeSH
- pentany farmakologie MeSH
- receptory buněčného povrchu chemie metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny chemie metabolismus MeSH
- terciární struktura proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- butadieny MeSH
- cytokininy MeSH
- hemiterpeny MeSH
- isoprene MeSH Prohlížeč
- pentany MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
While the molecular basis for cytokinin action is quite well understood in flowering plants, little is known about the cytokinin signal transduction in early diverging land plants. The genome of the bryophyte Physcomitrella patens (Hedw.) B.S. encodes three classical cytokinin receptors, the CHASE domain-containing histidine kinases, CHK1, CHK2, and CHK3. In a complementation assay with protoplasts of receptor-deficient Arabidopsis thaliana as well as in cytokinin binding assays, we found evidence that CHK1 and CHK2 receptors can function in cytokinin perception. Using gene targeting, we generated a collection of CHK knockout mutants comprising single (Δchk1, Δchk2, Δchk3), double (Δchk1,2, Δchk1,3, Δchk2,3), and triple (Δchk1,2,3) mutants. Mutants were characterized for their cytokinin response and differentiation capacities. While the wild type did not grow on high doses of cytokinin (1 µM benzyladenine), the Δchk1,2,3 mutant exhibited normal protonema growth. Bud induction assays showed that all three cytokinin receptors contribute to the triggering of budding, albeit to different extents. Furthermore, while the triple mutant showed no response in this bioassay, the remaining mutants displayed budding responses in a diverse manner to different types and concentrations of cytokinins. Determination of cytokinin levels in mutants showed no drastic changes for any of the cytokinins; thus, in contrast to Arabidopsis, revealing only small impacts of cytokinin signaling on homeostasis. In summary, our study provides a first insight into the molecular action of cytokinin in an early diverging land plant and demonstrates that CHK receptors play an essential role in bud induction and gametophore development.
Zobrazit více v PubMed
Anantharaman V, Aravind L. 2001. The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends in Biochemical Science 26, 579–582. PubMed
Avalbaev AM, Somov KA, Yuldashev RA, Shakirova FM. 2012. Cytokinin oxidase is key enzyme of cytokinin degradation. Biochemistry (Moscow) 77, 1354–1361. PubMed
Caesar K, Thamm AM, Witthoft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K. 2011. Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. Journal of Experimental Botany 62, 5571–5580. PubMed PMC
Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F. 2003. Cytokinins: new apoptotic inducers in plants. Planta 216, 413–421. PubMed
Choi J, Lee J, Kim K, Cho M, Ryu H, An G, Hwang I. 2012. Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. Plant and Cell Physiology 53, 1334–1343. PubMed
Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ. 2015. Three ancient hormonal cues co-ordinate shoot branching in a moss. Elife 4, PubMed PMC
Cove D. 2005. The moss Physcomitrella patens . Annual Review of Genetics 39, 339–358. PubMed
Decker EL, Frank W, Sarnighausen E, Reski R. 2006. Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biology 8, 397–405. PubMed
Dobrev PI, Kaminek M. 2002. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A 950, 21–29. PubMed
Frébort I, Kowalska M, Hluska T, Frébortova J, Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany 62, 2431–2452. PubMed
Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A. 2014. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiology 165, 227–237. PubMed PMC
Gruhn N, Heyl A. 2013. Updates on the model and the evolution of cytokinin signaling. Current Opinion in Plant Biology 16, 569–574. PubMed
Gruhn N, Seidl MF, Halawa M, Heyl A. 2015. Members of a recently discovered subfamily of cytokinin receptors display differences and similarities to their classical counterparts. Plant Signaling and Behavior 10, e984512. PubMed PMC
Hahn H, Bopp M. 1968. A cytokinin test with high specificity. Planta 83, 115–118. PubMed
Hellmann E, Gruhn N, Heyl A. 2010. The more, the merrier: cytokinin signaling beyond Arabidopsis. Plant Signaling and Behavior 5, 1384–1390. PubMed PMC
Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE. 2013. Nomenclature for members of the two-component signaling pathway of plants. Plant Physiology 161, 1063–1065. PubMed PMC
Heyl A, Schmülling T. 2003. Cytokinin signal perception and transduction. Current Opinion in Plant Biology 6, 480–488. PubMed
Heyl A, Werner T, Schmülling T. 2006. Cytokinin metabolism and signal transduction. In: Annual Plant Reviews Volume 24: Plant Hormone Signaling. Oxford: Blackwell Publishing, 93–123.
Heyl A, Wulfetange K, Pils B, Nielsen N, Romanov GA, Schmülling T. 2007. Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evolutionary Biology 7, 62. PubMed PMC
Higuchi M, Pischke MS, Mahonen AP, et al. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences, USA 101, 8821–8826. PubMed PMC
Hori K, Maruyama F, Fujisawa T, et al. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Communications 5, 3978. PubMed PMC
Hwang I, Sheen J. 2001. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389. PubMed
Hwang I, Sheen J, Müller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology 63, 353–380. PubMed
Ishida K, Yamashino T, Nakanishi H, Mizuno T. 2010. Classification of the genes involved in the two-component system of the moss Physcomitrella patens . Bioscience, Biotechnology, and Biochemistry 74, 2542–2545. PubMed
Kieber JJ, Schaller GE. 2014. Cytokinins. Arabidopsis Book 12, e0168. PubMed PMC
Kirby J, Kavanagh TA. 2002. NAN fusions: a synthetic sialidase reporter gene as a sensitive and versatile partner for GUS. The Plant Journal 32, 391–400. PubMed
Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jonsson H, Thelander M, Sundberg E. 2013. The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiology 162, 1406–1419. PubMed PMC
Lang D, Eisinger J, Reski R, Rensing SA. 2005. Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biology 7, 238–250. PubMed
Lindner AC, Lang D, Seifert M, Podlesakova K, Novak O, Strnad M, Reski R, von Schwartzenberg K. 2014. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. Journal of Experimental Botany 65, 2533–2543. PubMed PMC
Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H. 2011. Ligand-binding properties and subcellular localization of maize cytokinin receptors. Journal of Experimental Botany 62, 5149–5159. PubMed PMC
Mizuno T, Yamashino T. 2010. Biochemical characterization of plant hormone cytokinin-receptor histidine kinases using microorganisms. Methods in Enzymology 471, 335–356. PubMed
Mok DWS, Mok MC. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52, 89–118. PubMed
Mougel C, Zhulin IB. 2001. CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends in Biochemial Science 26, 582–584. PubMed
Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. The Plant Cell 16, 1365–1377. PubMed PMC
Novák O, Hauserova E, Amakorová P, Doležal K, Strnad M. 2008. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224. PubMed
Patil G, Nicander B. 2013. Identification of two additional members of the tRNA isopentenyltransferase family in Physcomitrella patens . Plant Molecular Biology 82, 417–426. PubMed
Pils B, Heyl A. 2009. Unraveling the evolution of cytokinin signaling. Plant Physiology 151, 782–791. PubMed PMC
Punwani JA, Hutchison CE, Schaller GE, Kieber JJ. 2010. The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. The Plant Journal 62, 473–482. PubMed
Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmulling T. 2013. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and Identification of a novel enhancer sequence. Plant and Cell Physiology 54, 1079–1092. PubMed
Rensing SA, Lang D, Zimmer AD, et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69. PubMed
Riefler M, Novak O, Strnad M, Schmülling T. 2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, flowering size, germination, root development, and cytokinin metabolism. The Plant Cell 18, 40–54. PubMed PMC
Romanov GA, Lomin SN. 2009. Hormone-binding assay using living bacteria expressing eukaryotic receptors. Methods in Molecular Biology 495, 111–120. PubMed
Romanov GA, Spichal L, Lomin SN, Strnad M, Schmulling T. 2005. A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Analytical Biochemistry 347, 129–134. PubMed
Spíchal L. 2012. Cytokinins—recent news and views of evolutionally old molecules. Functional Plant Biology 39, 267–284. PubMed
Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T. 2011. The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. The Plant Journal 67, 157–168. PubMed
Strepp R, Scholz S, Kruse S, Speth V, Reski R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of the National Academy of Sciences, USA 95, 4368–4373. PubMed PMC
Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T. 2001. The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant and Cell Physiology 42, 107–113. PubMed
Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, Dolezal K. 2012. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8, 17. PubMed PMC
Tarakhovskaya ER, Maslov Yu I, Shishova MF. 2007. Phytohormones in algae. Russian Journal of Plant Physiology 54, 163–170.
Thelander M, Olsson T, Ronne H. 2005. Effect of the energy supply on filamentous growth and development in Physcomitrella patens . Journal of Experimental Botany 56, 653–662. PubMed
To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ. 2004. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell 16, 658–671. PubMed PMC
Vescovi M, Riefler M, Gessuti M, Novák O, Schmülling T, Lo Schiavo F. 2012. Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. Journal of Experimental Botany 63, 2825–2832. PubMed PMC
von Schwartzenberg K. 2006. Moss biology and phytohormones—cytokinins in Physcomitrella . Plant biol 8, 382–388. PubMed
von Schwartzenberg K. 2009. Hormonal regulation of development by auxin and cytokinin in moss. In: Knight C, Perroud P-F, Cove D, eds. Annual Plant Reviews: The Moss Physcomitrella patens , Vol. 36 Wiley-Blackwell, 246–281.
von Schwartzenberg K, Fernandez Núnez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M. 2007. Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiology 145, 786–800. PubMed PMC
Wang TL, Beutelmann P, Cove DJ. 1981. Cytokinin biosynthesis in mutants of the moss Physcomitrella patens . Plant Physiology 68, 739–744. PubMed PMC
Wang YH, Irving HR. 2011. Developing a model of plant hormone interactions. Plant Signaling and Behavior 6, 494–500. PubMed PMC
Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T. 2011. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiology 156, 1808–1818. PubMed PMC
Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant and Cell Physiology 42, 1017–1023. PubMed
Yevdakova NA, Motyka V, Malbeck J, Trávnícková A, Novák O, Strnad M, von Schwartzenberg K. 2008. Evidence for importance of tRNA-dependent cytokinin biosynthetic pathway in the moss Physcomitrella patens . Journal of Plant Growth Regulation 27, 271–281.
Yevdakova NA, von Schwartzenberg K. 2007. Characterisation of a prokaryote-type tRNA-isopentenyltransferase gene from the moss Physcomitrella patens . Planta 226, 683–695. PubMed