Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P50 GM082250
NIGMS NIH HHS - United States
R01 AI096869
NIAID NIH HHS - United States
T32 GM007618
NIGMS NIH HHS - United States
PubMed
27977806
PubMed Central
PMC5158083
DOI
10.1371/journal.ppat.1006051
PII: PPATHOGENS-D-15-02165
Knihovny.cz E-zdroje
- MeSH
- aspartátové proteasy metabolismus MeSH
- Cryptococcus neoformans enzymologie patogenita MeSH
- faktory virulence metabolismus MeSH
- fungální proteiny metabolismus MeSH
- hmotnostní spektrometrie MeSH
- imunoblotting MeSH
- koncentrace vodíkových iontů MeSH
- kryptokokóza enzymologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- proteasy metabolismus MeSH
- proteomika MeSH
- stanovení celkové genové exprese MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aspartátové proteasy MeSH
- faktory virulence MeSH
- fungální proteiny MeSH
- proteasy MeSH
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors.
Zobrazit více v PubMed
Armstrong-James D, Meintjes G, Brown GD (2014) A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22: 120–127. 10.1016/j.tim.2014.01.001 PubMed DOI
Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530. 10.1097/QAD.0b013e328322ffac PubMed DOI
Krysan DJ (2015) Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs. Fungal Genet Biol 78: 93–98. 10.1016/j.fgb.2014.12.001 PubMed DOI
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv113. PubMed
Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4. PubMed PMC
Ruiz-Perez F, Nataro JP (2014) Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 71: 745–770. 10.1007/s00018-013-1355-8 PubMed DOI PMC
Kolar SL, Ibarra JA, Rivera FE, Mootz JM, Davenport JE, et al. (2013) Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2: 18–34. 10.1002/mbo3.55 PubMed DOI PMC
McKerrow JH, Sun E, Rosenthal PJ, Bouvier J (1993) The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 47: 821–853. 10.1146/annurev.mi.47.100193.004133 PubMed DOI
Klemba M, Goldberg DE (2002) Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71: 275–305. 10.1146/annurev.biochem.71.090501.145453 PubMed DOI
Zhang YZ, Ran LY, Li CY, Chen XL (2015) Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases. Appl Environ Microbiol 81: 6098–6107. 10.1128/AEM.00883-15 PubMed DOI PMC
Yang Y, Wen Y, Cai YN, Vallee I, Boireau P, et al. (2015) Serine proteases of parasitic helminths. Korean J Parasitol 53: 1–11. 10.3347/kjp.2015.53.1.1 PubMed DOI PMC
Elbaz T, El-Kassas M, Esmat G (2015) New era for management of chronic hepatitis C virus using direct antiviral agents: A review. J Adv Res 6: 301–310. 10.1016/j.jare.2014.11.004 PubMed DOI PMC
Konvalinka J, Krausslich HG, Muller B (2015) Retroviral proteases and their roles in virion maturation. Virology 479–480: 403–417. 10.1016/j.virol.2015.03.021 PubMed DOI
Kaman WE, Hays JP, Endtz HP, Bikker FJ (2014) Bacterial proteases: targets for diagnostics and therapy. Eur J Clin Microbiol Infect Dis 33: 1081–1087. 10.1007/s10096-014-2075-1 PubMed DOI
Dixit AK, Dixit P, Sharma RL (2008) Immunodiagnostic/protective role of cathepsin L cysteine proteinases secreted by Fasciola species. Vet Parasitol 154: 177–184. 10.1016/j.vetpar.2008.03.017 PubMed DOI
Aoki W, Kitahara N, Fujita A, Shibasaki S, Morisaka H, et al. (2013) Detection of Candida albicans by using a designed fluorescence-quenched peptide. J Biosci Bioeng 116: 573–575. 10.1016/j.jbiosc.2013.05.003 PubMed DOI
Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171: 299–323. 10.1007/s11046-010-9386-2 PubMed DOI
Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13: 597–608. 10.1002/pmic.201200282 PubMed DOI
Alby K, Schaefer D, Bennett RJ (2009) Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460: 890–893. 10.1038/nature08252 PubMed DOI PMC
Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915–926. 10.1111/j.1462-5822.2004.00439.x PubMed DOI
Rambach G, Dum D, Mohsenipour I, Hagleitner M, Wurzner R, et al. (2010) Secretion of a fungal protease represents a complement evasion mechanism in cerebral aspergillosis. Mol Immunol 47: 1438–1449. 10.1016/j.molimm.2010.02.010 PubMed DOI
Winter MB, Salcedo EC, Lohse MB, Hartooni N, Gulati M, Sanchez H, Takagi J, Hube B, Andes DR, Johnson AD, Craik CS, Nobile CJ (2016) Global Identification of Biofilm-Specific Proteolysis in Candida albicans. Mbio 7: e01514–16. 10.1128/mBio.01514-16. PubMed DOI PMC
Monod M, Borg-von ZM (2002) Secreted aspartic proteases as virulence factors of Candida species. Biol Chem 383: 1087–1093. 10.1515/BC.2002.117 PubMed DOI
Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, et al. (2012) Mechanisms of skin adherence and invasion by dermatophytes. Mycoses 55: 218–223. 10.1111/j.1439-0507.2011.02081.x PubMed DOI
O'Donoghue AJ, Knudsen GM, Beekman C, Perry JA, Johnson AD, et al. (2015) Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 112: 7478–7483. 10.1073/pnas.1507082112 PubMed DOI PMC
Sriranganadane D, Waridel P, Salamin K, Feuermann M, Mignon B, et al. (2011) Identification of novel secreted proteases during extracellular proteolysis by dermatophytes at acidic pH. Proteomics 11: 4422–4433. 10.1002/pmic.201100234 PubMed DOI
Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A (2007) Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res 7: 499–510. 10.1111/j.1567-1364.2006.00198.x PubMed DOI
Vu K, Tham R, Uhrig JP, Thompson GR 3rd, Na Pombejra S, et al. (2014) Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio 5: e01101–01114. 10.1128/mBio.01101-14 PubMed DOI PMC
Campbell LT, Simonin AR, Chen C, Ferdous J, Padula MP, et al. (2015) Cryptococcus strains with different pathogenic potentials have diverse protein secretomes. Eukaryot Cell 14: 554–563. 10.1128/EC.00052-15 PubMed DOI PMC
Casadevall A, Steenbergen JN, Nosanchuk JD (2003) 'Ready made' virulence and 'dual use' virulence factors in pathogenic environmental fungi—the Cryptococcus neoformans paradigm. Curr Opin Microbiol 6: 332–337. PubMed
Yoo Ji J, Lee YS, Song CY, Kim BS (2004) Purification and characterization of a 43-kilodalton extracellular serine proteinase from Cryptococcus neoformans. J Clin Microbiol 42: 722–726. 10.1128/JCM.42.2.722-726.2004 PubMed DOI PMC
Pinti M, Orsi CF, Gibellini L, Esposito R, Cossarizza A, et al. (2007) Identification and characterization of an aspartyl protease from Cryptococcus neoformans. FEBS Lett 581: 3882–3886. 10.1016/j.febslet.2007.07.006 PubMed DOI
Aoki S, Ito-Kuwa S, Nakamura K, Kato J, Ninomiya K, et al. (1994) Extracellular proteolytic activity of Cryptococcus neoformans. Mycopathologia 128: 143–150. PubMed
Rodrigues ML, dos Reis FC, Puccia R, Travassos LR, Alviano CS (2003) Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase. Microb Pathog 34: 65–71. PubMed
Ruma-Haynes P, Brownlee AG, Sorrell TC (2000) A rapid method for detecting extracellular proteinase activity in Cryptococcus neoformans and a survey of 63 isolates. J Med Microbiol 49: 733–737. 10.1099/0022-1317-49-8-733 PubMed DOI
Chan MY, Tay ST (2010) Enzymatic characterisation of clinical isolates of Cryptococcus neoformans, Cryptococcus gattii and other environmental Cryptococcus spp. Mycoses 53: 26–31. PubMed
Vidotto V, Koga-Ito CY, Canella D, Sinicco A, Di Perri G, et al. (2000) Extracellular activity in Cryptococcus neoformans strains isolated from AIDS patients and from environmental sources. Rev Iberoam Micol 17: 14–19. PubMed
Vidotto V, Melhem M, Pukinskas S, Aoki S, Carrara C, et al. (2005) Extracellular enzymatic activity and serotype of Cryptococcus neoformans strains isolated from AIDS patients in Brazil. Rev Iberoam Micol 22: 29–33. PubMed
O'Donoghue AJ, Eroy-Reveles AA, Knudsen GM, Ingram J, Zhou M, et al. (2012) Global identification of peptidase specificity by multiplex substrate profiling. Nat Methods 9: 1095–1100. 10.1038/nmeth.2182 PubMed DOI PMC
O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, et al. (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283: 28934–28943. 10.1074/jbc.M805824200 PubMed DOI PMC
Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, et al. (2013) Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis. J Biol Chem 288: 12489–12499. 10.1074/jbc.M113.456541 PubMed DOI PMC
O'Donoghue AJ, Mahon CS, Goetz DH, O'Malley JM, Gallagher DM, et al. (2008) Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii. J Biol Chem 283: 29186–29195. 10.1074/jbc.M802366200 PubMed DOI PMC
Geddes JM, Croll D, Caza M, Stoynov N, Foster LJ, et al. (2015) Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A. BMC Microbiol 15: 206 10.1186/s12866-015-0532-3 PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786. 10.1038/nmeth.1701 PubMed DOI
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17: 349–356. 10.1093/protein/gzh037 PubMed DOI
Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, et al. (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7: 58–67. 10.1128/EC.00370-07 PubMed DOI PMC
Levitz SM, Specht CA (2006) The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res 6: 513–524. 10.1111/j.1567-1364.2006.00071.x PubMed DOI
Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, et al. (2012) FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 40: D675–681. 10.1093/nar/gkr918 PubMed DOI PMC
Inglis DO, Skrzypek MS, Liaw E, Moktali V, Sherlock G, et al. (2014) Literature-based gene curation and proposed genetic nomenclature for cryptococcus. Eukaryot Cell 13: 878–883. 10.1128/EC.00083-14 PubMed DOI PMC
Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6: 786–787. 10.1038/nmeth1109-786 PubMed DOI
Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42: D503–509. 10.1093/nar/gkt953 PubMed DOI PMC
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, et al. (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40: W597–603. 10.1093/nar/gks400 PubMed DOI PMC
Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43: D257–260. 10.1093/nar/gku949 PubMed DOI PMC
Sansen S, De Ranter CJ, Gebruers K, Brijs K, Courtin CM, et al. (2004) Structural basis for inhibition of Aspergillus niger xylanase by triticum aestivum xylanase inhibitor-I. J Biol Chem 279: 36022–36028. 10.1074/jbc.M404212200 PubMed DOI
Dunn BM (2001) Overview of pepsin-like aspartic peptidases. Curr Protoc Protein Sci Chapter 21: Unit 21 23. PubMed
Rinnova M, Hradilek M, Barinka C, Weber J, Soucek M, et al. (2000) A picomolar inhibitor of resistant strains of human immunodeficiency virus protease identified by a combinatorial approach. Arch Biochem Biophys 382: 22–30. 10.1006/abbi.2000.2017 PubMed DOI
Skalova T, Hasek J, Dohnalek J, Petrokova H, Buchtelova E, et al. (2003) An ethylenamine inhibitor binds tightly to both wild type and mutant HIV-1 proteases. Structure and energy study. J Med Chem 46: 1636–1644. 10.1021/jm021079g PubMed DOI
Skalova T, Dohnalek J, Duskova J, Petrokova H, Hradilek M, et al. (2006) HIV-1 protease mutations and inhibitor modifications monitored on a series of complexes. Structural basis for the effect of the A71V mutation on the active site. J Med Chem 49: 5777–5784. 10.1021/jm0605583 PubMed DOI
Petrokova H, Duskova J, Dohnalek J, Skalova T, Vondrackova-Buchtelova E, et al. (2004) Role of hydroxyl group and R/S configuration of isostere in binding properties of HIV-1 protease inhibitors. Eur J Biochem 271: 4451–4461. 10.1111/j.1432-1033.2004.04384.x PubMed DOI
Sidrim JJ, Perdigao-Neto LV, Cordeiro RA, Brilhante RS, Leite JJ, et al. (2012) Viral protease inhibitors affect the production of virulence factors in Cryptococcus neoformans. Can J Microbiol 58: 932–936. 10.1139/w2012-075 PubMed DOI
Monari C, Pericolini E, Bistoni G, Cenci E, Bistoni F, et al. (2005) Influence of indinavir on virulence and growth of Cryptococcus neoformans. J Infect Dis 191: 307–311. 10.1086/426828 PubMed DOI
Chun CD, Madhani HD (2010) Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol 470: 797–831. 10.1016/S0076-6879(10)70033-1 PubMed DOI PMC
Hull CM, Cox GM, Heitman J (2004) The alpha-specific cell identity factor Sxi1alpha is not required for virulence of Cryptococcus neoformans. Infect Immun 72: 3643–3645. 10.1128/IAI.72.6.3643-3645.2004 PubMed DOI PMC
Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400–428, table of contents. 10.1128/MMBR.67.3.400-428.2003 PubMed DOI PMC
Nessa K, Gross NT, Jarstrand C, Johansson A, Camner P (1997) In vivo interaction between alveolar macrophages and Cryptococcus neoformans. Mycopathologia 139: 1–7. PubMed
Levitz SM, Nong SH, Seetoo KF, Harrison TS, Speizer RA, et al. (1999) Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 67: 885–890. PubMed PMC
Byrnes EJ 3rd, Li W, Lewit Y, Ma H, Voelz K, et al. (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6: e1000850 10.1371/journal.ppat.1000850 PubMed DOI PMC
Vickers I, Reeves EP, Kavanagh KA, Doyle S (2007) Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr Purif 53: 216–224. 10.1016/j.pep.2006.12.012 PubMed DOI
Stewart K, Abad-Zapatero C (2001) Candida proteases and their inhibition: prospects for antifungal therapy. Curr Med Chem 8: 941–948. PubMed
Pozio E, Morales MA (2005) The impact of HIV-protease inhibitors on opportunistic parasites. Trends Parasitol 21: 58–63. 10.1016/j.pt.2004.11.003 PubMed DOI
Dos Santos AL (2011) Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2: 48–58. 10.4331/wjbc.v2.i3.48 PubMed DOI PMC
Mehra T, Koberle M, Braunsdorf C, Mailander-Sanchez D, Borelli C, et al. (2012) Alternative approaches to antifungal therapies. Exp Dermatol 21: 778–782. 10.1111/exd.12004 PubMed DOI PMC
Olsen I, Potempa J (2014) Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol 6. PubMed PMC
Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame AL (2008) In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol Cell Proteomics 7: 2386–2398. 10.1074/mcp.M800021-MCP200 PubMed DOI PMC
Institute B (2008) Cryptococcus Sequencing initiative, Broad Institute (broadinstitute.org).
Idnurm A, Heitman J (2005) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15: R829–832. 10.1016/j.cub.2005.10.001 PubMed DOI
Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, et al. (2008) Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135: 174–188. 10.1016/j.cell.2008.07.046 PubMed DOI PMC
Roth V (2006) Doubling Time. http://doubling-time.com/compute.php.
Furfine ES (2001) HIV protease assays. Curr Protoc Pharmacol Chapter 3: Unit3 2 10.1002/0471141755.ph0302s00 PubMed DOI
Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL, et al. (2016) Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host Microbe 19: 849–864. 10.1016/j.chom.2016.05.001 PubMed DOI PMC
Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR (2000) Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68: 443–448. PubMed PMC
Yang JS, Nam HJ, Seo M, Han SK, Choi Y, et al. (2011) OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6: e23525 10.1371/journal.pone.0023525 PubMed DOI PMC