• Je něco špatně v tomto záznamu ?

Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

M. Lamoš, R. Mareček, T. Slavíček, M. Mikl, I. Rektor, J. Jan,

. 2018 ; 15 (3) : 036025. [pub] 20180314

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045529

OBJECTIVE: Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. APPROACH: The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. MAIN RESULTS: We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. SIGNIFICANCE: Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045529
003      
CZ-PrNML
005      
20230525141537.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/aab66b $2 doi
035    __
$a (PubMed)29536946
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Lamoš, Martin $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno. Department of Biomedical Engineering, Brno University of Technology, Technická 12, 61600, Brno.
245    10
$a Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics / $c M. Lamoš, R. Mareček, T. Slavíček, M. Mikl, I. Rektor, J. Jan,
520    9_
$a OBJECTIVE: Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. APPROACH: The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. MAIN RESULTS: We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. SIGNIFICANCE: Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
650    _2
$a dospělí $7 D000328
650    _2
$a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a nervová síť $x diagnostické zobrazování $x fyziologie $7 D009415
650    _2
$a časové faktory $7 D013997
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mareček, Radek
700    1_
$a Slavíček, Tomáš
700    1_
$a Mikl, Michal
700    1_
$a Rektor, Ivan
700    1_
$a Jan, Jiří, $d 1941- $7 jn20000710059
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 15, č. 3 (2018), s. 036025
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29536946 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20230525141531 $b ABA008
999    __
$a ok $b bmc $g 1483797 $s 1084202
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 15 $c 3 $d 036025 $e 20180314 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...