Molecular Characterization of Leishmania RNA virus 2 in Leishmaniamajor from Uzbekistan

. 2019 Oct 21 ; 10 (10) : . [epub] 20191021

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31640177

Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L. major) and common geographical origin.

Zobrazit více v PubMed

Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI

Janssen M.E., Takagi Y., Parent K.N., Cardone G., Nibert M.L., Baker T.S. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J. Virol. 2015;89:1182–1194. doi: 10.1128/JVI.02745-14. PubMed DOI PMC

Parent K.N., Takagi Y., Cardone G., Olson N.H., Ericsson M., Yang M., Lee Y., Asara J.M., Fichorova R.N., Baker T.S., et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. MBio. 2013 doi: 10.1128/mBio.00056-13. PubMed DOI PMC

Dunn S.E., Li H., Cardone G., Nibert M.L., Ghabrial S.A., Baker T.S. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog. 2013;9:e1003225. doi: 10.1371/journal.ppat.1003225. PubMed DOI PMC

Stuart K.D., Weeks R.L., Guilbride P.J. Myler molecular organization of Leishmania RNA virus 1. Proc. Natl. Acad. Sci. USA. 1992;89:8596–8600. doi: 10.1073/pnas.89.18.8596. PubMed DOI PMC

Scheffter S., Widmer G., Patterson J.L. Complete sequence of Leishmania RNA virus 1–4 and identification of conserved sequences. Virology. 1994;199:479–483. doi: 10.1006/viro.1994.1149. PubMed DOI

Lee S.E., Suh J.M., Scheffter S., Patterson J.L., Chung I.K. Identification of a ribosomal frameshift in Leishmania RNA virus 1–4. J. Biochem. 1996;120:22–25. doi: 10.1093/oxfordjournals.jbchem.a021387. PubMed DOI

Zangger H., Hailu A., Desponds C., Lye L.F., Akopyants N.S., Dobson D.E., Ronet C., Ghalib H., Beverley S.M., Fasel N. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl. Trop. Dis. 2014;8:e2836. doi: 10.1371/journal.pntd.0002836. PubMed DOI PMC

Scheffter S.M., Ro Y.T., Chung I.K., Patterson J.L. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology. 1995;212:84–90. doi: 10.1006/viro.1995.1456. PubMed DOI

Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC

Okamoto K., Miyazaki N., Larsson D.S., Kobayashi D., Svenda M., Muhlig K., Maia F.R., Gunn L.H., Isawa H., Kobayashi M., et al. The infectious particle of insect-borne totivirus-like Omono River virus has raised ridges and lacks fibre complexes. Sci. Rep. 2016;6:33170. doi: 10.1038/srep33170. PubMed DOI PMC

Grybchuk D., Kostygov A.Y., Macedo D.H., Votypka J., Lukes J., Yurchenko V. RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniavirus. MBio. 2018 doi: 10.1128/mBio.01932-18. PubMed DOI PMC

Atayde V.D., da Silva A., Filho L., Chaparro V., Zimmermann A., Martel C., Jaramillo M., Olivier M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019;4:714–723. doi: 10.1038/s41564-018-0352-y. PubMed DOI

Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M., et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. doi: 10.1126/science.1199326. PubMed DOI PMC

Hartley M.A., Drexler S., Ronet C., Beverley S.M., Fasel N. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol. 2014;30:412–422. doi: 10.1016/j.pt.2014.05.006. PubMed DOI PMC

Hartley M.A., Ronet C., Zangger H., Beverley S.M., Fasel N. Leishmania RNA virus: When the host pays the toll. Front. Cell Infect Microbiol. 2012;2:99. PubMed PMC

Tirera S., Ginouves M., Donato D., Caballero I.S., Bouchier C., Lavergne A., Bourreau E., Mosnier E., Vantilcke V., Couppie P., et al. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana. PLoS Negl. Trop. Dis. 2017;11:e0005764. doi: 10.1371/journal.pntd.0005764. PubMed DOI PMC

Grybchuk D., Kostygov A.Y., Macedo D.H., d’Avila-Levy C.M., Yurchenko V. RNA viruses in trypanosomatid parasites: A historical overview. Mem. Inst. Oswaldo Cruz. 2018;113:e170487. doi: 10.1590/0074-02760170487. PubMed DOI PMC

Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC

Adaui V., Lye L.F., Akopyants N.S., Zimic M., Llanos-Cuentas A., Garcia L., Maes I., De Doncker S., Dobson D.E., Arevalo J., et al. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by Leishmania braziliensis in Peru and Bolivia. J. Infect. Dis. 2016;213:112–121. doi: 10.1093/infdis/jiv354. PubMed DOI PMC

Ginouvès M., Simon S., Bourreau E., Lacoste V., Ronet C., Couppie P., Nacher M., Demar M., Prevot G. Prevalence and distribution of Leishmania RNA Virus 1 in Leishmania parasites from French Guiana. Am. J. Trop. Med. Hyg. 2016;94:102–106. doi: 10.4269/ajtmh.15-0419. PubMed DOI PMC

Rossi M., Castiglioni P., Hartley M.A., Eren R.O., Prevel F., Desponds C., Utzschneider D.T., Zehn D., Cusi M.G., Kuhlmann F.M., et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl. Acad. Sci. USA. 2017;114:4987–4992. doi: 10.1073/pnas.1621447114. PubMed DOI PMC

Paranaiba L.F., Pinheiro L.J., Macedo D.H., Menezes-Neto A., Torrecilhas A.C., Tafuri W.L., Soares R.P. An overview on Leishmania (Mundinia) enriettii: Biology, immunopathology, LRV and extracellular vesicles during the host-parasite interaction. Parasitology. 2018;145:1265–1273. doi: 10.1017/S0031182017001810. PubMed DOI

Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018.

Sukla S., Roy S., Sundar S., Biswas S. Leptomonas seymouri narna-like virus 1 and not leishmaniaviruses detected in kala-azar samples from India. Arch. Virol. 2017;162:3827–3835. doi: 10.1007/s00705-017-3559-y. PubMed DOI

Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., et al. Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11:e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC

Lye L.F., Akopyants N.S., Dobson D.E., Beverley S.M. A Narnavirus-like element from the trypanosomatid protozoan parasite Leptomonas seymouri. Genome Announc. 2016 doi: 10.1128/genomeA.00713-16. PubMed DOI PMC

Hajjaran H., Mahdi M., Mohebali M., Samimi-Rad K., Ataei-Pirkooh A., Kazemi-Rad E., Naddaf S.R., Raoofian R. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch. Virol. 2016;161:3385–3390. doi: 10.1007/s00705-016-3044-z. PubMed DOI

Kurt O., Mansur N., Cavus I., Ozcan O., Batir M.B., Gunduz C., Sezerman O.U., Ozbilgin A. First report and in silico analysis of Leishmania virus (LRV2) identified in an autochthonous Leishmania major isolate in Turkey. New Microbiol. 2019;42:64–67. PubMed

Faulde M.K., Werner A., Heyl G. Untreated zoonotic cutaneous leishmaniasis characterizing a highly aggressive strain type of Leishmania major in Uzbekistan. J. Eur. Acad. Dermatol. Venereol. 2007;21:1432–1433. doi: 10.1111/j.1468-3083.2007.02240.x. PubMed DOI

Zhirenkina E.N., Ponirovskii E.N., Strelkova M.V., Morozov E.N., Flegontov P.N., Kolesnikov A.A., Ponomareva V.I., Nasyrova R.M., Kovalenko D.A., Fatullaeva A.A., et al. The epidemiological features of visceral leishmaniasis, revealed on examination of children by Polymerase Chain Reaction, in the Papsky District, Namangan Region, Uzbekistan. Med. Parazitol. Parazit. Bolezn. 2011:37–41. (in Russian) PubMed

Strelkova M.V., Ponirovsky E.N., Morozov E.N., Zhirenkina E.N., Razakov S.A., Kovalenko D.A., Schnur L.F., Schonian G. A narrative review of visceral leishmaniasis in Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, the Crimean Peninsula and Southern Russia. Parasit. Vectors. 2015;8:330. doi: 10.1186/s13071-015-0925-z. PubMed DOI PMC

Chajbullinova A., Votýpka J., Sádlová J., Kvapilová K., Seblová V., Kreisinger J., Jirků M., Sanjoba C., Gantuya S., Matsumoto Y., et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit. Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC

Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.S. Genome Project Data Processing The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Quinlan A.R. BEDTools: The swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014 doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC

Wheeler D.L., Barrett T., Benson D.A., Bryant S.H., Canese K., Chetvernin V., Church D.M., Dicuccio M., Edgar R., Federhen S., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2008;36:D13–D21. doi: 10.1093/nar/gkm1000. PubMed DOI PMC

Karagiannis K., Simonyan V., Chumakov K., Mazumder R. Separation and assembly of deep sequencing data into discrete sub-population genomes. Nucleic Acids Res. 2017;45:10989–11003. doi: 10.1093/nar/gkx755. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Villesen P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 2007;7:965–968. doi: 10.1111/j.1471-8286.2007.01821.x. DOI

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI

Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Zangger H., Ronet C., Desponds C., Kuhlmann F.M., Robinson J., Hartley M.A., Prevel F., Castiglioni P., Pratlong F., Bastien P., et al. Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl. Trop. Dis. 2013;7:e2006. doi: 10.1371/journal.pntd.0002006. PubMed DOI PMC

Lye L.F., Owens K., Shi H., Murta S.M., Vieira A.C., Turco S.J., Tschudi C., Ullu E., Beverley S.M. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161. doi: 10.1371/journal.ppat.1001161. PubMed DOI PMC

Matveyev A.V., Alves J.M., Serrano M.G., Lee V., Lara A.M., Barton W.A., Costa-Martins A.G., Beverley S.M., Camargo E.P., Teixeira M.M., et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J. Mol. Evol. 2017;84:104–115. doi: 10.1007/s00239-017-9780-1. PubMed DOI PMC

Brettmann E.A., Shaik J.S., Zangger H., Lye L.F., Kuhlmann F.M., Akopyants N.S., Oschwald D.M., Owens K.L., Hickerson S.M., Ronet C., et al. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc. Natl. Acad. Sci. USA. 2016;113:11998–12005. doi: 10.1073/pnas.1615085113. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania

. 2023 Oct ; 122 (10) : 2279-2286. [epub] 20230725

First report of putative Leishmania RNA virus 2 (LRV2) in Leishmania infantum strains from canine and human visceral leishmaniasis cases in the southeast of Brazil

. 2023 ; 118 () : e230071. [epub] 20230918

Genomic analysis of Leishmania turanica strains from different regions of Central Asia

. 2023 Mar ; 17 (3) : e0011145. [epub] 20230306

Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt

. 2023 Feb ; 150 (2) : 129-136. [epub] 20221201

Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins

. 2021 Nov 19 ; 13 (11) : . [epub] 20211119

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Characterization of a new Leishmania major strain for use in a controlled human infection model

. 2021 Jan 11 ; 12 (1) : 215. [epub] 20210111

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace