RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus

. 2018 Oct 16 ; 9 (5) : . [epub] 20181016

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30327446

In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.

Zobrazit více v PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195:115–122. doi:10.1016/j.molbiopara.2014.05.007. PubMed DOI

Fernandes AP, Nelson K, Beverley SM. 1993. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A 90:11608–11612. doi:10.1073/pnas.90.24.11608. PubMed DOI PMC

Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC. 2004. Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol 34:1393–1404. doi:10.1016/j.ijpara.2004.08.011. PubMed DOI

Jaskowska E, Butler C, Preston G, Kelly S. 2015. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog 11:e1004484. doi:10.1371/journal.ppat.1004484. PubMed DOI PMC

Podlipaev SA. 2000. Insect trypanosomatids: the need to know more. Mem Inst Oswaldo Cruz 95:517–522. doi:10.1590/S0074-02762000000400013. PubMed DOI

Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, Lukeš J, Yurchenko V. 2013. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 164:763–781. doi:10.1016/j.protis.2013.08.002. PubMed DOI

Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. 2016. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol 63:198–209. doi:10.1111/jeu.12268. PubMed DOI

Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165:825–838. doi:10.1016/j.protis.2014.09.002. PubMed DOI

Hamilton PT, Votýpka J, Dostalova A, Yurchenko V, Bird NH, Lukeš J, Lemaitre B, Perlman SJ. 2015. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio 6:e01356-15. doi:10.1128/mBio.01356-15. PubMed DOI PMC

Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, Votýpka J, Yurchenko V, Ayala FJ, Lukeš J. 2017. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A 114:11757–11762. doi:10.1073/pnas.1712311114. PubMed DOI PMC

Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. 2016. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol 63:657–678. doi:10.1111/jeu.12315. PubMed DOI

Záhonová K, Kostygov A, Ševčíková T, Yurchenko V, Eliáš M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26:2364–2369. doi:10.1016/j.cub.2016.06.064. PubMed DOI

Grybchuk D, Kostygov AY, Macedo DH, d’Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz 113:e170487. doi:10.1590/0074-02760170487. PubMed DOI PMC

Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. 2012. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2:99. doi:10.3389/fcimb.2012.00099. PubMed DOI PMC

Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. 1989. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A 86:5979–5982. doi:10.1073/pnas.86.15.5979. PubMed DOI PMC

Weeks R, Aline RF Jr, Myler PJ, Stuart K. 1992. LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA. J Virol 66:1389–1393. PubMed PMC

Hartley MA, Drexler S, Ronet C, Beverley SM, Fasel N. 2014. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol 30:412–422. doi:10.1016/j.pt.2014.05.006. PubMed DOI PMC

Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, Lye LF, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S. 2011. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331:775–778. doi:10.1126/science.1199326. PubMed DOI PMC

Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, Ronet C, Ghalib H, Beverley SM, Fasel N. 2014. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 8:e2836. doi:10.1371/journal.pntd.0002836. PubMed DOI PMC

Scheffter SM, Ro YT, Chung IK, Patterson JL. 1995. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology 212:84–90. doi:10.1006/viro.1995.1456. PubMed DOI

Widmer G, Dooley S. 1995. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res 23:2300–2304. doi:10.1093/nar/23.12.2300. PubMed DOI PMC

Lye LF, Akopyants NS, Dobson DE, Beverley SM. 2016. A narnavirus-like element from the trypanosomatid protozoan parasite Leptomonas seymouri. Genome Announc 4:e00713-16. doi:10.1128/genomeA.00713-16. PubMed DOI PMC

Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens. Genome Announc 4:e00711-16. doi:10.1128/genomeA.00711-16. PubMed DOI PMC

Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc 4:e00715-16. doi:10.1128/genomeA.00715-16. PubMed DOI PMC

Grybchuk D, Akopyants NS, Kostygov AY, Konovalovas A, Lye L-F, Dobson DE, Zangger H, Fasel N, Butenko A, Frolov AO, Votýpka J, d’Avila-Levy CM, Kulich P, Moravcová J, Plevka P, Rogozin IB, Serva S, Lukeš J, Beverley SM, Yurchenko V. 2018. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc Natl Acad Sci U S A 115:E506–E515. doi:10.1073/pnas.1717806115. PubMed DOI PMC

Kostygov AY, Yurchenko V. 2017. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol 64:020. doi:10.14411/fp.2017.020. PubMed DOI

Hillman BI, Cai G. 2013. The family Narnaviridae: simplest of RNA viruses. Adv Virus Res 86:149–176. doi:10.1016/B978-0-12-394315-6.00006-4. PubMed DOI

Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 2015. 50-plus years of fungal viruses. Virology 479-480:356–368. doi:10.1016/j.virol.2015.02.034. PubMed DOI

Wickner RB, Fujimura T, Esteban R. 2013. Viruses and prions of Saccharomyces cerevisiae. Adv Virus Res 86:1–36. doi:10.1016/B978-0-12-394315-6.00001-5. PubMed DOI PMC

Cai G, Myers K, Fry WE, Hillman BI. 2012. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol 157:165–169. doi:10.1007/s00705-011-1126-5. PubMed DOI

Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. 2015. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog 11:e1005127. doi:10.1371/journal.ppat.1005127. PubMed DOI PMC

Rodríguez-Cousiño N, Solorzano A, Fujimura T, Esteban R. 1998. Yeast positive-stranded virus-like RNA replicons. 20 S and 23 S RNA terminal nucleotide sequences and 3' end secondary structures resemble those of RNA coliphages. J Biol Chem 273:20363–20371. doi:10.1074/jbc.273.32.20363. PubMed DOI

Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:D708–D717. doi:10.1093/nar/gkx932. PubMed DOI PMC

Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ. 2016. Redefining the invertebrate RNA virosphere. Nature 540:539–543. doi:10.1038/nature20167. PubMed DOI

Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, Yurchenko V, Votýpka J, Maslov DA. 2015. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist 166:551–568. doi:10.1016/j.protis.2015.08.004. PubMed DOI

Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. 2012. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163:616–631. doi:10.1016/j.protis.2011.12.004. PubMed DOI

Votýpka J, Maslov DA, Yurchenko V, Jirků M, Kment P, Lun ZR, Lukeš J. 2010. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol 54:243–253. doi:10.1016/j.ympev.2009.10.014. PubMed DOI

Lee SE, Suh JM, Scheffter S, Patterson JL, Chung IK. 1996. Identification of a ribosomal frameshift in Leishmania RNA virus 1-4. J Biochem 120:22–25. doi:10.1093/oxfordjournals.jbchem.a021387. PubMed DOI

Fujimura T, Esteban R, Esteban LM, Wickner RB. 1990. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell 62:819–828. doi:10.1016/0092-8674(90)90125-X. PubMed DOI

Scheffter S, Widmer G, Patterson JL. 1994. Complete sequence of Leishmania RNA virus 1-4 and identification of conserved sequences. Virology 199:479–483. doi:10.1006/viro.1994.1149. PubMed DOI

Dolja VV, Koonin EV. 2018. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 244:36–52. doi:10.1016/j.virusres.2017.10.020. PubMed DOI PMC

Landfear SM, Ignatushchenko M. 2001. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 115:1–17. doi:10.1016/S0166-6851(01)00262-6. PubMed DOI

Gull K. 2003. Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Curr Opin Microbiol 6:365–370. doi:10.1016/S1369-5274(03)00092-4. PubMed DOI

Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34:466–480. doi:10.1016/j.pt.2018.03.002. PubMed DOI

Araujo JP, Hughes DP. 2016. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet 94:1–39. doi:10.1016/bs.adgen.2016.01.001. PubMed DOI

Mitchell PL. 2004. Heteroptera as vectors of plant pathogens. Neotrop Entomol 33:519–545. doi:10.1590/S1519-566X2004000500001. DOI

Dostálová A, Volf P. 2012. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5:276. doi:10.1186/1756-3305-5-276. PubMed DOI PMC

Bates PA. 1994. The developmental biology of Leishmania promastigotes. Exp Parasitol 79:215–218. doi:10.1006/expr.1994.1084. PubMed DOI

Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. 2017. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol 57:85–98. doi:10.1016/j.ejop.2016.10.007. PubMed DOI

Frolov AO, Skarlato SO. 1995. Fine structure and mechanisms of adaptation of lower trypanosomatids in Hemiptera. Tsitologiia 37:539–560.

Wall R, Shearer D. 2008. Veterinary ectoparasites: biology, pathology and control, 2nd ed. Blackwell Science, Oxford, United Kingdom.

Bhattarai NR, Das ML, Rijal S, van der Auwera G, Picado A, Khanal B, Roy L, Speybroeck N, Berkvens D, Davies CR, Coosemans M, Boelaert M, Dujardin JC. 2009. Natural infection of Phlebotomus argentipes with Leishmania and other trypanosomatids in a visceral leishmaniasis endemic region of Nepal. Trans R Soc Trop Med Hyg 103:1087–1092. doi:10.1016/j.trstmh.2009.03.008. PubMed DOI

de Morais RCS, Gonçalves-de-Albuquerque SDC, Pessoa e Silva R, Costa PL, da Silva KG, da Silva FJ, Brandão-Filho SP, Dantas-Torres F, de Paiva-Cavalcanti M. 2013. Detection and quantification of Leishmania braziliensis in ectoparasites from dogs. Vet Parasitol 196:506–508. doi:10.1016/j.vetpar.2013.03.026. PubMed DOI

Moser BA, Koehler PG, Patterson RS. 1991. Effect of larval diet on cat flea (Siphonaptera: Pulicidae) developmental times and adult emergence. J Econ Entomol 84:1257–1261. doi:10.1093/jee/84.4.1257. PubMed DOI

Shryock JA, Houseman RM. 2006. Time spent by Ctenocephalides felis (Siphonaptera: Pulicidae) larvae in food patches of varying quality. Environ Entomol 35:401–404. doi:10.1603/0046-225X-35.2.401. DOI

Hajjaran H, Mahdi M, Mohebali M, Samimi-Rad K, Ataei-Pirkooh A, Kazemi-Rad E, Naddaf SR, Raoofian R. 2016. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch Virol 161:3385–3390. doi:10.1007/s00705-016-3044-z. PubMed DOI

Maslov DA, Yurchenko VY, Jirků M, Lukeš J. 2010. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57:177–188. doi:10.1111/j.1550-7408.2009.00464.x. PubMed DOI

Maslov DA, Lukes J, Jirku M, Simpson L. 1996. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75:197–205. doi:10.1016/0166-6851(95)02526-X. PubMed DOI

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi:10.1038/nprot.2013.084. PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC

Ramirez-Gonzalez RH, Bonnal R, Caccamo M, Maclean D. 2012. Bio-SAMtools: ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol Med 7:6. doi:10.1186/1751-0473-7-6. PubMed DOI PMC

Berriman M, Rutherford K. 2003. Viewing and annotating sequence data with Artemis. Brief Bioinform 4:124–132. doi:10.1093/bib/4.2.124. PubMed DOI

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033. PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC

Ishemgulova A, Butenko A, Kortišová L, Boucinha C, Grybchuk-Ieremenko A, Morelli KA, Tesařová M, Kraeva N, Grybchuk D, Pánek T, Flegontov P, Lukeš J, Votýpka J, Pavan MG, Opperdoes FR, Spodareva V, d’Avila-Levy CM, Kostygov AY, Yurchenko V. 2017. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One 12:e0174165. doi:10.1371/journal.pone.0174165. PubMed DOI PMC

Chistyakova LV, Kostygov AY, Kornilova OA, Yurchenko V. 2014. Reisolation and redescription of Balantidium duodeni Stein, 1867 (Litostomatea, Trichostomatia). Parasitol Res 113:4207–4215. doi:10.1007/s00436-014-4096-1. PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. doi:10.1038/nmeth.4285. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. 2014. Molecular revision of the genus Wallaceina. Protist 165:594–604. doi:10.1016/j.protis.2014.07.001. PubMed DOI

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315. PubMed DOI

Hofmann K, Stoffel W. 1993. TMBase—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166.

Käll L, Krogh A, Sonnhammer EL. 2007. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432. doi:10.1093/nar/gkm256. PubMed DOI PMC

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701. PubMed DOI

Frank K, Sippl MJ. 2008. High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176. doi:10.1093/bioinformatics/btn422. PubMed DOI

Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Analysis of Leishbuviridae from Trypanosomatids

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae)

. 2024 ; 10 (1) : veae037. [epub] 20240504

Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania

. 2023 Oct ; 122 (10) : 2279-2286. [epub] 20230725

First report of putative Leishmania RNA virus 2 (LRV2) in Leishmania infantum strains from canine and human visceral leishmaniasis cases in the southeast of Brazil

. 2023 ; 118 () : e230071. [epub] 20230918

Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris

. 2023 Sep 12 ; 21 (1) : 191. [epub] 20230912

Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt

. 2023 Feb ; 150 (2) : 129-136. [epub] 20221201

Elimination of LRVs Elicits Different Responses in Leishmania spp

. 2022 Aug 31 ; 7 (4) : e0033522. [epub] 20220809

The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?

. 2022 Jun 14 ; 14 (6) : . [epub] 20220614

Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins

. 2021 Nov 19 ; 13 (11) : . [epub] 20211119

Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids

. 2021 Sep ; 148 (10) : 1161-1170. [epub] 20210107

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host

. 2020 Dec 02 ; 18 (1) : 187. [epub] 20201202

The First Non-LRV RNA Virus in Leishmania

. 2020 Feb 02 ; 12 (2) : . [epub] 20200202

Molecular Characterization of Leishmania RNA virus 2 in Leishmaniamajor from Uzbekistan

. 2019 Oct 21 ; 10 (10) : . [epub] 20191021

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace