Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins

. 2021 Nov 19 ; 13 (11) : . [epub] 20211119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835111

Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.

Zobrazit více v PubMed

WHO Leishmaniasis. 2020. [(accessed on 12 October 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.

Akhoundi M., Downing T., Votýpka J., Kuhls K., Lukeš J., Cannet A., Ravel C., Marty P., Delaunay P., Kasbari M., et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017;57:1–29. doi: 10.1016/j.mam.2016.11.012. PubMed DOI

Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC

Grybchuk D., Macedo D.H., Kleschenko Y., Kraeva N., Lukashev A.N., Bates P.A., Kulich P., Leštinová T., Volf P., Kostygov A.Y., et al. The first non-LRV RNA virus in Leishmania. Viruses. 2020;12:168. doi: 10.3390/v12020168. PubMed DOI PMC

Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC

Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI

Poulos B.T., Tang K.F., Pantoja C.R., Bonami J.R., Lightner D.V. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J. Gen. Virol. 2006;87:987–996. doi: 10.1099/vir.0.81127-0. PubMed DOI

Zhai Y., Attoui H., Mohd Jaafar F., Wang H.Q., Cao Y.X., Fan S.P., Sun Y.X., Liu L.D., Mertens P.P., Meng W.S., et al. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J. Gen. Virol. 2010;91:2836–2845. doi: 10.1099/vir.0.024794-0. PubMed DOI

Løvoll M., Wiik-Nielsen J., Grove S., Wiik-Nielsen C.R., Kristoffersen A.B., Faller R., Poppe T., Jung J., Pedamallu C.S., Nederbragt A.J., et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS) Virol. J. 2010;7:309. doi: 10.1186/1743-422X-7-309. PubMed DOI PMC

Tengs T., Böckerman I. A strain of piscine myocarditis virus infecting Atlantic argentine, Argentina silus (Ascanius) J. Fish Dis. 2012;35:545–547. doi: 10.1111/j.1365-2761.2012.01380.x. PubMed DOI

Xin C., Wu B., Li J., Gong P., Yang J., Li H., Cai X., Zhang X. Complete genome sequence and evolution analysis of Eimeria stiedai RNA virus 1, a novel member of the family Totiviridae. Arch. Virol. 2016;161:3571–3576. doi: 10.1007/s00705-016-3020-7. PubMed DOI

Janssen M.E., Takagi Y., Parent K.N., Cardone G., Nibert M.L., Baker T.S. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J. Virol. 2015;89:1182–1194. doi: 10.1128/JVI.02745-14. PubMed DOI PMC

Parent K.N., Takagi Y., Cardone G., Olson N.H., Ericsson M., Yang M., Lee Y., Asara J.M., Fichorova R.N., Baker T.S., et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio. 2013;4:e00056-13. doi: 10.1128/mBio.00056-13. PubMed DOI PMC

Grybchuk D., Kostygov A.Y., Macedo D.H., d’Avila-Levy C.M., Yurchenko V. RNA viruses in trypanosomatid parasites: A historical overview. Mem. Inst. Oswaldo Cruz. 2018;113:e170487. doi: 10.1590/0074-02760170487. PubMed DOI PMC

Scheffter S., Widmer G., Patterson J.L. Complete sequence of Leishmania RNA virus 1–4 and identification of conserved sequences. Virology. 1994;199:479–483. doi: 10.1006/viro.1994.1149. PubMed DOI

Stuart K.D., Weeks R., Guilbride L., Myler P.J. Molecular organization of Leishmania RNA virus 1. Proc. Natl. Acad. Sci. USA. 1992;89:8596–8600. doi: 10.1073/pnas.89.18.8596. PubMed DOI PMC

Cantanhêde L.M., Mata-Somarribas C., Chourabi K., Pereira da Silva G., Dias das Chagas B., de Oliveira R.P.L., Cortes Boite M., Cupolillo E. The maze pathway of coevolution: A critical review over the Leishmania and its endosymbiotic history. Genes. 2021;12:657. doi: 10.3390/genes12050657. PubMed DOI PMC

Grybchuk D., Kostygov A.Y., Macedo D.H., Votypka J., Lukes J., Yurchenko V. RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniavirus. mBio. 2018;9:e01932-18. doi: 10.1128/mBio.01932-18. PubMed DOI PMC

Hartley M.A., Ronet C., Zangger H., Beverley S.M., Fasel N. Leishmania RNA virus: When the host pays the toll. Front. Cell Infect. Microbiol. 2012;2:99. doi: 10.3389/fcimb.2012.00099. PubMed DOI PMC

Brettmann E.A., Shaik J.S., Zangger H., Lye L.F., Kuhlmann F.M., Akopyants N.S., Oschwald D.M., Owens K.L., Hickerson S.M., Ronet C., et al. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc. Natl. Acad. Sci. USA. 2016;113:11998–12005. doi: 10.1073/pnas.1615085113. PubMed DOI PMC

Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M., et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. doi: 10.1126/science.1199326. PubMed DOI PMC

Rossi M., Castiglioni P., Hartley M.A., Eren R.O., Prevel F., Desponds C., Utzschneider D.T., Zehn D., Cusi M.G., Kuhlmann F.M., et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl. Acad. Sci. USA. 2017;114:4987–4992. doi: 10.1073/pnas.1621447114. PubMed DOI PMC

Hartley M.A., Bourreau E., Rossi M., Castiglioni P., Eren R.O., Prevel F., Couppie P., Hickerson S.M., Launois P., Beverley S.M., et al. Leishmaniavirus-dependent metastatic leishmaniasis is prevented by blocking IL-17A. PLoS Pathog. 2016;12:e1005852. doi: 10.1371/journal.ppat.1005852. PubMed DOI PMC

Zangger H., Hailu A., Desponds C., Lye L.F., Akopyants N.S., Dobson D.E., Ronet C., Ghalib H., Beverley S.M., Fasel N. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl. Trop. Dis. 2014;8:e2836. doi: 10.1371/journal.pntd.0002836. PubMed DOI PMC

Eren R.O., Reverte M., Rossi M., Hartley M.A., Castiglioni P., Prevel F., Martin R., Desponds C., Lye L.F., Drexler S.K., et al. Mammalian innate immune response to a Leishmania-resident RNA virus increases macrophage survival to promote parasite persistence. Cell Host Microbe. 2016;20:318–328. doi: 10.1016/j.chom.2016.08.001. PubMed DOI PMC

Barrow P., Dujardin J.C., Fasel N., Greenwood A.D., Osterrieder K., Lomonossoff G., Fiori P.L., Atterbury R., Rossi M., Lalle M. Viruses of protozoan parasites and viral therapy: Is the time now right? Virol. J. 2020;17:142. doi: 10.1186/s12985-020-01410-1. PubMed DOI PMC

Macedo D.H., Menezes-Neto A., Rugani J.M., Rocha A.C., Silva S.O., Melo M.N., Lye L.F., Beverley S.M., Gontijo C.M., Soares R.P. Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. Mol. Biochem. Parasitol. 2016;210:50–54. doi: 10.1016/j.molbiopara.2016.08.005. PubMed DOI PMC

Hajjaran H., Mahdi M., Mohebali M., Samimi-Rad K., Ataei-Pirkooh A., Kazemi-Rad E., Naddaf S.R., Raoofian R. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch. Virol. 2016;161:3385–3390. doi: 10.1007/s00705-016-3044-z. PubMed DOI

Saberi R., Fakhar M., Hajjaran H., Ataei-Pirkooh A., Mohebali M., Taghipour N., Ziaei Hezarjaribi H., Moghadam Y., Bagheri A. Presence and diversity of Leishmania RNA virus in an old zoonotic cutaneous leishmaniasis focus, northeastern Iran: Haplotype and phylogenetic based approach. Int. J. Infect. Dis. 2020;101:6–13. doi: 10.1016/j.ijid.2020.08.033. PubMed DOI

Atayde V.D., da Silva Lira Filho A., Chaparro V., Zimmermann A., Martel C., Jaramillo M., Olivier M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019;4:714–723. doi: 10.1038/s41564-018-0352-y. PubMed DOI

Ishemgulova A., Kraeva N., Hlaváčová J., Zimmer S.L., Butenko A., Podešvová L., Leštinová T., Lukeš J., Kostygov A., Votýpka J., et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl. Trop. Dis. 2017;11:e0005782. doi: 10.1371/journal.pntd.0005782. PubMed DOI PMC

Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI

Losev A., Grybchuk-Ieremenko A., Kostygov A.Y., Lukes J., Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol. Res. 2015;114:1071–1078. doi: 10.1007/s00436-014-4277-y. PubMed DOI

Kleschenko Y., Grybchuk D., Matveeva N.S., Macedo D.H., Ponirovsky E.N., Lukashev A.N., Yurchenko V. Molecular characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes. 2019;10:830. doi: 10.3390/genes10100830. PubMed DOI PMC

Sádlová J., Podešvová L., Bečvář T., Bianchi C., Gerasimov E.S., Saura A., Glanzová K., Leštinová T., Matveeva N.S., Chmelová L., et al. Catalase impairs Leishmania mexicana development and virulence. Virulence. 2021;12:852–867. doi: 10.1080/21505594.2021.1896830. PubMed DOI PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 8 January 2019. [(accessed on 12 October 2021)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Sayers E.W., Beck J., Bolton E.E., Bourexis D., Brister J.R., Canese K., Comeau D.C., Funk K., Kim S., Klimke W., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49:D10–D17. doi: 10.1093/nar/gkaa892. PubMed DOI PMC

Van der Auwera G.A., O’Connor B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O’Reilly Media, Inc.; Sebastopol, CA, USA: 2020. p. 496.

Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Woodcroft B.J., Boyd J.A., Tyson G.W. OrfM: A fast open reading frame predictor for metagenomic data. Bioinformatics. 2016;32:2702–2703. doi: 10.1093/bioinformatics/btw241. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Stecher G., Tamura K., Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020;37:1237–1239. doi: 10.1093/molbev/msz312. PubMed DOI PMC

Wei X., Zhang J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol. Evol. 2014;7:381–390. doi: 10.1093/gbe/evu294. PubMed DOI PMC

Massingham T., Goldman N. Detecting amino acid sites under positive selection and purifying selection. Genetics. 2005;169:1753–1762. doi: 10.1534/genetics.104.032144. PubMed DOI PMC

Procházková M., Füzik T., Grybchuk D., Falginella F.L., Podešvová L., Yurchenko V., Vácha R., Plevka P. Capsid structure of Leishmania RNA Virus 1. J. Virol. 2021;95:e01957-20. doi: 10.1128/JVI.01957-20. PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Bruenn J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2003;31:1821–1829. doi: 10.1093/nar/gkg277. PubMed DOI PMC

Procter J.B., Carstairs G.M., Soares B., Mourao K., Ofoegbu T.C., Barton D., Lui L., Menard A., Sherstnev N., Roldan-Martinez D., et al. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2021;2231:203–224. PubMed PMC

Naitow H., Tang J., Canady M., Wickner R.B., Johnson J.E. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. doi: 10.1038/nsb844. PubMed DOI

Venkataraman S., Prasad B., Selvarajan R. RNA Dependent RNA Polymerases: Insights from structure, function and evolution. Viruses. 2018;10:76. doi: 10.3390/v10020076. PubMed DOI PMC

Cui Y., Zhang Y., Zhou K., Sun J., Zhou Z.H. Conservative transcription in three steps visualized in a double-stranded RNA virus. Nat. Struct. Mol. Biol. 2019;26:1023–1034. doi: 10.1038/s41594-019-0320-0. PubMed DOI PMC

Ding K., Celma C.C., Zhang X., Chang T., Shen W., Atanasov I., Roy P., Zhou Z.H. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat. Commun. 2019;10:2216. doi: 10.1038/s41467-019-10236-7. PubMed DOI PMC

Lawton J.A., Estes M.K., Prasad B.V. Mechanism of genome transcription in segmented dsRNA viruses. Adv. Virus Res. 2000;55:185–229. PubMed PMC

Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC

Harkins K.M., Schwartz R.S., Cartwright R.A., Stone A.C. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect. Genet. Evol. 2016;38:101–109. doi: 10.1016/j.meegid.2015.11.030. PubMed DOI

Chajbullinova A., Votýpka J., Sádlová J., Kvapilová K., Seblová V., Kreisinger J., Jirků M., Sanjoba C., Gantuya S., Matsumoto Y., et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit. Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC

Strelkova M.V., Eliseev L.N., Ponirovsky E.N., Dergacheva T.I., Annacharyeva D.K., Erokhin P.I., Evans D.A. Mixed leishmanial infections in Rhombomys opimus: A key to the persistence of Leishmania major from one transmission season to the next. Ann. Trop. Med. Parasitol. 2001;95:811–819. PubMed

Nalçacı M., Karakuş M., Yilmaz B., Demir S., Özbilgin A., Özbel Y., Töz S. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans. R. Soc. Trop. Med. Hyg. 2019;113:410–417. doi: 10.1093/trstmh/trz023. PubMed DOI

Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC

Tibayrenc M., Ayala F.J. Models in parasite and pathogen evolution: Genomic analysis reveals predominant clonality and progressive evolution at all evolutionary scales in parasitic protozoa, yeasts and bacteria. Adv. Parasitol. 2021;111:75–117. PubMed

Akopyants N.S., Kimblin N., Secundino N., Patrick R., Peters N., Lawyer P., Dobson D.E., Beverley S.M., Sacks D.L. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–268. doi: 10.1126/science.1169464. PubMed DOI PMC

Volf P., Sádlová J. Sex in Leishmania. Science. 2009;324:1644. doi: 10.1126/science.324_1644b. PubMed DOI

Gutiérrez-Corbo C., Dominguez-Asenjo B., Martinez-Valladares M., Pérez-Pertejo Y., García-Estrada C., Balaña-Fouce R., Reguera R.M. Reproduction in trypanosomatids: Past and present. Biology. 2021;10:471. doi: 10.3390/biology10060471. PubMed DOI PMC

Tirera S., Ginouves M., Donato D., Caballero I.S., Bouchier C., Lavergne A., Bourreau E., Mosnier E., Vantilcke V., Couppie P., et al. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana. PLoS Negl. Trop. Dis. 2017;11:e0005764. doi: 10.1371/journal.pntd.0005764. PubMed DOI PMC

Matveyev A.V., Alves J.M., Serrano M.G., Lee V., Lara A.M., Barton W.A., Costa-Martins A.G., Beverley S.M., Camargo E.P., Teixeira M.M., et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J. Mol. Evol. 2017;84:104–115. doi: 10.1007/s00239-017-9780-1. PubMed DOI PMC

Lye L.F., Owens K., Shi H., Murta S.M., Vieira A.C., Turco S.J., Tschudi C., Ullu E., Beverley S.M. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161. doi: 10.1371/journal.ppat.1001161. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae)

. 2024 ; 10 (1) : veae037. [epub] 20240504

Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania

. 2023 Oct ; 122 (10) : 2279-2286. [epub] 20230725

First report of putative Leishmania RNA virus 2 (LRV2) in Leishmania infantum strains from canine and human visceral leishmaniasis cases in the southeast of Brazil

. 2023 ; 118 () : e230071. [epub] 20230918

Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris

. 2023 Sep 12 ; 21 (1) : 191. [epub] 20230912

Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection

. 2023 Jul 27 ; 8 (8) : . [epub] 20230727

Genomic analysis of Leishmania turanica strains from different regions of Central Asia

. 2023 Mar ; 17 (3) : e0011145. [epub] 20230306

Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt

. 2023 Feb ; 150 (2) : 129-136. [epub] 20221201

Elimination of LRVs Elicits Different Responses in Leishmania spp

. 2022 Aug 31 ; 7 (4) : e0033522. [epub] 20220809

The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?

. 2022 Jun 14 ; 14 (6) : . [epub] 20220614

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...