Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34835111
PubMed Central
PMC8624691
DOI
10.3390/v13112305
PII: v13112305
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmaniavirus, coevolution, phylogenomics,
- MeSH
- Leishmania virologie MeSH
- leishmanióza virologie MeSH
- lidé MeSH
- RNA virová analýza MeSH
- RNA-dependentní RNA-polymerasa genetika MeSH
- RNA-viry genetika MeSH
- virové plášťové proteiny genetika MeSH
- virové proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
- RNA-dependentní RNA-polymerasa MeSH
- virové plášťové proteiny MeSH
- virové proteiny MeSH
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
Central European Institute of Technology Masaryk University 60177 Brno Czech Republic
Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University 119991 Moscow Russia
Faculty of Biology M 5 Lomonosov Moscow State University 119991 Moscow Russia
Institute for Information Transmission Problems Russian Academy of Sciences 127051 Moscow Russia
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Martsinovsky Institute of Medical Parasitology Sechenov University 119435 Moscow Russia
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
WHO Leishmaniasis. 2020. [(accessed on 12 October 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.
Akhoundi M., Downing T., Votýpka J., Kuhls K., Lukeš J., Cannet A., Ravel C., Marty P., Delaunay P., Kasbari M., et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017;57:1–29. doi: 10.1016/j.mam.2016.11.012. PubMed DOI
Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC
Grybchuk D., Macedo D.H., Kleschenko Y., Kraeva N., Lukashev A.N., Bates P.A., Kulich P., Leštinová T., Volf P., Kostygov A.Y., et al. The first non-LRV RNA virus in Leishmania. Viruses. 2020;12:168. doi: 10.3390/v12020168. PubMed DOI PMC
Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC
Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI
Poulos B.T., Tang K.F., Pantoja C.R., Bonami J.R., Lightner D.V. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J. Gen. Virol. 2006;87:987–996. doi: 10.1099/vir.0.81127-0. PubMed DOI
Zhai Y., Attoui H., Mohd Jaafar F., Wang H.Q., Cao Y.X., Fan S.P., Sun Y.X., Liu L.D., Mertens P.P., Meng W.S., et al. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J. Gen. Virol. 2010;91:2836–2845. doi: 10.1099/vir.0.024794-0. PubMed DOI
Løvoll M., Wiik-Nielsen J., Grove S., Wiik-Nielsen C.R., Kristoffersen A.B., Faller R., Poppe T., Jung J., Pedamallu C.S., Nederbragt A.J., et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS) Virol. J. 2010;7:309. doi: 10.1186/1743-422X-7-309. PubMed DOI PMC
Tengs T., Böckerman I. A strain of piscine myocarditis virus infecting Atlantic argentine, Argentina silus (Ascanius) J. Fish Dis. 2012;35:545–547. doi: 10.1111/j.1365-2761.2012.01380.x. PubMed DOI
Xin C., Wu B., Li J., Gong P., Yang J., Li H., Cai X., Zhang X. Complete genome sequence and evolution analysis of Eimeria stiedai RNA virus 1, a novel member of the family Totiviridae. Arch. Virol. 2016;161:3571–3576. doi: 10.1007/s00705-016-3020-7. PubMed DOI
Janssen M.E., Takagi Y., Parent K.N., Cardone G., Nibert M.L., Baker T.S. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J. Virol. 2015;89:1182–1194. doi: 10.1128/JVI.02745-14. PubMed DOI PMC
Parent K.N., Takagi Y., Cardone G., Olson N.H., Ericsson M., Yang M., Lee Y., Asara J.M., Fichorova R.N., Baker T.S., et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio. 2013;4:e00056-13. doi: 10.1128/mBio.00056-13. PubMed DOI PMC
Grybchuk D., Kostygov A.Y., Macedo D.H., d’Avila-Levy C.M., Yurchenko V. RNA viruses in trypanosomatid parasites: A historical overview. Mem. Inst. Oswaldo Cruz. 2018;113:e170487. doi: 10.1590/0074-02760170487. PubMed DOI PMC
Scheffter S., Widmer G., Patterson J.L. Complete sequence of Leishmania RNA virus 1–4 and identification of conserved sequences. Virology. 1994;199:479–483. doi: 10.1006/viro.1994.1149. PubMed DOI
Stuart K.D., Weeks R., Guilbride L., Myler P.J. Molecular organization of Leishmania RNA virus 1. Proc. Natl. Acad. Sci. USA. 1992;89:8596–8600. doi: 10.1073/pnas.89.18.8596. PubMed DOI PMC
Cantanhêde L.M., Mata-Somarribas C., Chourabi K., Pereira da Silva G., Dias das Chagas B., de Oliveira R.P.L., Cortes Boite M., Cupolillo E. The maze pathway of coevolution: A critical review over the Leishmania and its endosymbiotic history. Genes. 2021;12:657. doi: 10.3390/genes12050657. PubMed DOI PMC
Grybchuk D., Kostygov A.Y., Macedo D.H., Votypka J., Lukes J., Yurchenko V. RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniavirus. mBio. 2018;9:e01932-18. doi: 10.1128/mBio.01932-18. PubMed DOI PMC
Hartley M.A., Ronet C., Zangger H., Beverley S.M., Fasel N. Leishmania RNA virus: When the host pays the toll. Front. Cell Infect. Microbiol. 2012;2:99. doi: 10.3389/fcimb.2012.00099. PubMed DOI PMC
Brettmann E.A., Shaik J.S., Zangger H., Lye L.F., Kuhlmann F.M., Akopyants N.S., Oschwald D.M., Owens K.L., Hickerson S.M., Ronet C., et al. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc. Natl. Acad. Sci. USA. 2016;113:11998–12005. doi: 10.1073/pnas.1615085113. PubMed DOI PMC
Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M., et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. doi: 10.1126/science.1199326. PubMed DOI PMC
Rossi M., Castiglioni P., Hartley M.A., Eren R.O., Prevel F., Desponds C., Utzschneider D.T., Zehn D., Cusi M.G., Kuhlmann F.M., et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl. Acad. Sci. USA. 2017;114:4987–4992. doi: 10.1073/pnas.1621447114. PubMed DOI PMC
Hartley M.A., Bourreau E., Rossi M., Castiglioni P., Eren R.O., Prevel F., Couppie P., Hickerson S.M., Launois P., Beverley S.M., et al. Leishmaniavirus-dependent metastatic leishmaniasis is prevented by blocking IL-17A. PLoS Pathog. 2016;12:e1005852. doi: 10.1371/journal.ppat.1005852. PubMed DOI PMC
Zangger H., Hailu A., Desponds C., Lye L.F., Akopyants N.S., Dobson D.E., Ronet C., Ghalib H., Beverley S.M., Fasel N. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl. Trop. Dis. 2014;8:e2836. doi: 10.1371/journal.pntd.0002836. PubMed DOI PMC
Eren R.O., Reverte M., Rossi M., Hartley M.A., Castiglioni P., Prevel F., Martin R., Desponds C., Lye L.F., Drexler S.K., et al. Mammalian innate immune response to a Leishmania-resident RNA virus increases macrophage survival to promote parasite persistence. Cell Host Microbe. 2016;20:318–328. doi: 10.1016/j.chom.2016.08.001. PubMed DOI PMC
Barrow P., Dujardin J.C., Fasel N., Greenwood A.D., Osterrieder K., Lomonossoff G., Fiori P.L., Atterbury R., Rossi M., Lalle M. Viruses of protozoan parasites and viral therapy: Is the time now right? Virol. J. 2020;17:142. doi: 10.1186/s12985-020-01410-1. PubMed DOI PMC
Macedo D.H., Menezes-Neto A., Rugani J.M., Rocha A.C., Silva S.O., Melo M.N., Lye L.F., Beverley S.M., Gontijo C.M., Soares R.P. Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. Mol. Biochem. Parasitol. 2016;210:50–54. doi: 10.1016/j.molbiopara.2016.08.005. PubMed DOI PMC
Hajjaran H., Mahdi M., Mohebali M., Samimi-Rad K., Ataei-Pirkooh A., Kazemi-Rad E., Naddaf S.R., Raoofian R. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch. Virol. 2016;161:3385–3390. doi: 10.1007/s00705-016-3044-z. PubMed DOI
Saberi R., Fakhar M., Hajjaran H., Ataei-Pirkooh A., Mohebali M., Taghipour N., Ziaei Hezarjaribi H., Moghadam Y., Bagheri A. Presence and diversity of Leishmania RNA virus in an old zoonotic cutaneous leishmaniasis focus, northeastern Iran: Haplotype and phylogenetic based approach. Int. J. Infect. Dis. 2020;101:6–13. doi: 10.1016/j.ijid.2020.08.033. PubMed DOI
Atayde V.D., da Silva Lira Filho A., Chaparro V., Zimmermann A., Martel C., Jaramillo M., Olivier M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019;4:714–723. doi: 10.1038/s41564-018-0352-y. PubMed DOI
Ishemgulova A., Kraeva N., Hlaváčová J., Zimmer S.L., Butenko A., Podešvová L., Leštinová T., Lukeš J., Kostygov A., Votýpka J., et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl. Trop. Dis. 2017;11:e0005782. doi: 10.1371/journal.pntd.0005782. PubMed DOI PMC
Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Losev A., Grybchuk-Ieremenko A., Kostygov A.Y., Lukes J., Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol. Res. 2015;114:1071–1078. doi: 10.1007/s00436-014-4277-y. PubMed DOI
Kleschenko Y., Grybchuk D., Matveeva N.S., Macedo D.H., Ponirovsky E.N., Lukashev A.N., Yurchenko V. Molecular characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes. 2019;10:830. doi: 10.3390/genes10100830. PubMed DOI PMC
Sádlová J., Podešvová L., Bečvář T., Bianchi C., Gerasimov E.S., Saura A., Glanzová K., Leštinová T., Matveeva N.S., Chmelová L., et al. Catalase impairs Leishmania mexicana development and virulence. Virulence. 2021;12:852–867. doi: 10.1080/21505594.2021.1896830. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 8 January 2019. [(accessed on 12 October 2021)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Sayers E.W., Beck J., Bolton E.E., Bourexis D., Brister J.R., Canese K., Comeau D.C., Funk K., Kim S., Klimke W., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49:D10–D17. doi: 10.1093/nar/gkaa892. PubMed DOI PMC
Van der Auwera G.A., O’Connor B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O’Reilly Media, Inc.; Sebastopol, CA, USA: 2020. p. 496.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Woodcroft B.J., Boyd J.A., Tyson G.W. OrfM: A fast open reading frame predictor for metagenomic data. Bioinformatics. 2016;32:2702–2703. doi: 10.1093/bioinformatics/btw241. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Stecher G., Tamura K., Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020;37:1237–1239. doi: 10.1093/molbev/msz312. PubMed DOI PMC
Wei X., Zhang J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol. Evol. 2014;7:381–390. doi: 10.1093/gbe/evu294. PubMed DOI PMC
Massingham T., Goldman N. Detecting amino acid sites under positive selection and purifying selection. Genetics. 2005;169:1753–1762. doi: 10.1534/genetics.104.032144. PubMed DOI PMC
Procházková M., Füzik T., Grybchuk D., Falginella F.L., Podešvová L., Yurchenko V., Vácha R., Plevka P. Capsid structure of Leishmania RNA Virus 1. J. Virol. 2021;95:e01957-20. doi: 10.1128/JVI.01957-20. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Bruenn J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2003;31:1821–1829. doi: 10.1093/nar/gkg277. PubMed DOI PMC
Procter J.B., Carstairs G.M., Soares B., Mourao K., Ofoegbu T.C., Barton D., Lui L., Menard A., Sherstnev N., Roldan-Martinez D., et al. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2021;2231:203–224. PubMed PMC
Naitow H., Tang J., Canady M., Wickner R.B., Johnson J.E. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. doi: 10.1038/nsb844. PubMed DOI
Venkataraman S., Prasad B., Selvarajan R. RNA Dependent RNA Polymerases: Insights from structure, function and evolution. Viruses. 2018;10:76. doi: 10.3390/v10020076. PubMed DOI PMC
Cui Y., Zhang Y., Zhou K., Sun J., Zhou Z.H. Conservative transcription in three steps visualized in a double-stranded RNA virus. Nat. Struct. Mol. Biol. 2019;26:1023–1034. doi: 10.1038/s41594-019-0320-0. PubMed DOI PMC
Ding K., Celma C.C., Zhang X., Chang T., Shen W., Atanasov I., Roy P., Zhou Z.H. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat. Commun. 2019;10:2216. doi: 10.1038/s41467-019-10236-7. PubMed DOI PMC
Lawton J.A., Estes M.K., Prasad B.V. Mechanism of genome transcription in segmented dsRNA viruses. Adv. Virus Res. 2000;55:185–229. PubMed PMC
Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC
Harkins K.M., Schwartz R.S., Cartwright R.A., Stone A.C. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect. Genet. Evol. 2016;38:101–109. doi: 10.1016/j.meegid.2015.11.030. PubMed DOI
Chajbullinova A., Votýpka J., Sádlová J., Kvapilová K., Seblová V., Kreisinger J., Jirků M., Sanjoba C., Gantuya S., Matsumoto Y., et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit. Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC
Strelkova M.V., Eliseev L.N., Ponirovsky E.N., Dergacheva T.I., Annacharyeva D.K., Erokhin P.I., Evans D.A. Mixed leishmanial infections in Rhombomys opimus: A key to the persistence of Leishmania major from one transmission season to the next. Ann. Trop. Med. Parasitol. 2001;95:811–819. PubMed
Nalçacı M., Karakuş M., Yilmaz B., Demir S., Özbilgin A., Özbel Y., Töz S. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans. R. Soc. Trop. Med. Hyg. 2019;113:410–417. doi: 10.1093/trstmh/trz023. PubMed DOI
Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC
Tibayrenc M., Ayala F.J. Models in parasite and pathogen evolution: Genomic analysis reveals predominant clonality and progressive evolution at all evolutionary scales in parasitic protozoa, yeasts and bacteria. Adv. Parasitol. 2021;111:75–117. PubMed
Akopyants N.S., Kimblin N., Secundino N., Patrick R., Peters N., Lawyer P., Dobson D.E., Beverley S.M., Sacks D.L. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–268. doi: 10.1126/science.1169464. PubMed DOI PMC
Volf P., Sádlová J. Sex in Leishmania. Science. 2009;324:1644. doi: 10.1126/science.324_1644b. PubMed DOI
Gutiérrez-Corbo C., Dominguez-Asenjo B., Martinez-Valladares M., Pérez-Pertejo Y., García-Estrada C., Balaña-Fouce R., Reguera R.M. Reproduction in trypanosomatids: Past and present. Biology. 2021;10:471. doi: 10.3390/biology10060471. PubMed DOI PMC
Tirera S., Ginouves M., Donato D., Caballero I.S., Bouchier C., Lavergne A., Bourreau E., Mosnier E., Vantilcke V., Couppie P., et al. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana. PLoS Negl. Trop. Dis. 2017;11:e0005764. doi: 10.1371/journal.pntd.0005764. PubMed DOI PMC
Matveyev A.V., Alves J.M., Serrano M.G., Lee V., Lara A.M., Barton W.A., Costa-Martins A.G., Beverley S.M., Camargo E.P., Teixeira M.M., et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J. Mol. Evol. 2017;84:104–115. doi: 10.1007/s00239-017-9780-1. PubMed DOI PMC
Lye L.F., Owens K., Shi H., Murta S.M., Vieira A.C., Turco S.J., Tschudi C., Ullu E., Beverley S.M. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161. doi: 10.1371/journal.ppat.1001161. PubMed DOI PMC
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Genomic analysis of Leishmania turanica strains from different regions of Central Asia
Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt
Elimination of LRVs Elicits Different Responses in Leishmania spp
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?