Genomic analysis of Leishmania turanica strains from different regions of Central Asia
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36877735
PubMed Central
PMC10019736
DOI
10.1371/journal.pntd.0011145
PII: PNTD-D-22-01306
Knihovny.cz E-zdroje
- MeSH
- genomika MeSH
- Gerbillinae parazitologie MeSH
- Leishmania * genetika MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Mongolsko MeSH
The evolution in Leishmania is governed by the opposite forces of clonality and sexual reproduction, with vicariance being an important factor. As such, Leishmania spp. populations may be monospecific or mixed. Leishmania turanica in Central Asia is a good model to compare these two types. In most areas, populations of L. turanica are mixed with L. gerbilli and L. major. Notably, co-infection with L. turanica in great gerbils helps L. major to withstand a break in the transmission cycle. Conversely, the populations of L. turanica in Mongolia are monospecific and geographically isolated. In this work, we compare genomes of several well-characterized strains of L. turanica originated from monospecific and mixed populations in Central Asia in order to shed light on genetic factors, which may drive evolution of these parasites in different settings. Our results illustrate that evolutionary differences between mixed and monospecific populations of L. turanica are not dramatic. On the level of large-scale genomic rearrangements, we confirmed that different genomic loci and different types of rearrangements may differentiate strains originated from mixed and monospecific populations, with genome translocations being the most prominent example. Our data suggests that L. turanica has a significantly higher level of chromosomal copy number variation between the strains compared to its sister species L. major with only one supernumerary chromosome. This suggests that L. turanica (in contrast to L. major) is in the active phase of evolutionary adaptation.
Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow Russia
Faculty of Biology M 5 Lomonosov Moscow State University Moscow Russia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Martsinovsky Institute of Medical Parasitology Sechenov University Moscow Russia
Zobrazit více v PubMed
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al.. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11: 200407. doi: 10.1098/rsob.200407 PubMed DOI PMC
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, et al.. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118: 1301–1310. doi: 10.1172/JCI33945 PubMed DOI PMC
WHO (2022) Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis. PubMed
Bruschi F, Gradoni L (2018) The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer. 245 pp. p.
Mann S, Frasca K, Scherrer S, Henao-Martinez AF, Newman S, Ramanan P, et al.. A review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. 2021;8: 121–132. doi: 10.1007/s40475-021-00232-7 PubMed DOI PMC
Ghatee MA, Taylor WR, Karamian M The geographical distribution of cutaneous leishmaniasis causative agents in Iran and its neighboring countries, a review. Front Public Health. 2020;8: 11. doi: 10.3389/fpubh.2020.00011 PubMed DOI PMC
Akilov OE, Khachemoune A, Hasan T Clinical manifestations and classification of Old World cutaneous leishmaniasis. Int J Dermatol. 2007;46: 132–142. doi: 10.1111/j.1365-4632.2007.03154.x PubMed DOI
Elfari M, Schnur LF, Strelkova MV, Eisenberger CL, Jacobson RL, Greenblatt CL, et al.. Genetic and biological diversity among populations of Leishmania major from Central Asia, the Middle East and Africa. Microbes Infect. 2005;7: 93–103. PubMed
Akhavan AA, Yaghoobi-Ershadi MR, Khamesipour A, Mirhendi H, Alimohammadian MH, Rassi Y, et al.. Dynamics of Leishmania infection rates in Rhombomys opimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bull Soc Pathol Exot. 2010;103: 84–89. PubMed
Yurchenko V, Chistyakov DS, Akhmadishina LV, Lukashev AN, Sádlová J, Strelkova MV Revisiting epidemiology of leishmaniasis in Central Asia: lessons learnt. Parasitology. 2023; 150(2): 129–136. doi: 10.1017/S0031182022001640 PubMed DOI PMC
Akhavan AA, Mirhendi H, Khamesipour A, Alimohammadian MH, Rassi Y, Bates P, et al.. Leishmania species: detection and identification by nested PCR assay from skin samples of rodent reservoirs. Exp Parasitol. 2010;126: 552–556. PubMed PMC
Strelkova MV, Eliseev LN, Ponirovsky EN, Dergacheva TI, Annacharyeva DK, Erokhin PI, et al.. Mixed leishmanial infections in Rhombomys opimus: a key to the persistence of Leishmania major from one transmission season to the next. Ann Trop Med Parasitol. 2001;95: 811–819. PubMed
Strelkova MV, Shurkhal AV, Kellina OI, Eliseev LN, Evans DA, Peters W, et al.. A new species of Leishmania isolated from the great gerbil Rhombomys opimus. Parasitology. 1990;101: 327–335. PubMed
Guan LR, Yang YQ, Qu JQ, Shen WX Discovery and study of Leishmania turanica for the first time in China. Bull World Health Organ. 1995;73: 667–672. PubMed PMC
Strelkova MV [The isoenzyme identification and pathogenic characteristics of clones of Leishmania major, L. sp. nov. and L. gerbilli]. Med Parazitol (Mosk). 1990: 9–13. (in Russian). PubMed
Strelkova MV, Shurkhal AV, Eliseev LN, Kellina OI, Rakitskaia TA, Zviagintseva TV, et al.. [The isoenzyme identification and pathogenic characteristics of the Leishmania isolated in natural foci of cutaneous leishmaniasis in the USSR]. Med Parazitol (Mosk). 1990: 43–48. (in Russian). PubMed
Strelkova MV [Susceptibility to and the characteristics of the course of experimental leishmaniasis in different species of mammals infected with Leishmania major, L. turanica and L. gerbilli]. Med Parazitol (Mosk). 1991: 35–39. (in Russian). PubMed
Tibayrenc M, Ayala FJ Leishmania and the model of predominant clonal evolution. Microorganisms. 2021;9: 2409. PubMed PMC
Rougeron V, De Meeûs T, Bañuls AL A primer for Leishmania population genetic studies. Trends Parasitol. 2015;31: 52–59. PubMed
Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, Annoscia G, et al.. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16: e0010650. PubMed PMC
Cortes S, Esteves C, Maurício I, Maia C, Cristovão JM, Miles M, et al.. In vitro and in vivo behaviour of sympatric Leishmania (V.) braziliensis, L. (V.) peruviana and their hybrids. Parasitology. 2012;139: 191–199. PubMed
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, et al.. Leishmania infections: molecular targets and diagnosis. Mol Aspects Med. 2017;57: 1–29. PubMed
Dujardin JC, Banuls AL, Dujardin JP, Arevalo J, Tibayrenc M, Le Ray D Comparison of chromosome and isoenzyme polymorphism in geographical populations of Leishmania (Viannia) peruviana. Parasitology. 1998;117: 547–554. doi: 10.1017/s0031182098003357 PubMed DOI
Strelkova MV, Shendrik AG, El Fari M, Schönian G [Ecology and the genetic structure of sympatric Leishmania species circulating in the intra-continental deserts of the south Palaearctic region]. Med Parazitol (Mosk). 2003: 12–18. (in Russian). PubMed
Shurkhal AV, Strelkova MV, Passova OM, Rakitskaia TA, Podogas AV [Genetic characteristics of Leishmania strains isolated from gerbils in the Mongolian People’s Republic]. Med Parazitol (Mosk). 1985: 38–44. (in Russian). PubMed
Neronov VM, Strelkova MV, Shurkhal AA, Luschekina AA, Artemyev MM Natural focality of zoonotic cutaneous leishmaniasis in the Mongolian People’s Republic; results and objectives of integrated research. Folia Parasitol. 1987;34: 1–9. PubMed
Warren WC, Akopyants NS, Dobson DE, Hertz-Fowler C, Lye LF, Myler PJ, et al.. Genome assemblies across the diverse evolutionary spectrum of Leishmania protozoan parasites. Microbiol Resour Announc. 2021;10: e0054521. PubMed PMC
Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al.. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309: 436–442. PubMed PMC
Gerasimov E, Zemp N, Schmid-Hempel R, Schmid-Hempel P, Yurchenko V Genomic variation among strains of Crithidia bombi and C. expoeki. mSphere. 2019;4: e00482–00419. PubMed PMC
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, et al.. Comparative genomics of Leishmania (Mundinia). BMC Genomics. 2019;20: 726. PubMed PMC
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al.. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21: 2129–2142. PubMed PMC
Dumetz F, Imamura H, Sanders M, Seblová V, Myšková J, Pescher P, et al.. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio. 2017;8: e00599–00517. PubMed PMC
Sterkers Y, Lachaud L, Bourgeois N, Crobu L, Bastien P, Pagès M Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86: 15–23. PubMed
Mannaert A, Downing T, Imamura H, Dujardin JC Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28: 370–376. PubMed
Leprohon P, Légaré D, Raymond F, Madore E, Hardiman G, Corbeil J, et al.. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37: 1387–1399. PubMed PMC
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, et al.. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol. 2008;9: R115. PubMed PMC
Lachaud L, Bourgeois N, Kuk N, Morelle C, Crobu L, Merlin G, et al.. Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes Infect. 2014;16: 61–66. PubMed
Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, et al.. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio. 2017;8: e01393–01317. PubMed PMC
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V Frequent recombination events in Leishmania donovani: mining population data. Pathogens. 2020;9: 572. PubMed PMC
Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Ponirovsky EN, Lukashev AN, et al.. Molecular characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes. 2019;10: e830. PubMed PMC
Kostygov AY, Grybchuk D, Kleschenko Y, Chistyakov DS, Lukashev AN, Gerasimov ES, et al.. Analyses of Leishmania-LRV co-phylogenetic patterns and evolutionary variability of viral proteins. Viruses. 2021;13: 2305. PubMed PMC
Yurchenko V, Lukeš J, Xu X, Maslov DA An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol. 2006;53: 103–111. PubMed
Bolger AM, Lohse M, Usadel B Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. PubMed PMC
Andrews S (2019) FastQC: a quality control tool for high throughput sequence data.
Ewels P, Magnusson M, Lundin S, Käller M MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32: 3047–3048. PubMed PMC
Li H, Durbin R Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. PubMed PMC
Ramirez-Gonzalez RH, Bonnal R, Caccamo M, Maclean D Bio-SAMtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol Med. 2012;7: 6. PubMed PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19: 455–477. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Stanke M, Diekhans M, Baertsch R, Haussler D Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24: 637–644. PubMed
Consortium TU UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46: 2699. PubMed PMC
Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing.
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.. The variant call format and VCFtools. Bioinformatics. 2011;27: 2156–2158. doi: 10.1093/bioinformatics/btr330 PubMed DOI PMC
Emms DM, Kelly S OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20: 238. doi: 10.1186/s13059-019-1832-y PubMed DOI PMC
Katoh K, Standley DM MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35: 4453–4455. PubMed PMC
Eaton DAR Toytree: a minimalist tree visualization and manipulation library for Python. Methods Ecol Evol. 2019;11: 187–191.
Quinlan AR BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47: 11.12.11–11.12.34. PubMed PMC
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al.. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6: 80–92. PubMed PMC
Yang Z PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24: 1586–1591. PubMed
Späth GF, Bussotti G GIP: an open-source computational pipeline for mapping genomic instability from protists to cancer cells. Nucleic Acids Res. 2022;50: e36. doi: 10.1093/nar/gkab1237 PubMed DOI PMC
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28: i333–i339. PubMed PMC
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection