Frequent Recombination Events in Leishmania donovani: Mining Population Data

. 2020 Jul 15 ; 9 (7) : . [epub] 20200715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32679679

Grantová podpora
CZ.02.1.01/16_019/0000759 European Regional Development Fund
19-15-00054 Russian Science Foundation

The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.

Zobrazit více v PubMed

Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. p. 245.

Burza S., Croft S.L., Boelaert M. Leishmaniasis. Lancet. 2018;392:951–970. doi: 10.1016/S0140-6736(18)31204-2. PubMed DOI

Guerbouj S., Guizani I., Speybroeck N., Le Ray D., Dujardin J.C. Genomic polymorphism of Leishmania infantum: A relationship with clinical pleomorphism? Infect. Genet. Evol. 2001;1:49–59. doi: 10.1016/S1567-1348(01)00008-9. PubMed DOI

Thakur L., Singh K.K., Shanker V., Negi A., Jain A., Matlashewski G., Jain M. Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoS Negl. Trop. Dis. 2018;12:e0006659. doi: 10.1371/journal.pntd.0006659. PubMed DOI PMC

Quinnell R.J., Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–1934. doi: 10.1017/S0031182009991156. PubMed DOI

Ready P.D. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014;6:147–154. doi: 10.2147/CLEP.S44267. PubMed DOI PMC

Lukeš J., Mauricio I.L., Schonian G., Dujardin J.C., Soteriadou K., Dedet J.P., Kuhls K., Tintaya K.W., Jirků M., Chocholova E., et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc. Natl. Acad. Sci. USA. 2007;104:9375–9380. doi: 10.1073/pnas.0703678104. PubMed DOI PMC

Leblois R., Kuhls K., Francois O., Schonian G., Wirth T. Guns, germs and dogs: On the origin of Leishmania chagasi. Infect. Genet. Evol. 2011;11:1091–1095. doi: 10.1016/j.meegid.2011.04.004. PubMed DOI

Zhang W.W., Ramasamy G., McCall L.I., Haydock A., Ranasinghe S., Abeygunasekara P., Sirimanna G., Wickremasinghe R., Myler P., Matlashewski G. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 2014;10:e1004244. doi: 10.1371/journal.ppat.1004244. PubMed DOI PMC

Laffitte M.N., Leprohon P., Papadopoulou B., Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research. 2016;5:2350. doi: 10.12688/f1000research.9218.1. PubMed DOI PMC

Sádlová J., Svobodová M., Volf P. Leishmania major: Effect of repeated passages through sandfly vectors or murine hosts. Ann. Trop. Med. Parasitol. 1999;93:599–611. doi: 10.1080/00034983.1999.11813463. PubMed DOI

Lypaczewski P., Hoshizaki J., Zhang W.W., McCall L.I., Torcivia-Rodriguez J., Simonyan V., Kaur A., Dewar K., Matlashewski G. A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-34812-x. PubMed DOI PMC

Fiebig M., Kelly S., Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186. doi: 10.1371/journal.ppat.1005186. PubMed DOI PMC

Rastrojo A., Garcia-Hernandez R., Vargas P., Camacho E., Corvo L., Imamura H., Dujardin J.C., Castanys S., Aguado B., Gamarro F., et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int. J. Parasitol. Drugs Drug. Resist. 2018;8:246–264. doi: 10.1016/j.ijpddr.2018.04.002. PubMed DOI PMC

Dostálová A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors. 2012;5:1–12. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Forestier C.L., Gao Q., Boons G.J. Leishmania lipophosphoglycan: How to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Front. Cell. Infect. Microbiol. 2014;4:193. doi: 10.3389/fcimb.2014.00193. PubMed DOI PMC

Turco S.J., Spath G.F., Beverley S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 2001;17:223–226. doi: 10.1016/S1471-4922(01)01895-5. PubMed DOI

Dobson D.E., Scholtes L.D., Valdez K.E., Sullivan D.R., Mengeling B.J., Cilmi S., Turco S.J., Beverley S.M. Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J. Biol. Chem. 2003;278:15523–15531. doi: 10.1074/jbc.M301568200. PubMed DOI

Dobson D.E., Mengeling B.J., Cilmi S., Hickerson S., Turco S.J., Beverley S.M. Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of Leishmania major. J. Biol. Chem. 2003;278:28840–28848. doi: 10.1074/jbc.M302728200. PubMed DOI

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI

Butenko A., Vieira T.D.S., Frolov A.O., Opperdoes F.R., Soares R.P., Kostygov A.Y., Lukeš J., Yurchenko V. Leptomonas pyrrhocoris: Genomic insight into parasite’s physiology. Curr. Genom. 2018;19:150–156. doi: 10.2174/1389202918666170815143331. PubMed DOI PMC

Manna P.T., Boehm C., Leung K.F., Natesan S.K., Field M.C. Life and times: Synthesis, trafficking, and evolution of VSG. Trends Parasitol. 2014;30:251–258. doi: 10.1016/j.pt.2014.03.004. PubMed DOI PMC

McCulloch R., Rudenko G., Borst P. Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70-base-pair repeat sequences. Mol. Cell. Biol. 1997;17:833–843. doi: 10.1128/MCB.17.2.833. PubMed DOI PMC

Robinson N.P., Burman N., Melville S.E., Barry J.D. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell. Biol. 1999;19:5839–5846. doi: 10.1128/MCB.19.9.5839. PubMed DOI PMC

Castro Neto A.L., Brito A., Rezende A.M., Magalhaes F.B., de Melo Neto O.P. In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: Identification of sources of variation and putative roles in immune evasion. BMC Genom. 2019;20:1–17. doi: 10.1186/s12864-019-5465-z. PubMed DOI PMC

Mauricio I.L., Gaunt M.W., Stothard J.R., Miles M.A. Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int. J. Parasitol. 2007;37:565–576. doi: 10.1016/j.ijpara.2006.11.020. PubMed DOI

Mottram J.C., Frame M.J., Brooks D.R., Tetley L., Hutchison J.E., Souza A.E., Coombs G.H. The multiple cpb cysteine proteinase genes of Leishmania mexicana encode isoenzymes that differ in their stage regulation and substrate preferences. J. Biol. Chem. 1997;272:14285–14293. doi: 10.1074/jbc.272.22.14285. PubMed DOI

Folgueira C., Cañavate C., Chicharro C., Requena J.M. Genomic organization and expression of the hsp70 locus in New and Old World Leishmania species. Parasitology. 2007;134:369–377. doi: 10.1017/S0031182006001570. PubMed DOI

Jackson A.P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol. Biol. Evol. 2010;27:33–45. doi: 10.1093/molbev/msp214. PubMed DOI PMC

Zhang W.W., Matlashewski G. Characterization of the A2-A2rel gene cluster in Leishmania donovani: Involvement of A2 in visceralization during infection. Mol. MicroBiol. 2001;39:935–948. doi: 10.1046/j.1365-2958.2001.02286.x. PubMed DOI

Franssen S.U., Durrant C., Stark O., Moser B., Downing T., Imamura H., Dujardin J.C., Sanders M.J., Mauricio I., Miles M.A., et al. Global genome diversity of the Leishmania donovani complex. eLife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC

Malone R.E., Bullard S., Lundquist S., Kim S., Tarkowski T. A meiotic gene conversion gradient opposite to the direction of transcription. Nature. 1992;359:154–155. doi: 10.1038/359154a0. PubMed DOI

Detloff P., White M.A., Petes T.D. Analysis of a gene conversion gradient at the his4 locus in Saccharomyces cerevisiae. Genetics. 1992;132:113–123. PubMed PMC

Nicolas A., Petes T.D. Polarity of meiotic gene conversion in fungi: Contrasting views. Experientia. 1994;50:242–252. doi: 10.1007/BF01924007. PubMed DOI

Kostygov A.Y., Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:20. doi: 10.14411/fp.2017.020. PubMed DOI

Ohta T. On the evolution of multigene families. Theor. Popul. Biol. 1983;23:216–240. doi: 10.1016/0040-5809(83)90015-1. PubMed DOI

Koop B.F., Miyamoto M.M., Embury J.E., Goodman M., Czelusniak J., Slightom J.L. Nucleotide sequence and evolution of the orangutan epsilon globin gene region and surrounding Alu repeats. J. Mol. Evol. 1986;24:94–102. doi: 10.1007/BF02099956. PubMed DOI

Nei M., Rogozin I.B., Piontkivska H. Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc. Natl. Acad. Sci. USA. 2000;97:10866–10871. doi: 10.1073/pnas.97.20.10866. PubMed DOI PMC

Imamura H., Downing T., Van den Broeck F., Sanders M.J., Rijal S., Sundar S., Mannaert A., Vanaerschot M., Berg M., De Muylder G., et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2016;5:e12613. doi: 10.7554/eLife.12613. PubMed DOI PMC

Eickbush T.H., Burke W.D. The silkmoth late chorion locus. II. Gradients of gene conversion in two paired multigene families. J. Mol. Biol. 1986;190:357–366. doi: 10.1016/0022-2836(86)90007-0. PubMed DOI

Alani E., Reenan R.A., Kolodner R.D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics. 1994;137:19–39. PubMed PMC

Dooner H.K., He L. Polarized gene conversion at the bz locus of maize. Proc. Natl. Acad. Sci. USA. 2014;111:13918–13923. doi: 10.1073/pnas.1415482111. PubMed DOI PMC

Palmer S., Schildkraut E., Lazarin R., Nguyen J., Nickoloff J.A. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic. Acids. Res. 2003;31:1164–1173. doi: 10.1093/nar/gkg219. PubMed DOI PMC

Wang S., Chen Y. Phylogenomic analysis demonstrates a pattern of rare and long-lasting concerted evolution in prokaryotes. Commun. Biol. 2018;1:1–11. doi: 10.1038/s42003-018-0014-x. PubMed DOI PMC

Perelygin A.A., Kondrashov F.A., Rogozin I.B., Brinton M.A. Evolution of the mouse polyubiquitin-C gene. J. Mol. Evol. 2002;55:202–210. doi: 10.1007/s00239-002-2318-0. PubMed DOI

Dover G. Molecular drive: A cohesive mode of species evolution. Nature. 1982;299:111–117. doi: 10.1038/299111a0. PubMed DOI

Makin L., Gluenz E. cAMP signalling in trypanosomatids: Role in pathogenesis and as a drug target. Trends Parasitol. 2015;31:373–379. doi: 10.1016/j.pt.2015.04.014. PubMed DOI PMC

Mony B.M., MacGregor P., Ivens A., Rojas F., Cowton A., Young J., Horn D., Matthews K. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature. 2014;505:681–685. doi: 10.1038/nature12864. PubMed DOI PMC

Imhof S., Knusel S., Gunasekera K., Vu X.L., Roditi I. Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog. 2014;10:e1004493. doi: 10.1371/journal.ppat.1004493. PubMed DOI PMC

Sanchez M.A., Zeoli D., Klamo E.M., Kavanaugh M.P., Landfear S.M. A family of putative receptor-adenylate cyclases from Leishmania donovani. J. Biol. Chem. 1995;270:17551–17558. doi: 10.1074/jbc.270.29.17551. PubMed DOI

Downing T., Imamura H., Decuypere S., Clark T.G., Coombs G.H., Cotton J.A., Hilley J.D., de Doncker S., Maes I., Mottram J.C., et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–2156. doi: 10.1101/gr.123430.111. PubMed DOI PMC

Downing T., Stark O., Vanaerschot M., Imamura H., Sanders M., Decuypere S., de Doncker S., Maes I., Rijal S., Sundar S., et al. Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infect. Genet. Evol. 2012;12:149–159. doi: 10.1016/j.meegid.2011.11.005. PubMed DOI PMC

Khromov-Borisov N.N., Rogozin I.B., Pegas Henriques J.A., de Serres F.J. Similarity pattern analysis in mutational distributions. Mutat. Res. 1999;430:55–74. doi: 10.1016/S0027-5107(99)00148-7. PubMed DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...