Leptomonas pyrrhocoris: Genomic insight into Parasite's Physiology
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
29491743
PubMed Central
PMC5814963
DOI
10.2174/1389202918666170815143331
PII: CG-19-150
Knihovny.cz E-zdroje
- Klíčová slova
- Host-parasite interaction, Insect gut's attachment, L. pyrrhocoris, LPG, Monoxenous trypanosomatids, SCG enzymes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Leptomonas pyrrhocoris is a parasite of the firebug Pyrrhocoris apterus. This flagellate has been recently proposed as a model species for studying different aspects of the biology of monoxenous trypanosomatids, including host - parasite interactions. During its life cycle L. pyrrhocoris never tightly attaches to the epithelium of the insect gut. In contrast, its dixenous relatives (Leishmania spp.) establish a stable infection via attachment to the intestinal walls of their insect hosts. MATERIAL AND METHODS: This process is mediated by chemical modifications of the cell surface lipophosphoglycans. In our study we tested whether the inability of L. pyrrhocoris to attach to the firebug's midgut is associated with the absence of these glycoconjugates. We also analyzed evolution of the proteins involved in proper lipophosphoglycan assembly, cell attachment and establishment of a stable infection in L. pyrrhocoris, L. seymouri, and Leishmania spp. Our comparative analysis demonstrated differences in SCG/L/R repertoire between the two parasite subgenera, Leishmania and Viannia, which may be related to distinct life strategies in various Leishmania spp. The genome of L. pyrrhocoris encodes 6 SCG genes, all of which are quite divergent from their orthologs in the genus Leishmania. Using direct probing with an antibody recognizing the β-Gal side chains of lipophosphoglycans, we confirmed that these structures are not synthesized in L. pyrrhocoris. CONCLUSION: We conclude that either the SCG enzymes are not active in this species (similarly to SCG5/7 in L. major), or they possess a different biochemical activity.
Canadian Institute for Advanced Research Toronto ONM5G1Z8 Canada
Centro de Pesquisas Rene Rachou FIOCRUZ Belo Horizonte Minas Gerais 30190 002 Brazil
Department of Pathology Albert Einstein College of Medicine Bronx NY 10461 USA
e Duve Institute Université Catholique de Louvain 1200 Brussels Belgium
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg199034 Russia
Zobrazit více v PubMed
Lumsden W.H., Evans D.A. Biology of Kinetoplastida. Vol. 1 London: Academic Press; 1976.
Podlipaev S.A. The more insect trypanosomatids under study - the more diverse Trypanosomatidae appears. Int. J. Parasitol. 2001;31(5-6):648–652. PubMed
Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52. PubMed
Bacchi J., Lambros C., Goldberg B., Hutner S.H., de Carvalho G.D. Susceptibility of an insect Leptomonas and Crithidia fasciculata to several established antitrypanosomatid agents. Antimicrob. Agents Chemother. 1974;6(6):785–790. PubMed PMC
Hassan H.F., Coombs G.H. A comparative study of the purine- and pyrimidine-metabolising enzymes of a range of trypanosomatids. Comp. Biochem. Physiol. B. 1986;84(2):219–223. PubMed
Schaub G.A., Jensen C. Developmental time and mortality of the reduviid bug Triatoma infestans with differential exposure to coprophagic infections with Blastocrithidia triatomae (Trypanosomatidae). J. Invertebr. Pathol. 1990;55(1):17–27. PubMed
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195(2):115–122. PubMed
Kozminsky E., Kraeva N., Ishemgulova A., Dobáková E., Lukeš J., Kment P., Yurchenko V., Votýpka J., Maslov D.A. Host-specificity of monoxenous trypanosomatids: Statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015;166(5):551–568. PubMed
Hamilton P.T., Votýpka J., Dostalova A., Yurchenko V., Bird N.H., Lukeš J., Lemaitre B., Perlman S.J. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio. 2015;6(5):e01356–e01315. PubMed PMC
Stuart K., Panigrahi A.K. RNA editing: Complexity and complications. Mol. Microbiol. 2002;45(3):591–596. PubMed
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 2016;63(5):657–678. PubMed
Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016;26(17):2364–2369. PubMed
Fenn K., Matthews K.R. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 2007;10(6):539–546. PubMed PMC
Clayton J. Chagas disease 101. Nature. 2010;465(7301):S4–S5. https://www.nature.com/articles/nature09220 PubMed
Bates P.A., Rogers M.E. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr. Mol. Med. 2004;4(6):601–609. PubMed
Frolov A.O., Malysheva M.N., Yurchenko V., Kostygov A.Y. 2016 http://www.sciencedirect.com/science/article/pii/S09324739
Jankevicius J.V., Jankevicius S.I., Campaner M., Conchon I., Maeda L.A., Teixeira M.M., Freymuller E., Camargo E.P. Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J. Protozool. 1989;36(3):265–271.
Frolov A.O. The life cycle of Leptomonas pyrrhocoris (Kinetoplastida, Trypanosomatidae). Zool. zhurnal. 1987;66(1):5–11.
Frolov A.O. Life cycle of Blastocrithidia miridarum (Kinetoplastida, Trypanosomatidae). Zool. zhurnal. 1987;66(5):655–661.
Mehlhorn H., Schaub G.A., Peters W., Haberkorn A. 1971 (Trypanosomatidae). Tropenmed. Parasitol. 1979;30(3):289–300. PubMed
Alcolea P.J., Alonso A., Garcia-Tabares F., Torano A., Larraga V. An insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One. 2014;9(12):e113837. journals.plos.org/plosone/article?id=10.1371/journal.pone.0113837 PubMed PMC
Frolov A.O., Malysheva M.N., Ganyukova A.I., Yurchenko V., Kostygov A.Y. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur. J. Protistol. 2017;57:85–98. http://www.sciencedirect.com/science/article/pii/S0932473916301249 PubMed
Frolov A.O., Skarlato S.O. Fine structure and mechanisms of adaptation of lower trypanosomatids in Hemiptera. Tsitologiia. 1995;37(7):539–560.
Frolov A.O., Malysheva M.N., Kostygov A.Y. Homoxenous trypanosomatids from true bugs Pyrrhocoris apterus (L.) in the North of the Pskov region. Parazitologiia. 2014;48(6):461–471. PubMed
Teodoro G. Osservazioni sul Pyrrhocoris apterus L., con particolare riguardo alla flagellosi. Redia (Firenze) 1927;16:45–50.
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., Ishemgulova A., Jackson A.P., Kelly S., Kostygov A., Logacheva M.D., Maslov D.A., Opperdoes F.R., O’Reilly A., Sádlová J., Ševčíková T., Venkatesh D., Vlček Č., Volf P., Votýpka J., Záhonová K., Yurchenko V., Lukeš J. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. https://www.nature.com/ articles/srep23704 PubMed PMC
Cantacessi C., Dantas-Torres F., Nolan M.J., Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–108. PubMed PMC
Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., Flegontov P., Lukeš J., Yurchenko V. Leptomonas seymouri. 2015 journals.plos.org/plospathogens/article?id=10.1371/journal.ppat PubMed PMC
Singh N., Chikara S., Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLoS One. 2013;8(2):e55738. journals.plos.org/plosone /article?id=10.1371/journal.pone.0055738 PubMed PMC
Ghosh S., Banerjee P., Sarkar A., Datta S., Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J. Clin. Microbiol. 2012;50(8):2774–2778. PubMed PMC
Fernandes A.P., Nelson K., Beverley S.M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: Perspectives on the age and origins of parasitism. Proc. Natl. Acad. Sci. USA. 1993;90(24):11608–11612. PubMed PMC
Jirků M., Yurchenko V.Y., Lukeš J., Maslov D.A. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J. Eukaryot. Microbiol. 2012;59(6):537–547. PubMed
Spath G.F., Epstein L., Leader B., Singer S.M., Avila H.A., Turco S.J., Beverley S.M. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA. 2000;97(16):9258–9263. PubMed PMC
Kamhawi S., Ramalho-Ortigao M., Pham V.M., Kumar S., Lawyer P.G., Turco S.J., Barillas-Mury C., Sacks D.L., Valenzuela J.G. A role for insect galectins in parasite survival. Cell. 2004;119(3):329–341. PubMed
Dostálová A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors. 2012;5:276. http://www.academia.edu/28877718/ [Leishmania_development _in_sand_flies_parasite-vector_interactions_overview]. PubMed PMC
El-Sayed N.M., Myler P.J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E.A., Hertz-Fowler C., Ghedin E., Peacock C., Bartholomeu D.C., Haas B.J., Tran A.N., Wortman J.R., Alsmark U.C., Angiuoli S., Anupama A., Badger J., Bringaud F., Cadag E., Carlton J.M., Cerqueira G.C., Creasy T., Delcher A.L., Djikeng A., Embley T.M., Hauser C., Ivens A.C., Kummerfeld S.K., Pereira-Leal J.B., Nilsson D., Peterson J., Salzberg S.L., Shallom J., Silva J.C., Sundaram J., Westenberger S., White O., Melville S.E., Donelson J.E., Andersson B., Stuart K.D., Hall N. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309(5733):404–409. science.sciencemag.org /content/sci/309/5733/404.full.pdf PubMed
McConville M.J., Turco S.J., Ferguson M.A., Sacks D.L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992;11(10):3593–3600. PubMed PMC
Sacks D.L., Pimenta P.F., McConville M.J., Schneider P., Turco S.J. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J. Exp. Med. 1995;181(2):685–697. PubMed PMC
Soares R.P., Macedo M.E., Ropert C., Gontijo N.F., Almeida I.C., Gazzinelli R.T., Pimenta P.F., Turco S.J. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol. Biochem. Parasitol. 2002;121(2):213–224. PubMed
Soares R.P., Cardoso T.L., Barron T., Araujo M.S., Pimenta P.F., Turco S.J. Leishmania braziliensis: A novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. Int. J. Parasitol. 2005;35(3):245–253. PubMed
de Assis R.R., Ibraim I.C., Nogueira P.M., Soares R.P., Turco S.J. Glycoconjugates in New World species of Leishmania: Polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. Biochim. Biophys. Acta. 2012;1820(9):1354–1365. PubMed
Volf P., Nogueira P.M., Myšková J., Turco S.J., Soares R.P. Structural comparison of lipophosphoglycan from Leishmania turanica and L. major, two species transmitted by Phlebotomus papatasi. Parasitol. Int. 2014;63(5):683–686. PubMed
Sacks D.L., Saraiva E.M., Rowton E., Turco S.J., Pimenta P.F. The role of the lipophosphoglycan of Leishmania in vector competence. Parasitology. 1994;108(Suppl.):S55–S62. journals.cambridge.org/article_S0031182000075727 PubMed
Dobson D.E., Scholtes L.D., Myler P.J., Turco S.J., Beverley S.M. Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: Internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications. Mol. Biochem. Parasitol. 2006;146(2):231–241. PubMed
Dobson D.E., Scholtes L.D., Valdez K.E., Sullivan D.R., Mengeling B.J., Cilmi S., Turco S.J., Beverley S.M. Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J. Biol. Chem. 2003;278(18):15523–15531. PubMed
Malysheva M.N., Mamkaeva M.A., Kostygov A.Y., Frolov A.O., Karpov S.A. Culture collection of parasitic protists at the Zoological Institute RAS (CCPP ZIN RAS). Protistology. 2016;10(1):26–42.
Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165(5):594–604. PubMed
Dobson D.E., Kamhawi S., Lawyer P., Turco S.J., Beverley S.M., Sacks D.L. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010;6(11):e1001185. journals.plos.org/plospathogens/ article?id=10.1371/journal.ppat.1001185 PubMed PMC
Peacock C.S., Seeger K., Harris D., Murphy L., Ruiz J.C., Quail M.A., Peters N., Adlem E., Tivey A., Aslett M., Kerhornou A., Ivens A., Fraser A., Rajandream M.A., Carver T., Norbertczak H., Chillingworth T., Hance Z., Jagels K., Moule S., Ormond D., Rutter S., Squares R., Whitehead S., Rabbinowitsch E., Arrowsmith C., White B., Thurston S., Bringaud F., Baldauf S.L., Faulconbridge A., Jeffares D., Depledge D.P., Oyola S.O., Hilley J.D., Brito L.O., Tosi L.R., Barrell B., Cruz A.K., Mottram J.C., Smith D.F., Berriman M. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007;39(7):839–847. PubMed PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. PubMed PMC
Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56(4):564–577. PubMed
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232-235. PubMed PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3):539–542. PubMed PMC
Wu A.C., Freitas M.A., Silva Sde O., Nogueira P.M., Soares R.P., Pesquero J.B., Gomes M.A., Pesquero J.L., Melo M.N. Genetic differences between two Leishmania major-like strains revealed by suppression subtractive hybridization. Mol. Biochem. Parasitol. 2015;203(1-2):34–38. PubMed
Mookherjee N., Pearson T.W. Trypanosoma simiae and Trypanosoma congolense: Surface glycoconjugates of procyclic forms-the same coats on different hangers? Exp. Parasitol. 2002;100(4):257–268. PubMed
Kelleher M., Bacic A., Handman E. Identification of a macrophage-binding determinant on lipophosphoglycan from Leishmania major promastigotes. Proc. Natl. Acad. Sci. USA. 1992;89(1):6–10. PubMed PMC
Soares R.P., Margonari C., Secundino N.C., Macedo M.E., da Costa S.M., Rangel E.F., Pimenta P.F., Turco S.J. 2010 https://www.hindawi.com/journals/bmri/2010/439174/abs/ PubMed PMC
Sacks D.L., Modi G., Rowton E., Spath G., Epstein L., Turco S.J., Beverley S.M. The role of phosphoglycans in Leishmania-sand fly interactions. Proc. Natl. Acad. Sci. USA. 2000;97(1):406–411. PubMed PMC
Dobson D.E., Mengeling B.J., Cilmi S., Hickerson S., Turco S.J., Beverley S.M. Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of Leishmania major. J. Biol. Chem. 2003;278(31):28840–28848. PubMed
Lainson R., Ward R.D., Shaw J.J. Leishmania in phlebotomid sandflies: VI. Importance of hindgut development in distinguishing between parasites of the Leishmania mexicana and L. braziliensis complexes. Proc. R. Soc. Lond. B Biol. Sci. 1977;199(1135):309–320. rspb.royalsocietypublishing.org/content/199/1135/309 PubMed
Mahoney A.B., Sacks D.L., Saraiva E., Modi G., Turco S.J. Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani-sand fly interactions. Biochemistry. 1999;38(31):9813–9823. PubMed
Coelho-Finamore J.M., Freitas V.C., Assis R.R., Melo M.N., Novozhilova N., Secundino N.F., Pimenta P.F., Turco S.J., Soares R.P. Leishmania infantum: Lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int. J. Parasitol. 2011;41(3-4):333–342. PubMed
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Frequent Recombination Events in Leishmania donovani: Mining Population Data