Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26374124
PubMed Central
PMC4600116
DOI
10.1128/mbio.01356-15
PII: mBio.01356-15
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- Drosophila imunologie parazitologie MeSH
- fylogeneze MeSH
- hostitelská specificita MeSH
- interakce hostitele a patogenu * MeSH
- molekulární sekvence - údaje MeSH
- protozoální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Trypanosomatina klasifikace růst a vývoj imunologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH
UNLABELLED: Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila--Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. drosophilae has a broad host range, readily infecting a number of Drosophila species, including D. melanogaster, with oral infection of D. melanogaster larvae resulting in the induction of numerous immune genes. When injected into adult hemolymph, J. drosophilae kills D. melanogaster, although interestingly, neither the Imd nor the Toll pathway is induced and Imd mutants do not show increased susceptibility to infection. In contrast, mutants deficient in drosocrystallin, a major component of the peritrophic matrix, are more severely infected during oral infection, suggesting that the peritrophic matrix plays an important role in mediating trypanosomatid infection in Drosophila. This work demonstrates that the J. drosophilae-Drosophila system can be a powerful model to uncover the effects of trypanosomatids in their insect hosts. IMPORTANCE: Trypanosomatid parasites are ubiquitous in insects and are significant causes of disease when vectored to humans by blood-feeding insects. In recent decades, Drosophila has emerged as the predominant insect model of infection and immunity and is also known to be infected by trypanosomatids at high rates in the wild. Despite this, there has been almost no work on their trypanosomatid parasites, in part because Drosophila-specific trypanosomatids have been resistant to culturing. Here, we present the first isolation and detailed characterization of a trypanosomatid from Drosophila, finding that it represents a new genus and species, Jaenimonas drosophilae. Using this parasite, we conducted a series of experiments that revealed many of the unknown aspects of trypanosomatid infection in Drosophila, including host range, transmission biology, dynamics of infection, and host immune response. Taken together, this work establishes J. drosophilae as a powerful new opportunity to study trypanosomatid infections in insects.
Department of Biology University of Victoria Victoria British Columbia Canada
Global Health Institute École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Zobrazit více v PubMed
Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S. 2001. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 98:12648–12653. doi:10.1073/pnas.221363798. PubMed DOI PMC
Podlipaev S. 2001. The more insect trypanosomatids under study—the more diverse trypanosomatidae appears. Int J Parasitol 31:648–652. doi:10.1016/S0020-7519(01)00139-4. PubMed DOI
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195:115–122. doi:10.1016/j.molbiopara.2014.05.007. PubMed DOI
Chatton E, Alilaire E. 1908. Coexistence d’un Leptomonas (Herpetomonas) et d’un Trypanosoma chez un muscide non vulnérant, Drosophila confusa Staeger. CR Soc Biol 64:1004–1006.
Rowton ED, McGhee RB. 1978. Population dynamics of Herpetomonas ampelophilae, with a note on the systematics of Herpetomonas from Drosophila spp. J Protozool 25:232–235. doi:10.1111/j.1550-7408.1978.tb04402.x. DOI
Wilfert L, Longdon B, Ferreira AG, Bayer F, Jiggins FM. 2011. Trypanosomatids are common and diverse parasites of Drosophila. Parasitology 138:585–865. doi:10.1017/S0031182011000485. PubMed DOI
Ebbert MA, Burkholder JJ, Marlowe JL. 2001. Trypanosomatid prevalence and host habitat choice in woodland Drosophila. J Invertebr Pathol 77:27–32. doi:10.1006/jipa.2000.4989. PubMed DOI
Ebbert MA, Marlowe JL, Burkholder JJ. 2003. Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol 83:37–45. doi:10.1016/S0022-2011(03)00033-8. PubMed DOI
Boulanger N, Ehret-Sabatier L, Brun R, Zachary D, Bulet P, Imler JL. 2001. Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp. Insect Biochem Mol Biol 31:129–137. doi:10.1016/S0965-1748(00)00096-5. PubMed DOI
Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. doi:10.1146/annurev.immunol.25.022106.141615. PubMed DOI
Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledón R, Campbell DA, Maslov DA. 2004. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129:537–547. doi:10.1017/S003118200400592X. PubMed DOI
Wheeler RJ, Gluenz E, Gull K. 2013. The limits on trypanosomatid morphological diversity. PLoS One 8:e79581. doi:10.1371/journal.pone.0079581. PubMed DOI PMC
Yurchenko V, Votýpka J, Tesarová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol 61:97–112. doi:10.14411/fp.2014.023. PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165:825–838. doi:10.1016/j.protis.2014.09.002. PubMed DOI
Yurchenko VY, Lukeš J, Jirků M, Maslov DA. 2009. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: A case of several novel species isolated from neotropical heteroptera. Int J Syst Evol Microbiol 59:893–909. doi:10.1099/ijs.0.001149-0. PubMed DOI
Chandler JA, James PM. 2013. Discovery of trypanosomatid parasites in globally distributed Drosophila species PLoS One 8:e61937. doi:10.1371/journal.pone.0061937. PubMed DOI PMC
Yurchenko V, Lukeš J, Xu X, Maslov DA. 2006. An integrated morphological and molecular approach to a new species description in the trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53:103–111. doi:10.1111/j.1550-7408.2005.00078.x. PubMed DOI
Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR. 2007. Discovery and bar coding by analysis of spliced leader RNA gene sequences of new isolates of trypanosomatidae from heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54:57–65. doi:10.1111/j.1550-7408.2006.00150.x. PubMed DOI
Sádlová J, Svobodová M, Volf P. 1999. Leishmania major: effect of repeated passages through sand fly vectors or murine hosts. Ann Trop Med Parasitol 93:599–611. doi:10.1080/00034989958104. PubMed DOI
Brener Z. 1973. Biology of Trypanosoma cruzi. Annu Rev Microbiol 27:347–382. doi:10.1146/annurev.mi.27.100173.002023. PubMed DOI
Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V. 2011. A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 221:69–81. doi:10.1007/s00427-011-0360-x. PubMed DOI PMC
Jaenike J, Perlman SJ. 2002. Ecology and evolution of host-parasite associations: mycophagous Drosophila and their parasitic nematodes. Am Nat 160(Suppl 4):S23–S39. doi:10.1086/342137. PubMed DOI
Markow TA, O’Grady P. 2008. Reproductive ecology of Drosophila. Funct Ecol 22:747–759. doi:10.1111/j.1365-2435.2008.01457.x. DOI
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi:10.1038/nprot.2012.016. PubMed DOI PMC
Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211. PubMed DOI
Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD, Strand MR, Partridge L, Godfray HC. 2005. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol 6:R94. doi:10.1186/gb-2005-6-11-r94. PubMed DOI PMC
Salazar-Jaramillo L, Paspati A, Van De Zande L, Vermeulen CJ, Schwander T, Wertheim B. 2014. Evolution of a cellular immune response in Drosophila: a phenotypic and genomic comparative analysis. Genome Biol Evol 6:273–289. doi:10.1093/gbe/evu012. PubMed DOI PMC
Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, Theopold U. 2004. Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279:52033–52041. doi:10.1074/jbc.M408220200. PubMed DOI
Binggeli O, Neyen C, Poidevin M, Lemaitre B. 2014. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog 10:e1004067. doi:10.1371/journal.ppat.1004067. PubMed DOI PMC
Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. 2009. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211. doi:10.1016/j.chom.2009.01.003. PubMed DOI
Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D. 1999. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837. doi:10.1016/S1097-2765(00)80392-5. PubMed DOI
Dostálová A, Volf P. 2012. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5:276. doi:10.1186/1756-3305-5-276. PubMed DOI PMC
Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. 2011. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966–15971. doi:10.1073/pnas.1105994108. PubMed DOI PMC
Broderick NA, Lemaitre B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321. doi:10.4161/gmic.19896. PubMed DOI PMC
Thomson C, Clark TB, Kellen WR, Lindegren JE, Smith TA. 1964. The transmission of Crithidia fasciculata Leger 1902 in Culiseta incidens (Thomson). J Protozool 11:400–402. doi:10.1111/j.1550-7408.1964.tb01770.x. PubMed DOI
Corwin RM. 1960. A study of trypanosomatidae in Drosophila. M.S. thesis. University of Georgia, Athens, GA.
Janssen A. 1989. Optimal host selection by Drosophila parasitoids in the field. Funct Ecol 3:469–479. doi:10.2307/2389621. DOI
Brown MJF, Loosli R, Schmid-Hempel P. 2000. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91:421–427. doi:10.1034/j.1600-0706.2000.910302.x. DOI
Hu C, Aksoy S. 2006. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60:1194–1204. doi:10.1111/j.1365-2958.2006.05180.x. PubMed DOI
Riddell CE, Sumner S, Adams S, Mallon EB. 2011. Pathways to immunity: temporal dynamics of the bumblebee (Bombus terrestris) immune response against a trypanosomal gut parasite. Insect Mol Biol 20:529–540. doi:10.1111/j.1365-2583.2011.01084.x. PubMed DOI
Hu Y, Aksoy S. 2005. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem Mol Biol 35:105–115. doi:10.1016/j.ibmb.2004.10.007. PubMed DOI
Deshwal S, Mallon EB. 2014. Antimicrobial peptides play a functional role in bumblebee anti-trypanosome defense. Dev Comp Immunol 42:240–243. doi:10.1016/j.dci.2013.09.004. PubMed DOI
Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. 2013. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog 9:e1003318. doi:10.1371/journal.ppat.1003318. PubMed DOI PMC
Koch H, Schmid-Hempel P. 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci U S A 108:19288–19292. doi:10.1073/pnas.1110474108. PubMed DOI PMC
Weiss BL, Wang J, Aksoy S. 2011. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9:e1000619. doi:10.1371/journal.pbio.1000619. PubMed DOI PMC
Weiss BL, Savage AF, Griffith BC, Wu Y, Aksoy S. 2014. The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes. J Immunol 193:773–782. doi:10.4049/jimmunol.1400163. PubMed DOI PMC
Hamilton PT, Leong JS, Koop BF, Perlman SJ. 2014. Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 23:1558–1570. doi:10.1111/mec.12603. PubMed DOI
Votýpka J, Klepetková H, Jirků M, Kment P, Lukeš J. 2012. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int J Parasitol 42:489–500. doi:10.1016/j.ijpara.2012.03.007. PubMed DOI
Jirků M, Yurchenko VY, Lukeš J, Maslov DA. 2012. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the trypanosomatidae. J Eukaryot Microbiol 59:537–547. doi:10.1111/j.1550-7408.2012.00636.x. PubMed DOI
Carruthers VB, Cross GA. 1992. High-efficiency clonal growth of bloodstream- and insect-form Trypanosoma brucei on agarose plates. Proc Natl Acad Sci U S A 89:8818–8821. doi:10.1073/pnas.89.18.8818. PubMed DOI PMC
Maslov DA, Lukeš J, Jirků M, Simpson L. 1996. Phylogeny of trypanosomes as inferred from the small and large subunits rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75:197–205. doi:10.1016/0166-6851(95)02526-X. PubMed DOI
Lassmann T, Sonnhammer EL. 2005. Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6:298. doi:10.1186/1471-2105-6-298. PubMed DOI PMC
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109. PubMed DOI PMC
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
Koressaar T, Remm M. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. doi:10.1093/bioinformatics/btm091. PubMed DOI
R Core Team 2014. R: a language and environment for statistical computing. R Core Team, Vienna, Austria.
Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: linear mixed-effects models using Eigen and S4. R Package version 1.1-7. https://github.com/lme4/lme4/.
Kohl L, Sherwin T, Gull K. 1999. Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J Eukaryot Microbiol 46:105–109. doi:10.1111/j.1550-7408.1999.tb04592.x. PubMed DOI
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus
Trypanosomatid parasites in Austrian mosquitoes
Leptomonas pyrrhocoris: Genomic insight into Parasite's Physiology
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action
SRA
PRJNA277742