Trypanosomatid parasites in Austrian mosquitoes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 1437
Austrian Science Fund FWF - Austria
PubMed
29672618
PubMed Central
PMC5908168
DOI
10.1371/journal.pone.0196052
PII: PONE-D-17-43045
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- Culicidae parazitologie MeSH
- fylogeneze MeSH
- protozoální DNA MeSH
- ribozomální DNA MeSH
- sekvenční analýza DNA MeSH
- Trypanosoma klasifikace genetika MeSH
- trypanozomiáza parazitologie přenos MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.
Biological Station Lake Neusiedl Burgenland Austria
Department of Parasitology Faculty of Science Charles University Prague Czechia
Federal Ministry of Defence and Sports Division of Science Research and Development Vienna Austria
Institute of Parasitology Biology Centre of Czech Academy of Sciences České Budĕjovice Czechia
Zobrazit více v PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52. doi: 10.1016/j.pt.2012.11.001 PubMed DOI
Simpson AG, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74. doi: 10.1016/j.pt.2006.02.006 PubMed DOI
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017;10:287 doi: 10.1186/s13071-017-2204-7 PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Poinar G Jr, Poinar R. Evidence of vector-borne disease of early cretaceous reptiles. Vector Borne Zoonotic Dis. 2004;4(4):281–4. doi: 10.1089/vbz.2004.4.281 PubMed DOI
Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966;18(1):124–93. PubMed
Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996;75(2):197–205. PubMed
Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. Sergeia podlipaevi gen. nov., sp nov (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2007;57:423–32. doi: 10.1099/ijs.0.64557-0 PubMed DOI
Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162(3):503–24. doi: 10.1016/j.protis.2011.01.001 PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing Trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165(6):825–38. doi: 10.1016/j.protis.2014.09.002 PubMed DOI
Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel Trypanosomatid, Zelonia australiensis sp nov (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1). PubMed PMC
Garnham P. Some natural protozoal parasites of mosquitoes with special reference to Crithidia. Trans I Int Conf Insect Pathology & Biol Control. 1958:287–94.
Wallace F. Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J Parasitol. 1943:196–205.
Votýpka J, Ray DS, Lukeš J. Crithidia fasciculata: a test for genetic exchange. Exp Parasitol. 2001;99(2):104–7. doi: 10.1006/expr.2001.4648 PubMed DOI
Fampa PC, Corrêa-da-Silva MS, Lima DC, Oliveira SM, Motta MCM, Saraiva EM. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol. 2003;33(10):1019–26. PubMed
Svobodová M, Volf P, Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med Vet Entomol. 2015;29(4):444–7. doi: 10.1111/mve.12130 PubMed DOI
Podlipaev S, Votýpka J, Jirků M, Svobodova M, Lukeš J. Herpetomonas ztiplika n. sp (Kinetoplastida: Trypanosomatidae): A parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). J Parasitol. 2004;90:342–7. doi: 10.1645/GE-156R PubMed DOI
Zídková L, Cepicka I, Votýpka J, Svobodová M. Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2010;60(9):2236–46. PubMed
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110(8):956–65. doi: 10.1590/0074-02760150253 PubMed DOI PMC
Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re) description. Trends Parasitol. 2015;31(10):460–9. doi: 10.1016/j.pt.2015.06.015 PubMed DOI
Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio. 2016;7(2):e01985–15. doi: 10.1128/mBio.01985-15 PubMed DOI PMC
Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, et al. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio. 2015;6(5):e01356–15. doi: 10.1128/mBio.01356-15 PubMed DOI PMC
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from neotropical Heteroptera. Protist. 2015;166(5):551–68. doi: 10.1016/j.protis.2015.08.004 PubMed DOI
Votýpka J, Maslov DA, Yurchenko V, Jirků M, Kment P, Lun Z-R, et al. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol. 2010;54(1):243–53. doi: 10.1016/j.ympev.2009.10.014 PubMed DOI
Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93. doi: 10.1016/j.cub.2013.07.045 PubMed DOI
Fernandes AP, Nelson K, Beverley SM. Evolution of nuclear ribosomal-RNAS in kinetoplastid protozoa—perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA. 1993;90(24):11608–12. PubMed PMC
Losos GJ, Ikede B. Review of pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense.Vet Pathol. 1972;9(1suppl):1–79.
Van den Ingh T, Zwart D, Van Miert A, Schotman A. Clinico-pathological and pathomorphological observations in Trypanosoma vivax infection cattle. Vet Parasitol. 1976;2(3):237–50.
Buguet A, Cespuglio R, Bouteille B. African sleeping sickness Sleep med: Springer; 2015. p. 159–65.
Hedley L, Fink D, Sparkes D, Chiodini PL. African sleeping sickness. Br J Hosp Med (Lond). 2016;77(Sup10):C157–C60. PubMed
Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388–402. doi: 10.1016/S0140-6736(10)60061-X PubMed DOI
Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 2010;115(1–2):14–21. doi: 10.1016/j.actatropica.2009.11.003 PubMed DOI
Grybchuk-Ieremenko A, Losev A, Kostygov AY, Lukeš J, Yurchenko V. High prevalence of trypanosome co-infections in freshwater fishes. Folia Parasitol. 2014;61:495–504. PubMed
Svobodová M, Weidinger K, Peške L, Volf P, Votýpka J, Voříšek P. Trypanosomes and haemosporidia in the buzzard (Buteo buteo) and sparrowhawk (Accipiter nisus): factors affecting the prevalence of parasites. Parasitol Res. 2015;114(2):551–60. doi: 10.1007/s00436-014-4217-x PubMed DOI
Votýpka J, Lukeš J, Oborník M. Phylogenetic relationship of Trypanosoma corvi with other avian trypanosomes. Acta Protozool. 2004;43:225–31.
Votýpka J, Oborník M, Volf P, Svobodová M, Lukeš J. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology. 2002;125:253–63. PubMed
Votýpka J, Svobodová M. Trypanosoma avium: experimental transmission from black flies to canaries. Parasitol Res. 2004;92(2):147–51. doi: 10.1007/s00436-003-1034-z PubMed DOI
Zídková L, Čepička I, Szabová J, Svobodová M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12. PubMed
Böse R, Friedhoff K, Olbrich S, Büscher G, Domeyer I. Transmission of Trypanosoma theileri to cattle by Tabanidae. Parasitol Res. 1987;73(5):421–4. PubMed
Hoare CA. The trypanosomes of mammals. Oxford: BlackwellScientific Publications; 1972.
Rodrigues A, Paiva F, Campaner M, Stevens J, Noyes H, Teixeira M. Phylogeny of Trypanosoma (Megatrypanum) theileri and related trypanosomes reveals lineages of isolates associated with artiodactyl hosts diverging on SSU and ITS ribosomal sequences. Parasitology. 2006;132(02):215–24. PubMed
Sehgal RN, Jones HI, Smith TB. Host specificity and incidence of Trypanosoma in some African rainforest birds: a molecular approach. Mol Ecol. 2001;10(9):2319–27. PubMed
Šlapeta J, Morin-Adeline V, Thompson P, McDonell D, Shiels M, Gilchrist K, et al. Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia). Parasitology. 2016;143(8):1012–25. doi: 10.1017/S0031182016000329 PubMed DOI
Bennett GF. On the specificity and transmission of some avian trypanosomes. Can J Zool. 1961;39(1):17–33.
Baker J. Studies on Trypanosoma avium Danilewsky 1885 II. Transmission by Ornithomyia avicularia L. Parasitology. 1956;46(3–4):321–34. PubMed
Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10(1):224 doi: 10.1186/s13071-017-2158-9 PubMed DOI PMC
Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. Trypanosoma culicavium sp nov., an avian trypanosome transmitted by Culex mosquitoes. Int J Syst Evol Microbiol. 2012;62:745–54. doi: 10.1099/ijs.0.032110-0 PubMed DOI
Bennett GF. Development of trypanosomes of the T. avium complex in the invertebrate host. Can J Zool. 1970;48(5):945–57. PubMed
Volf P, Hajmova M, Sádlová J, Votýpka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34(11):1221–7. doi: 10.1016/j.ijpara.2004.07.010 PubMed DOI
Bennett GF. Trypanosoma avium Danilewsky in the avian host. Can J Zool. 1970;48(4):803–7.
Stabler RM, Holt PA, Kitzmiller NJ. Trypanosoma avium in the blood and bone marrow from 677 Colorado birds. J Parasitol. 1966:1141–4. PubMed
Molyneux D, Cooper J, Smith W. Studies on the pathology of an avian trypanosome (T. bouffardi) infection in experimentally infected canaries. Parasitology. 1983;87(01):49–54. PubMed
Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C. Mosquitoes and their control. Heidelberg: Springer; 2010.
Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasit Vectors. 2016;9. PubMed PMC
Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168(1):71–9. doi: 10.1016/j.protis.2016.11.002 PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Lassmann T, Sonnhammer ELL. Kalign—an accurate and fast multiple sequence alignment algorithm. Bmc Bioinformatics. 2005;6. PubMed PMC
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Guindon S, Dufayard JF, Hordijk W, Lefort V, Gascuel O. PhyML: Fast and Accurate Phylogeny Reconstruction by Maximum Likelihood. Infect Genet Evol. 2009;9(3):384–5.
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8. PubMed
Holmstad PR, Anwar A, Iezhova T, Skorping A. Standard sampling techniques underestimate prevalence of avian hematozoa in willow ptarmigan (Lagopus lagopus). J Wildl Dis. 2003;39(2):354–8. doi: 10.7589/0090-3558-39.2.354 PubMed DOI
Merino S, Potti J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk. 1995;112(4):1041–3.
Shurulinkov P, Ilieva M. Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasit Res. 2009;104(6):1453. PubMed
Zittra C, Vitecek S, Obwaller AG, Rossiter H, Eigner B, Zechmeister T, et al. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors. 2017;10(1):205 doi: 10.1186/s13071-017-2140-6 PubMed DOI PMC
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N. Host-feeding patterns of mosquitoes in Germany. Parasit Vectors. 2016;9. PubMed PMC
Schonenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30(1):39–52. doi: 10.1111/mve.12155 PubMed DOI
Friedhoff K, Petrich J, Hoffmann M, Büscher G. Trypanosomes in cervidae in Germany. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256(3):286–7. PubMed
Wita I, Kingston N. Trypanosoma cervi in red deer, Cervus elaphus, in Poland. Acta Parasitol. 1999;44:93–8.
Podlipaev S. [Catalogue of world fauna of Trypanosomatidae (Protozoa)]. Proc Zool Inst, Leningrad: 1990:1–178. (in Russian)
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165(5):594–604. doi: 10.1016/j.protis.2014.07.001 PubMed DOI
Yurchenko V, Votýpka J, Tesarová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014;61(2):97 PubMed
Van Dyken M, Bolling BG, Moore CG, Blair CD, Beaty BJ, Black WC, et al. Molecular evidence for trypanosomatids in Culex mosquitoes collected during a West Nile virus survey. Int J Parasitol. 2006;36(9):1015–23. doi: 10.1016/j.ijpara.2006.05.003 PubMed DOI
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704 doi: 10.1038/srep23704 PubMed DOI PMC
Schlafer D. Trypanosoma theileri: a literature review and report of incidence in New York cattle. Cornell Vet. 1979;69(4):411–25. PubMed
The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates
Development of two species of the Trypanosoma theileri complex in tabanids
Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors
An unexpected diversity of trypanosomatids in fecal samples of great apes