Trypanosomatid parasites in Austrian mosquitoes

. 2018 ; 13 (4) : e0196052. [epub] 20180419

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29672618

Grantová podpora
I 1437 Austrian Science Fund FWF - Austria

Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.

Zobrazit více v PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52. doi: 10.1016/j.pt.2012.11.001 PubMed DOI

Simpson AG, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74. doi: 10.1016/j.pt.2006.02.006 PubMed DOI

Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017;10:287 doi: 10.1186/s13071-017-2204-7 PubMed DOI PMC

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI

Poinar G Jr, Poinar R. Evidence of vector-borne disease of early cretaceous reptiles. Vector Borne Zoonotic Dis. 2004;4(4):281–4. doi: 10.1089/vbz.2004.4.281 PubMed DOI

Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966;18(1):124–93. PubMed

Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996;75(2):197–205. PubMed

Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. Sergeia podlipaevi gen. nov., sp nov (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2007;57:423–32. doi: 10.1099/ijs.0.64557-0 PubMed DOI

Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162(3):503–24. doi: 10.1016/j.protis.2011.01.001 PubMed DOI

Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing Trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165(6):825–38. doi: 10.1016/j.protis.2014.09.002 PubMed DOI

Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel Trypanosomatid, Zelonia australiensis sp nov (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1). PubMed PMC

Garnham P. Some natural protozoal parasites of mosquitoes with special reference to Crithidia. Trans I Int Conf Insect Pathology & Biol Control. 1958:287–94.

Wallace F. Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J Parasitol. 1943:196–205.

Votýpka J, Ray DS, Lukeš J. Crithidia fasciculata: a test for genetic exchange. Exp Parasitol. 2001;99(2):104–7. doi: 10.1006/expr.2001.4648 PubMed DOI

Fampa PC, Corrêa-da-Silva MS, Lima DC, Oliveira SM, Motta MCM, Saraiva EM. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol. 2003;33(10):1019–26. PubMed

Svobodová M, Volf P, Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med Vet Entomol. 2015;29(4):444–7. doi: 10.1111/mve.12130 PubMed DOI

Podlipaev S, Votýpka J, Jirků M, Svobodova M, Lukeš J. Herpetomonas ztiplika n. sp (Kinetoplastida: Trypanosomatidae): A parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). J Parasitol. 2004;90:342–7. doi: 10.1645/GE-156R PubMed DOI

Zídková L, Cepicka I, Votýpka J, Svobodová M. Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2010;60(9):2236–46. PubMed

d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110(8):956–65. doi: 10.1590/0074-02760150253 PubMed DOI PMC

Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re) description. Trends Parasitol. 2015;31(10):460–9. doi: 10.1016/j.pt.2015.06.015 PubMed DOI

Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio. 2016;7(2):e01985–15. doi: 10.1128/mBio.01985-15 PubMed DOI PMC

Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, et al. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio. 2015;6(5):e01356–15. doi: 10.1128/mBio.01356-15 PubMed DOI PMC

Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from neotropical Heteroptera. Protist. 2015;166(5):551–68. doi: 10.1016/j.protis.2015.08.004 PubMed DOI

Votýpka J, Maslov DA, Yurchenko V, Jirků M, Kment P, Lun Z-R, et al. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol. 2010;54(1):243–53. doi: 10.1016/j.ympev.2009.10.014 PubMed DOI

Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93. doi: 10.1016/j.cub.2013.07.045 PubMed DOI

Fernandes AP, Nelson K, Beverley SM. Evolution of nuclear ribosomal-RNAS in kinetoplastid protozoa—perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA. 1993;90(24):11608–12. PubMed PMC

Losos GJ, Ikede B. Review of pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense.Vet Pathol. 1972;9(1suppl):1–79.

Van den Ingh T, Zwart D, Van Miert A, Schotman A. Clinico-pathological and pathomorphological observations in Trypanosoma vivax infection cattle. Vet Parasitol. 1976;2(3):237–50.

Buguet A, Cespuglio R, Bouteille B. African sleeping sickness Sleep med: Springer; 2015. p. 159–65.

Hedley L, Fink D, Sparkes D, Chiodini PL. African sleeping sickness. Br J Hosp Med (Lond). 2016;77(Sup10):C157–C60. PubMed

Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388–402. doi: 10.1016/S0140-6736(10)60061-X PubMed DOI

Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 2010;115(1–2):14–21. doi: 10.1016/j.actatropica.2009.11.003 PubMed DOI

Grybchuk-Ieremenko A, Losev A, Kostygov AY, Lukeš J, Yurchenko V. High prevalence of trypanosome co-infections in freshwater fishes. Folia Parasitol. 2014;61:495–504. PubMed

Svobodová M, Weidinger K, Peške L, Volf P, Votýpka J, Voříšek P. Trypanosomes and haemosporidia in the buzzard (Buteo buteo) and sparrowhawk (Accipiter nisus): factors affecting the prevalence of parasites. Parasitol Res. 2015;114(2):551–60. doi: 10.1007/s00436-014-4217-x PubMed DOI

Votýpka J, Lukeš J, Oborník M. Phylogenetic relationship of Trypanosoma corvi with other avian trypanosomes. Acta Protozool. 2004;43:225–31.

Votýpka J, Oborník M, Volf P, Svobodová M, Lukeš J. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology. 2002;125:253–63. PubMed

Votýpka J, Svobodová M. Trypanosoma avium: experimental transmission from black flies to canaries. Parasitol Res. 2004;92(2):147–51. doi: 10.1007/s00436-003-1034-z PubMed DOI

Zídková L, Čepička I, Szabová J, Svobodová M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12. PubMed

Böse R, Friedhoff K, Olbrich S, Büscher G, Domeyer I. Transmission of Trypanosoma theileri to cattle by Tabanidae. Parasitol Res. 1987;73(5):421–4. PubMed

Hoare CA. The trypanosomes of mammals. Oxford: BlackwellScientific Publications; 1972.

Rodrigues A, Paiva F, Campaner M, Stevens J, Noyes H, Teixeira M. Phylogeny of Trypanosoma (Megatrypanum) theileri and related trypanosomes reveals lineages of isolates associated with artiodactyl hosts diverging on SSU and ITS ribosomal sequences. Parasitology. 2006;132(02):215–24. PubMed

Sehgal RN, Jones HI, Smith TB. Host specificity and incidence of Trypanosoma in some African rainforest birds: a molecular approach. Mol Ecol. 2001;10(9):2319–27. PubMed

Šlapeta J, Morin-Adeline V, Thompson P, McDonell D, Shiels M, Gilchrist K, et al. Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia). Parasitology. 2016;143(8):1012–25. doi: 10.1017/S0031182016000329 PubMed DOI

Bennett GF. On the specificity and transmission of some avian trypanosomes. Can J Zool. 1961;39(1):17–33.

Baker J. Studies on Trypanosoma avium Danilewsky 1885 II. Transmission by Ornithomyia avicularia L. Parasitology. 1956;46(3–4):321–34. PubMed

Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10(1):224 doi: 10.1186/s13071-017-2158-9 PubMed DOI PMC

Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. Trypanosoma culicavium sp nov., an avian trypanosome transmitted by Culex mosquitoes. Int J Syst Evol Microbiol. 2012;62:745–54. doi: 10.1099/ijs.0.032110-0 PubMed DOI

Bennett GF. Development of trypanosomes of the T. avium complex in the invertebrate host. Can J Zool. 1970;48(5):945–57. PubMed

Volf P, Hajmova M, Sádlová J, Votýpka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34(11):1221–7. doi: 10.1016/j.ijpara.2004.07.010 PubMed DOI

Bennett GF. Trypanosoma avium Danilewsky in the avian host. Can J Zool. 1970;48(4):803–7.

Stabler RM, Holt PA, Kitzmiller NJ. Trypanosoma avium in the blood and bone marrow from 677 Colorado birds. J Parasitol. 1966:1141–4. PubMed

Molyneux D, Cooper J, Smith W. Studies on the pathology of an avian trypanosome (T. bouffardi) infection in experimentally infected canaries. Parasitology. 1983;87(01):49–54. PubMed

Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C. Mosquitoes and their control. Heidelberg: Springer; 2010.

Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasit Vectors. 2016;9. PubMed PMC

Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168(1):71–9. doi: 10.1016/j.protis.2016.11.002 PubMed DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC

Lassmann T, Sonnhammer ELL. Kalign—an accurate and fast multiple sequence alignment algorithm. Bmc Bioinformatics. 2005;6. PubMed PMC

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. doi: 10.1093/sysbio/sys029 PubMed DOI PMC

Guindon S, Dufayard JF, Hordijk W, Lefort V, Gascuel O. PhyML: Fast and Accurate Phylogeny Reconstruction by Maximum Likelihood. Infect Genet Evol. 2009;9(3):384–5.

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8. PubMed

Holmstad PR, Anwar A, Iezhova T, Skorping A. Standard sampling techniques underestimate prevalence of avian hematozoa in willow ptarmigan (Lagopus lagopus). J Wildl Dis. 2003;39(2):354–8. doi: 10.7589/0090-3558-39.2.354 PubMed DOI

Merino S, Potti J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk. 1995;112(4):1041–3.

Shurulinkov P, Ilieva M. Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasit Res. 2009;104(6):1453. PubMed

Zittra C, Vitecek S, Obwaller AG, Rossiter H, Eigner B, Zechmeister T, et al. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors. 2017;10(1):205 doi: 10.1186/s13071-017-2140-6 PubMed DOI PMC

Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N. Host-feeding patterns of mosquitoes in Germany. Parasit Vectors. 2016;9. PubMed PMC

Schonenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30(1):39–52. doi: 10.1111/mve.12155 PubMed DOI

Friedhoff K, Petrich J, Hoffmann M, Büscher G. Trypanosomes in cervidae in Germany. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256(3):286–7. PubMed

Wita I, Kingston N. Trypanosoma cervi in red deer, Cervus elaphus, in Poland. Acta Parasitol. 1999;44:93–8.

Podlipaev S. [Catalogue of world fauna of Trypanosomatidae (Protozoa)]. Proc Zool Inst, Leningrad: 1990:1–178. (in Russian)

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165(5):594–604. doi: 10.1016/j.protis.2014.07.001 PubMed DOI

Yurchenko V, Votýpka J, Tesarová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014;61(2):97 PubMed

Van Dyken M, Bolling BG, Moore CG, Blair CD, Beaty BJ, Black WC, et al. Molecular evidence for trypanosomatids in Culex mosquitoes collected during a West Nile virus survey. Int J Parasitol. 2006;36(9):1015–23. doi: 10.1016/j.ijpara.2006.05.003 PubMed DOI

Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704 doi: 10.1038/srep23704 PubMed DOI PMC

Schlafer D. Trypanosoma theileri: a literature review and report of incidence in New York cattle. Cornell Vet. 1979;69(4):411–25. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates

. 2022 Nov 11 ; 11 (11) : . [epub] 20221111

Development of two species of the Trypanosoma theileri complex in tabanids

. 2022 Mar 21 ; 15 (1) : 95. [epub] 20220321

Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors

. 2022 Jan 26 ; 10 (2) : . [epub] 20220126

Complete Life Cycle of Trypanosoma thomasbancrofti, an Avian Trypanosome Transmitted by Culicine Mosquitoes

. 2021 Oct 05 ; 9 (10) : . [epub] 20211005

An unexpected diversity of trypanosomatids in fecal samples of great apes

. 2018 Dec ; 7 (3) : 322-325. [epub] 20180905

Isolation of a Trypanosome Related to Trypanosoma theileri (Kinetoplastea: Trypanosomatidae) from Phlebotomus perfiliewi (Diptera: Psychodidae)

. 2018 ; 2018 () : 2597074. [epub] 20180715

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...