The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates

. 2022 Nov 11 ; 11 (11) : . [epub] 20221111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36422578

Grantová podpora
21-14-00191 Russian Science Foundation
122031100263-1 State Assignment for the Zoological Institute RAS

Monoxenous (insect-restricted) trypanosomatids are highly diverse and abundant in nature. While many papers focus on the taxonomy and distribution of these parasites, studies on their biology are still scarce. In particular, this concerns trypanosomatids inhabiting the ubiquitous mosquitoes. To shed light on the circulation of monoxenous trypanosomatids with the participation of mosquitoes, we performed a multifaceted study combining the examination of naturally- and experimentally-infected insects using light and electron microscopy and molecular identification of parasites. Our examination of overwintering mosquitoes (genera Culex and Culiseta) revealed that their guts contained living trypanosomatids, which can be spread during the next season. Experimental infections with Crithidia spp. demonstrated that imagines represent permissive hosts, while larvae are resistant to these parasites. We argue that for the parasites with wide specificity, mosquitoes act as facultative hosts. Other trypanosomatids may have specific adaptations for vertical transmission in these insects at the expense of their potential to infect a wider range of hosts and, consequently, abundance in nature.

Zobrazit více v PubMed

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC

Frolov A.O., Kostygov A.Y., Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37:538–551. doi: 10.1016/j.pt.2021.02.004. PubMed DOI

Sergent E., Sergent E. Sur un flagellé nouveau de l’intestin des Culex et des Stegomyia, Herpetomonas algeriense. Sur un autre flagellé et sur des spirochaetae de l’intestin des larves de moustiques. C R. Soc. Biol. 1906;60:291–293.

Léger L. Sur un flagellé parasite de l’Anopheles maculipennis. C R. Seances Soc. Biol. 1902;54:354–356.

Novy F.G., Macneal W.J., Torrey H.N. Mosquito trypanosomes. J. Hyg. 1906;6:110. doi: 10.1017/S0022172400002746. PubMed DOI PMC

Podlipaev S.A. [Catalogue of World Fauna of Trypanosomatidae (Protozoa)] Volume 144. Zoologicheskii Institut AN SSSR; Leningrad, Russia: 1990. p. 178. (In Russian)

Wallace F.G. The trypanosomatid parasites of insects and arachnids. Exp. Parasitol. 1966;18:124–193. doi: 10.1016/0014-4894(66)90015-4. PubMed DOI

McGhee R.B., Cosgrove W.B. Biology and physiology of the lower Trypanosomatidae. Microbiol. Rev. 1980;44:140–173. doi: 10.1128/mr.44.1.140-173.1980. PubMed DOI PMC

Blacklock D.B., Lourie E.M. The demonstration of viable Leishmania in the faeces of experimentally infected bed-bugs. Ann. Trop Med. Parasitol. 1931;25:359–368. doi: 10.1080/00034983.1931.11684686. DOI

Hanson W.L., McGhee R.B. Experimental infection of the hemipteron Oncopeltus fasciatus with Trypanosomatidae isolated from other hosts. J. Protozool. 1963;10:233–238. doi: 10.1111/j.1550-7408.1963.tb01668.x. PubMed DOI

Podlipaev S.A. Insect trypanosomatids: The need to know more. Mem. Inst. Oswaldo Cruz. 2000;95:517–522. doi: 10.1590/S0074-02762000000400013. PubMed DOI

Wallace F.G., Camargo E.P., McGhee R.B., Roitman I. Guidelines for the description of new species of lower trypanosomatids. J. Protozool. 1983;30:308–313. doi: 10.1111/j.1550-7408.1983.tb02921.x. DOI

Teixeira M.M., Borghesan T.C., Ferreira R.C., Santos M.A., Takata C.S., Campaner M., Nunes V.L., Milder R.V., de Souza W., Camargo E.P. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162:503–524. doi: 10.1016/j.protis.2011.01.001. PubMed DOI

Flegontov P., Votýpka J., Skalický T., Logacheva M.D., Penin A.A., Tanifuji G., Onodera N.T., Kondrashov A.S., Volf P., Archibald J.M., et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr. Biol. 2013;23:1787–1793. doi: 10.1016/j.cub.2013.07.045. PubMed DOI

Ishemgulova A., Butenko A., Kortisova L., Boucinha C., Grybchuk-Ieremenko A., Morelli K.A., Tesarova M., Kraeva N., Grybchuk D., Panek T., et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE. 2017;12:e0174165. doi: 10.1371/journal.pone.0174165. PubMed DOI PMC

Van Dyken M., Bolling B.G., Moore C.G., Blair C.D., Beaty B.J., Black W.C.t., Foy B.D. Molecular evidence for trypanosomatids in Culex mosquitoes collected during a West Nile virus survey. Int. J. Parasitol. 2006;36:1015–1023. doi: 10.1016/j.ijpara.2006.05.003. PubMed DOI

Schoener E.R., Harl J., Himmel T., Fragner K., Weissenbock H., Fuehrer H.P. Protozoan parasites in Culex pipiens mosquitoes in Vienna. Parasitol. Res. 2019;118:1261–1269. doi: 10.1007/s00436-019-06219-8. PubMed DOI PMC

Schoener E., Uebleis S.S., Cuk C., Nawratil M., Obwaller A.G., Zechmeister T., Lebl K., Radrová J., Zittra C., Votýpka J., et al. Trypanosomatid parasites in Austrian mosquitoes. PLoS ONE. 2018;13:e0196052. doi: 10.1371/journal.pone.0196052. PubMed DOI PMC

Svobodová M., Volf P., Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med. Vet. Entomol. 2015;29:444–447. doi: 10.1111/mve.12130. PubMed DOI

Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI

Kostygov A.Y., Malysheva M.N., Frolov A.O. [Investigation of causes of the conflict between taxonomy and molecular phylogeny of trypanosomatids by the example of Leptomonas nabiculae Podlipaev, 1987] Parazitologiia. 2011;45:409–424. (In Russian) PubMed

Týč J., Votýpka J., Klepetková H., Šuláková H., Jirků M., Lukeš J. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachcera): Frequent cosmopolitism and moderate host specificity. Mol. Phylogenet. Evol. 2013;69:255–264. doi: 10.1016/j.ympev.2013.05.024. PubMed DOI

Kostygov A.Y., Frolov A.O., Malysheva M.N., Ganyukova A.I., Drachko D., Yurchenko V., Agasoi V.V. Development of two species of the Trypanosoma theileri complex in tabanids. Parasit. Vectors. 2022;15:95. doi: 10.1186/s13071-022-05212-y. PubMed DOI PMC

Frolov A.O., Malysheva M.N., Ganyukova A.I., Spodareva V.V., Králová J., Yurchenko V., Kostygov A.Y. If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus. PLoS ONE. 2020;15:e0227832. doi: 10.1371/journal.pone.0227832. PubMed DOI PMC

Becker N., Petric D., Zgomba M., Boase C., Madon M., Dahl C., Kaiser A. Mosquitoes and Their Control. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2010. p. 577.

Razygraev A.V., Sulesco T.M. The use of the Bayes factor for identification of Culex pipiens and C. torrentium (Diptera: Culicidae) based on morphometric wing characters. Entomol. Rev. 2020;100:220–227. doi: 10.1134/S0013873820020104. DOI

Börstler J., Lühken R., Rudolf M., Steinke S., Melaun C., Becker S., Garms R., Krüger A. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium. J. Vector Ecol. 2014;39:204–212. doi: 10.1111/j.1948-7134.2014.12088.x. PubMed DOI

Kostygov A.Y., Frolov A.O. [Leptomonas jaculum (Leger, 1902) Woodcock 1914: A leptomonas or a blastocrithidia?] Parazitologiia. 2007;41:126–136. (In Russian) PubMed

Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI

Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI

Malysheva M.N., Mamkaeva M.A., Kostygov A.Y., Frolov A.O., Karpov S.A. Culture collection of parasitic protists at the Zoological Institute RAS (CCPP ZIN RAS) Protistology. 2016;10:26–42.

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Simpson A.M., Simpson L. Labeling of Crithidia fasciculata DNA with [3H]thymidine. J. Protozool. 1974;21:379–382. doi: 10.1111/j.1550-7408.1974.tb03674.x. PubMed DOI

Frolov A.O., Malysheva M.N. [Description of Crithidia allae sp.n. and Crithidia brevicula sp.n. (Protozoa, Trypanosomatidae) from the predator bug Nabis brevis Scholtz (Hemiptera, Miridae)] Rus. J. Zool. 1989;68:5–10. (In Russian)

Razygraev A.V. On longevity of adult Chaoborids (Diptera, Chaoboridae) under sugar feeding conditions. Entomol. Rev. 2022;102:279–285. doi: 10.1134/S0013873822030010. DOI

Campbell I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007;26:3661–3675. doi: 10.1002/sim.2832. PubMed DOI

Králová J., Grybchuk-Ieremenko A., Votýpka J., Novotný V., Kment P., Lukeš J., Yurchenko V., Kostygov A.Y. Insect trypanosomatids in Papua New Guinea: High endemism and diversity. Int. J. Parasitol. 2019;49:1075–1086. doi: 10.1016/j.ijpara.2019.09.004. PubMed DOI

Malysheva M.N., Kostygov A.Y., Frolov A.O. Niche partitioning within an insect host: Trypanosomatids Wallacemonas raviniae and Trypanosoma (Megatrypanum) sp. in the horsefly Hybomitra solstitialis. Protistology. 2022;16:87–97. doi: 10.21685/1680-0826-2022-16-2-3. DOI

Yurchenko V., Lukeš J., Jirků M., Maslov D.A. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: A case of several novel species isolated from Neotropical Heteroptera. Int. J. Syst. Evol. Microbiol. 2009;59:893–909. doi: 10.1099/ijs.0.001149-0. PubMed DOI

Westenberger S.J., Sturm N.R., Yanega D., Podlipaev S.A., Zeledon R., Campbell D.A., Maslov D.A. Trypanosomatid biodiversity in Costa Rica: Genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology. 2004;129:537–547. doi: 10.1017/S003118200400592X. PubMed DOI

Maslov D.A., Westenberger S.J., Xu X., Campbell D.A., Sturm N.R. Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J. Eukaryot. Microbiol. 2007;54:57–65. doi: 10.1111/j.1550-7408.2006.00150.x. PubMed DOI

Votýpka J., Klepetková H., Jirků M., Kment P., Lukeš J. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int. J. Parasitol. 2012;42:489–500. doi: 10.1016/j.ijpara.2012.03.007. PubMed DOI

Ganyukova A.I., Malysheva M.N., Smirnov P.A., Frolov A.O. Crithidia dobrovolskii sp. n. (Kinetoplastida: Trypanosomatidae) from parasitoid fly Lypha dubia (Diptera: Tachinidae): Morphology and phylogenetic position. Protistology. 2019;13:206–214. doi: 10.21685/1680-0826-2019-13-4-4. DOI

Podlipaev S.A., Rokitskaya T.A. [Classification of isolates of insect’s trypanosomatids: Isoenzyme analysis] Parazitologiya. 1999;33:350–357. (In Russian)

Ganyukova A.I., Zolotarev A.V., Frolov A.O. Geographical distribution and host range of monoxenous trypanosomatid Crithidia brevicula (Frolov et Malysheva, 1989) in the northern regions of Eurasia. Protistology. 2020;14:70–78. doi: 10.21685/1680-0826-2020-14-2-3. DOI

Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Strickman D., Linton Y., Wilkerson R.C. Mosquitoes of the World. Volume 1. Johns Hopkins University Press; Baltimore, MD, USA: 2021. p. 599.

Clark T.B., Kellen W.R., Lindegren J.E., Smith T.A. The transmission of Crithidia fasciculata Leger 1902 in Culiseta Incidens (Thomson) J. Protozool. 1964;11:400–402. doi: 10.1111/j.1550-7408.1964.tb01770.x. PubMed DOI

Wallace F.G. Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J. Parasitol. 1943;29:196–205. doi: 10.2307/3273098. DOI

Patton W.S. Preliminary note on the life cycle of a species of Herpetomonas found in Culex pipiens. Br. Med. J. 1907;2:78–80. doi: 10.1136/bmj.2.2428.78. PubMed DOI PMC

Patton W.S. Studies on the Flagellates of the Genera Herpetomonas, Crithidia and Rhynchoidomonas: No. 1. The Morphology and Life History of Herpetomonas Culicis, Novy, MacNeal, and Torrey. Volume 58. Superintendent Government Printing; Calcutta, India: 1912. p. 21.

Votýpka J., Petrželková K.J., Brzoňová J., Jirků M., Modrý D., Lukeš J. How monoxenous trypanosomatids revealed hidden feeding habits of their tsetse fly hosts. Folia Parasitol. 2021;68:019. doi: 10.14411/fp.2021.019. PubMed DOI

Schaefer C.W., Panizzi A.R. Heteroptera of Economic Importance. CRC Press; Boca Raton, FL, USA: 2000. p. 828.

Carvajal M.A., Jimenez N., Faundez E.I. A predation record of Nabis paranensis (Hemiptera: Heteroptera) over Aedes albifasciatus. J. Am. Mosq. Control. Assoc. 2019;35:135–136. doi: 10.2987/19-6838.1. PubMed DOI

Votýpka J., Kment P., Yurchenko V., Lukeš J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers Conserv. 2020;29:3635–3667. doi: 10.1007/s10531-020-02041-2. (In English) DOI

Podlipaev S.A., Malysheva M.N., Kolesnikov A.A. Leptomonas rigidus sp. n. (Trypanosomatidae)—A parasite of Salda littoralis L (Hemiptera, Heteroptera) Acta Protozool. 1991;30:121–127.

Wallace F.G., Clark T.B., Dyer M.I., Collins T. Two new species of flagellates cultivated from insects of the genus Gerris. J. Protozool. 1960;7:390–392. doi: 10.1111/j.1550-7408.1960.tb05986.x. DOI

Thongsripong P., Chandler J.A., Kittayapong P., Wilcox B.A., Kapan D.D., Bennett S.N. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci. Rep. 2021;11:8448. doi: 10.1038/s41598-021-87122-0. (In English) PubMed DOI PMC

Noguchi H., Tilden E.B. Comparative studies of herpetomonads and leishmanias. I. Cultivation of herpetomonads from insects and plants. J. Exp. Med. 1926;44:307–325. doi: 10.1084/jem.44.3.307. PubMed DOI PMC

Mcghee R.B., Hanson W.L. Growth and reproduction of Leptomonas oncopelti in milkweed bug, Oncopeltus fasciatus. J. Protozool. 1962;9:488–493. doi: 10.1111/j.1550-7408.1962.tb02660.x. DOI

Noguchi H. Comparative studies of herpetomonads and leishmanias. II. Differentiation of the organisms by serological reactions and fermentation tests. J. Exp. Med. 1926;44:327–337. doi: 10.1084/jem.44.3.327. PubMed DOI PMC

Camargo E.P. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 1999;42:29–112. PubMed

Kozminsky E., Kraeva N., Ishemgulova A., Dobakova E., Lukeš J., Kment P., Yurchenko V., Votýpka J., Maslov D.A. Host-specificity of monoxenous trypanosomatids: Statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015;166:551–568. doi: 10.1016/j.protis.2015.08.004. PubMed DOI

Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI

Votýpka J., Maslov D.A., Yurchenko V., Jirků M., Kment P., Lun Z.R., Lukeš J. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol. Phylogenet. Evol. 2010;54:243–253. doi: 10.1016/j.ympev.2009.10.014. PubMed DOI

Votýpka J., Kment P., Kriegová E., Vermeij M.J.A., Keeling P.J., Yurchenko V., Lukeš J. High prevalence and endemism of trypanosomatids on a small Caribbean island. J. Eukaryot. Microbiol. 2019;66:600–607. doi: 10.1111/jeu.12704. PubMed DOI

Frolov A.O., Malysheva M.N., Ganyukova A.I., Yurchenko V., Kostygov A.Y. Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLoS ONE. 2018;13:e0204467. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...