The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-14-00191
Russian Science Foundation
122031100263-1
State Assignment for the Zoological Institute RAS
PubMed
36422578
PubMed Central
PMC9695722
DOI
10.3390/pathogens11111326
PII: pathogens11111326
Knihovny.cz E-zdroje
- Klíčová slova
- Crithidia, Paratrypanosoma, Trypanosomatidae, experimental infection, facultative host, overwintering mosquitoes, prevalence, specificity, transmission,
- Publikační typ
- časopisecké články MeSH
Monoxenous (insect-restricted) trypanosomatids are highly diverse and abundant in nature. While many papers focus on the taxonomy and distribution of these parasites, studies on their biology are still scarce. In particular, this concerns trypanosomatids inhabiting the ubiquitous mosquitoes. To shed light on the circulation of monoxenous trypanosomatids with the participation of mosquitoes, we performed a multifaceted study combining the examination of naturally- and experimentally-infected insects using light and electron microscopy and molecular identification of parasites. Our examination of overwintering mosquitoes (genera Culex and Culiseta) revealed that their guts contained living trypanosomatids, which can be spread during the next season. Experimental infections with Crithidia spp. demonstrated that imagines represent permissive hosts, while larvae are resistant to these parasites. We argue that for the parasites with wide specificity, mosquitoes act as facultative hosts. Other trypanosomatids may have specific adaptations for vertical transmission in these insects at the expense of their potential to infect a wider range of hosts and, consequently, abundance in nature.
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC
Frolov A.O., Kostygov A.Y., Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37:538–551. doi: 10.1016/j.pt.2021.02.004. PubMed DOI
Sergent E., Sergent E. Sur un flagellé nouveau de l’intestin des Culex et des Stegomyia, Herpetomonas algeriense. Sur un autre flagellé et sur des spirochaetae de l’intestin des larves de moustiques. C R. Soc. Biol. 1906;60:291–293.
Léger L. Sur un flagellé parasite de l’Anopheles maculipennis. C R. Seances Soc. Biol. 1902;54:354–356.
Novy F.G., Macneal W.J., Torrey H.N. Mosquito trypanosomes. J. Hyg. 1906;6:110. doi: 10.1017/S0022172400002746. PubMed DOI PMC
Podlipaev S.A. [Catalogue of World Fauna of Trypanosomatidae (Protozoa)] Volume 144. Zoologicheskii Institut AN SSSR; Leningrad, Russia: 1990. p. 178. (In Russian)
Wallace F.G. The trypanosomatid parasites of insects and arachnids. Exp. Parasitol. 1966;18:124–193. doi: 10.1016/0014-4894(66)90015-4. PubMed DOI
McGhee R.B., Cosgrove W.B. Biology and physiology of the lower Trypanosomatidae. Microbiol. Rev. 1980;44:140–173. doi: 10.1128/mr.44.1.140-173.1980. PubMed DOI PMC
Blacklock D.B., Lourie E.M. The demonstration of viable Leishmania in the faeces of experimentally infected bed-bugs. Ann. Trop Med. Parasitol. 1931;25:359–368. doi: 10.1080/00034983.1931.11684686. DOI
Hanson W.L., McGhee R.B. Experimental infection of the hemipteron Oncopeltus fasciatus with Trypanosomatidae isolated from other hosts. J. Protozool. 1963;10:233–238. doi: 10.1111/j.1550-7408.1963.tb01668.x. PubMed DOI
Podlipaev S.A. Insect trypanosomatids: The need to know more. Mem. Inst. Oswaldo Cruz. 2000;95:517–522. doi: 10.1590/S0074-02762000000400013. PubMed DOI
Wallace F.G., Camargo E.P., McGhee R.B., Roitman I. Guidelines for the description of new species of lower trypanosomatids. J. Protozool. 1983;30:308–313. doi: 10.1111/j.1550-7408.1983.tb02921.x. DOI
Teixeira M.M., Borghesan T.C., Ferreira R.C., Santos M.A., Takata C.S., Campaner M., Nunes V.L., Milder R.V., de Souza W., Camargo E.P. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162:503–524. doi: 10.1016/j.protis.2011.01.001. PubMed DOI
Flegontov P., Votýpka J., Skalický T., Logacheva M.D., Penin A.A., Tanifuji G., Onodera N.T., Kondrashov A.S., Volf P., Archibald J.M., et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr. Biol. 2013;23:1787–1793. doi: 10.1016/j.cub.2013.07.045. PubMed DOI
Ishemgulova A., Butenko A., Kortisova L., Boucinha C., Grybchuk-Ieremenko A., Morelli K.A., Tesarova M., Kraeva N., Grybchuk D., Panek T., et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE. 2017;12:e0174165. doi: 10.1371/journal.pone.0174165. PubMed DOI PMC
Van Dyken M., Bolling B.G., Moore C.G., Blair C.D., Beaty B.J., Black W.C.t., Foy B.D. Molecular evidence for trypanosomatids in Culex mosquitoes collected during a West Nile virus survey. Int. J. Parasitol. 2006;36:1015–1023. doi: 10.1016/j.ijpara.2006.05.003. PubMed DOI
Schoener E.R., Harl J., Himmel T., Fragner K., Weissenbock H., Fuehrer H.P. Protozoan parasites in Culex pipiens mosquitoes in Vienna. Parasitol. Res. 2019;118:1261–1269. doi: 10.1007/s00436-019-06219-8. PubMed DOI PMC
Schoener E., Uebleis S.S., Cuk C., Nawratil M., Obwaller A.G., Zechmeister T., Lebl K., Radrová J., Zittra C., Votýpka J., et al. Trypanosomatid parasites in Austrian mosquitoes. PLoS ONE. 2018;13:e0196052. doi: 10.1371/journal.pone.0196052. PubMed DOI PMC
Svobodová M., Volf P., Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med. Vet. Entomol. 2015;29:444–447. doi: 10.1111/mve.12130. PubMed DOI
Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI
Kostygov A.Y., Malysheva M.N., Frolov A.O. [Investigation of causes of the conflict between taxonomy and molecular phylogeny of trypanosomatids by the example of Leptomonas nabiculae Podlipaev, 1987] Parazitologiia. 2011;45:409–424. (In Russian) PubMed
Týč J., Votýpka J., Klepetková H., Šuláková H., Jirků M., Lukeš J. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachcera): Frequent cosmopolitism and moderate host specificity. Mol. Phylogenet. Evol. 2013;69:255–264. doi: 10.1016/j.ympev.2013.05.024. PubMed DOI
Kostygov A.Y., Frolov A.O., Malysheva M.N., Ganyukova A.I., Drachko D., Yurchenko V., Agasoi V.V. Development of two species of the Trypanosoma theileri complex in tabanids. Parasit. Vectors. 2022;15:95. doi: 10.1186/s13071-022-05212-y. PubMed DOI PMC
Frolov A.O., Malysheva M.N., Ganyukova A.I., Spodareva V.V., Králová J., Yurchenko V., Kostygov A.Y. If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus. PLoS ONE. 2020;15:e0227832. doi: 10.1371/journal.pone.0227832. PubMed DOI PMC
Becker N., Petric D., Zgomba M., Boase C., Madon M., Dahl C., Kaiser A. Mosquitoes and Their Control. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2010. p. 577.
Razygraev A.V., Sulesco T.M. The use of the Bayes factor for identification of Culex pipiens and C. torrentium (Diptera: Culicidae) based on morphometric wing characters. Entomol. Rev. 2020;100:220–227. doi: 10.1134/S0013873820020104. DOI
Börstler J., Lühken R., Rudolf M., Steinke S., Melaun C., Becker S., Garms R., Krüger A. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium. J. Vector Ecol. 2014;39:204–212. doi: 10.1111/j.1948-7134.2014.12088.x. PubMed DOI
Kostygov A.Y., Frolov A.O. [Leptomonas jaculum (Leger, 1902) Woodcock 1914: A leptomonas or a blastocrithidia?] Parazitologiia. 2007;41:126–136. (In Russian) PubMed
Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI
Malysheva M.N., Mamkaeva M.A., Kostygov A.Y., Frolov A.O., Karpov S.A. Culture collection of parasitic protists at the Zoological Institute RAS (CCPP ZIN RAS) Protistology. 2016;10:26–42.
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Simpson A.M., Simpson L. Labeling of Crithidia fasciculata DNA with [3H]thymidine. J. Protozool. 1974;21:379–382. doi: 10.1111/j.1550-7408.1974.tb03674.x. PubMed DOI
Frolov A.O., Malysheva M.N. [Description of Crithidia allae sp.n. and Crithidia brevicula sp.n. (Protozoa, Trypanosomatidae) from the predator bug Nabis brevis Scholtz (Hemiptera, Miridae)] Rus. J. Zool. 1989;68:5–10. (In Russian)
Razygraev A.V. On longevity of adult Chaoborids (Diptera, Chaoboridae) under sugar feeding conditions. Entomol. Rev. 2022;102:279–285. doi: 10.1134/S0013873822030010. DOI
Campbell I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007;26:3661–3675. doi: 10.1002/sim.2832. PubMed DOI
Králová J., Grybchuk-Ieremenko A., Votýpka J., Novotný V., Kment P., Lukeš J., Yurchenko V., Kostygov A.Y. Insect trypanosomatids in Papua New Guinea: High endemism and diversity. Int. J. Parasitol. 2019;49:1075–1086. doi: 10.1016/j.ijpara.2019.09.004. PubMed DOI
Malysheva M.N., Kostygov A.Y., Frolov A.O. Niche partitioning within an insect host: Trypanosomatids Wallacemonas raviniae and Trypanosoma (Megatrypanum) sp. in the horsefly Hybomitra solstitialis. Protistology. 2022;16:87–97. doi: 10.21685/1680-0826-2022-16-2-3. DOI
Yurchenko V., Lukeš J., Jirků M., Maslov D.A. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: A case of several novel species isolated from Neotropical Heteroptera. Int. J. Syst. Evol. Microbiol. 2009;59:893–909. doi: 10.1099/ijs.0.001149-0. PubMed DOI
Westenberger S.J., Sturm N.R., Yanega D., Podlipaev S.A., Zeledon R., Campbell D.A., Maslov D.A. Trypanosomatid biodiversity in Costa Rica: Genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology. 2004;129:537–547. doi: 10.1017/S003118200400592X. PubMed DOI
Maslov D.A., Westenberger S.J., Xu X., Campbell D.A., Sturm N.R. Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J. Eukaryot. Microbiol. 2007;54:57–65. doi: 10.1111/j.1550-7408.2006.00150.x. PubMed DOI
Votýpka J., Klepetková H., Jirků M., Kment P., Lukeš J. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int. J. Parasitol. 2012;42:489–500. doi: 10.1016/j.ijpara.2012.03.007. PubMed DOI
Ganyukova A.I., Malysheva M.N., Smirnov P.A., Frolov A.O. Crithidia dobrovolskii sp. n. (Kinetoplastida: Trypanosomatidae) from parasitoid fly Lypha dubia (Diptera: Tachinidae): Morphology and phylogenetic position. Protistology. 2019;13:206–214. doi: 10.21685/1680-0826-2019-13-4-4. DOI
Podlipaev S.A., Rokitskaya T.A. [Classification of isolates of insect’s trypanosomatids: Isoenzyme analysis] Parazitologiya. 1999;33:350–357. (In Russian)
Ganyukova A.I., Zolotarev A.V., Frolov A.O. Geographical distribution and host range of monoxenous trypanosomatid Crithidia brevicula (Frolov et Malysheva, 1989) in the northern regions of Eurasia. Protistology. 2020;14:70–78. doi: 10.21685/1680-0826-2020-14-2-3. DOI
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Strickman D., Linton Y., Wilkerson R.C. Mosquitoes of the World. Volume 1. Johns Hopkins University Press; Baltimore, MD, USA: 2021. p. 599.
Clark T.B., Kellen W.R., Lindegren J.E., Smith T.A. The transmission of Crithidia fasciculata Leger 1902 in Culiseta Incidens (Thomson) J. Protozool. 1964;11:400–402. doi: 10.1111/j.1550-7408.1964.tb01770.x. PubMed DOI
Wallace F.G. Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J. Parasitol. 1943;29:196–205. doi: 10.2307/3273098. DOI
Patton W.S. Preliminary note on the life cycle of a species of Herpetomonas found in Culex pipiens. Br. Med. J. 1907;2:78–80. doi: 10.1136/bmj.2.2428.78. PubMed DOI PMC
Patton W.S. Studies on the Flagellates of the Genera Herpetomonas, Crithidia and Rhynchoidomonas: No. 1. The Morphology and Life History of Herpetomonas Culicis, Novy, MacNeal, and Torrey. Volume 58. Superintendent Government Printing; Calcutta, India: 1912. p. 21.
Votýpka J., Petrželková K.J., Brzoňová J., Jirků M., Modrý D., Lukeš J. How monoxenous trypanosomatids revealed hidden feeding habits of their tsetse fly hosts. Folia Parasitol. 2021;68:019. doi: 10.14411/fp.2021.019. PubMed DOI
Schaefer C.W., Panizzi A.R. Heteroptera of Economic Importance. CRC Press; Boca Raton, FL, USA: 2000. p. 828.
Carvajal M.A., Jimenez N., Faundez E.I. A predation record of Nabis paranensis (Hemiptera: Heteroptera) over Aedes albifasciatus. J. Am. Mosq. Control. Assoc. 2019;35:135–136. doi: 10.2987/19-6838.1. PubMed DOI
Votýpka J., Kment P., Yurchenko V., Lukeš J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers Conserv. 2020;29:3635–3667. doi: 10.1007/s10531-020-02041-2. (In English) DOI
Podlipaev S.A., Malysheva M.N., Kolesnikov A.A. Leptomonas rigidus sp. n. (Trypanosomatidae)—A parasite of Salda littoralis L (Hemiptera, Heteroptera) Acta Protozool. 1991;30:121–127.
Wallace F.G., Clark T.B., Dyer M.I., Collins T. Two new species of flagellates cultivated from insects of the genus Gerris. J. Protozool. 1960;7:390–392. doi: 10.1111/j.1550-7408.1960.tb05986.x. DOI
Thongsripong P., Chandler J.A., Kittayapong P., Wilcox B.A., Kapan D.D., Bennett S.N. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci. Rep. 2021;11:8448. doi: 10.1038/s41598-021-87122-0. (In English) PubMed DOI PMC
Noguchi H., Tilden E.B. Comparative studies of herpetomonads and leishmanias. I. Cultivation of herpetomonads from insects and plants. J. Exp. Med. 1926;44:307–325. doi: 10.1084/jem.44.3.307. PubMed DOI PMC
Mcghee R.B., Hanson W.L. Growth and reproduction of Leptomonas oncopelti in milkweed bug, Oncopeltus fasciatus. J. Protozool. 1962;9:488–493. doi: 10.1111/j.1550-7408.1962.tb02660.x. DOI
Noguchi H. Comparative studies of herpetomonads and leishmanias. II. Differentiation of the organisms by serological reactions and fermentation tests. J. Exp. Med. 1926;44:327–337. doi: 10.1084/jem.44.3.327. PubMed DOI PMC
Camargo E.P. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 1999;42:29–112. PubMed
Kozminsky E., Kraeva N., Ishemgulova A., Dobakova E., Lukeš J., Kment P., Yurchenko V., Votýpka J., Maslov D.A. Host-specificity of monoxenous trypanosomatids: Statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015;166:551–568. doi: 10.1016/j.protis.2015.08.004. PubMed DOI
Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI
Votýpka J., Maslov D.A., Yurchenko V., Jirků M., Kment P., Lun Z.R., Lukeš J. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol. Phylogenet. Evol. 2010;54:243–253. doi: 10.1016/j.ympev.2009.10.014. PubMed DOI
Votýpka J., Kment P., Kriegová E., Vermeij M.J.A., Keeling P.J., Yurchenko V., Lukeš J. High prevalence and endemism of trypanosomatids on a small Caribbean island. J. Eukaryot. Microbiol. 2019;66:600–607. doi: 10.1111/jeu.12704. PubMed DOI
Frolov A.O., Malysheva M.N., Ganyukova A.I., Yurchenko V., Kostygov A.Y. Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLoS ONE. 2018;13:e0204467. PubMed PMC