Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37605127

Grantová podpora
90140 e-INFRA CZ
19-15-00054 Russian Science Foundation
19-15-00054 Russian Science Foundation
23-07695S Grantová Agentura České Republiky
22-14356S Grantová Agentura České Republiky
22-14356S Grantová Agentura České Republiky
23-07695S Grantová Agentura České Republiky
CZ.02.1.01/16_019/ 0000759 European Regional Funds
CZ.02.1.01/16_019/ 0000759 European Regional Funds
CZ.02.1.01/16_019/ 0000759 European Regional Funds
CZ.02.1.01/16_019/ 0000759 European Regional Funds

Odkazy

PubMed 37605127
PubMed Central PMC10441713
DOI 10.1186/s12864-023-09591-z
PII: 10.1186/s12864-023-09591-z
Knihovny.cz E-zdroje

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.

Zobrazit více v PubMed

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3):200407. doi: 10.1098/rsob.200407. PubMed DOI PMC

Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS ONE. 2014;9(4):e95057. doi: 10.1371/journal.pone.0095057. PubMed DOI PMC

Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, Votýpka J, Yurchenko V, Ayala FJ, Lukeš J. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A. 2017;114(44):11757–11762. doi: 10.1073/pnas.1712311114. PubMed DOI PMC

Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC

Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One. 2018;13(1):e0189738. doi: 10.1371/journal.pone.0189738. PubMed DOI PMC

Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15(11):e1008452. doi: 10.1371/journal.pgen.1008452. PubMed DOI PMC

Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, Yurchenko V. The remarkable metabolism of Vickermania ingenoplastis: Genomic predictions. Pathogens. 2021;10(1):68. doi: 10.3390/pathogens10010068. PubMed DOI PMC

Zakharova A, Saura A, Butenko A, Podešvová L, Warmusová S, Kostygov AY, Nenarokova A, Lukeš J, Opperdoes FR, Yurchenko V. A new model trypanosomatid, Novymonas esmeraldas: Genomic perception of its "Candidatus Pandoraea novymonadis" endosymbiont. mBio. 2021;12(4):e0160621. doi: 10.1128/mBio.01606-21. PubMed DOI PMC

Kachale A, Pavlíková Z, Nenarokova A, Roithová A, Durante IM, Miletínová P, Záhonová K, Nenarokov S, Votýpka J, Horáková E, et al. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature. 2023;613(7945):751–758. doi: 10.1038/s41586-022-05584-2. PubMed DOI

Ishemgulova A, Kraeva N, Hlaváčová J, Zimmer SL, Butenko A, Podešvová L, Leštinová T, Lukeš J, Kostygov A, Votýpka J, et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl Trop Dis. 2017;11(7):e0005782. doi: 10.1371/journal.pntd.0005782. PubMed DOI PMC

Morales J, Kokkori S, Weidauer D, Chapman J, Goltsman E, Rokhsar D, Grossman AR, Nowack EC. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol Biol. 2016;16(1):247. doi: 10.1186/s12862-016-0820-z. PubMed DOI PMC

Zakharova A, Tashyreva D, Butenko A, Morales J, Saura A, Svobodová M, Poschmann G, Nandipati S, Zakharova A, Noyvert D, et al. A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas. Curr Biol. 2023;33(13):2690–2701.e5. doi: 10.1016/j.cub.2023.04.060. PubMed DOI

d'Avila-Levy CM, Boucinha C, Kostygov A, Santos HL, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110(8):956–965. doi: 10.1590/0074-02760150253. PubMed DOI PMC

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera) Int J Syst Evol Microbiol. 2007;57(Pt 2):423–432. doi: 10.1099/ijs.0.64557-0. PubMed DOI

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165(5):594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI

Hamilton PT, Votýpka J, Dostalova A, Yurchenko V, Bird NH, Lukeš J, Lemaitre B, Perlman SJ. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio. 2015;6(5):e01356–01315. doi: 10.1128/mBio.01356-15. PubMed DOI PMC

Lukeš J, Kachale A, Votypka J, Butenko A, Field MC. African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol. 2022;38(9):724–736. doi: 10.1016/j.pt.2022.05.011. PubMed DOI

Ramirez JL. Trypanosoma cruzi genome 15 years later: What has been accomplished? Trop Med Infect Dis. 2020;5(3):129. doi: 10.3390/tropicalmed5030129. PubMed DOI PMC

Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118(4):1301–1310. doi: 10.1172/JCI33945. PubMed DOI PMC

Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, Lee R, McAuliffe G, Stark D, Ellis J. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1):e0005215. doi: 10.1371/journal.pntd.0005215. PubMed DOI PMC

Kostygov AY, Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. doi: 10.14411/fp.2017.020. PubMed DOI

Lukeš J, Tesařová M, Yurchenko V, Votýpka J. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.) Eur J Protistol. 2021;79:125778. doi: 10.1016/j.ejop.2021.125778. PubMed DOI

Záhonová K, Kostygov A, Ševčíková T, Yurchenko V, Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol. 2016;26(17):2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI

Ishemgulova A, Butenko A, Kortišová L, Boucinha C, Grybchuk-Ieremenko A, Morelli KA, Tesařová M, Kraeva N, Grybchuk D, Pánek T, et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE. 2017;12(3):e0174165. doi: 10.1371/journal.pone.0174165. PubMed DOI PMC

Morsy TA, Schnur LF, Feinsod FM, Michael SA, Saah A, Salama MM, Wahba MM. The discovery and preliminary characterization of a novel trypanosomatid parasite from Rattus norvegicus and stray dogs from Alexandria. Egypt Ann Trop Med Parasitol. 1988;82(5):437–444. doi: 10.1080/00034983.1988.11812273. PubMed DOI

Yurchenko V, Butenko A, Kostygov AY. Genomics of Trypanosomatidae: where we stand and what needs to be done? Pathogens. 2021;10(9):1124. doi: 10.3390/pathogens10091124. PubMed DOI PMC

Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11(8):e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC

El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309(5733):404–409. doi: 10.1126/science.1112181. PubMed DOI

Pita S, Diaz-Viraque F, Iraola G, Robello C. The Tritryps comparative repeatome: insights on repetitive element evolution in trypanosomatid pathogens. Genome Biol Evol. 2019;11(2):546–551. doi: 10.1093/gbe/evz017. PubMed DOI PMC

Cruz-Saavedra L, Schwabl P, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramirez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom. 2022;8(6):mgen000843. PubMed PMC

Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med. 2014;4(10):a019604. doi: 10.1101/cshperspect.a019604. PubMed DOI PMC

Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28(9):370–376. doi: 10.1016/j.pt.2012.06.003. PubMed DOI

Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, et al. Global genome diversity of the Leishmania donovani complex. eLife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC

Králová J, Grybchuk-Ieremenko A, Votýpka J, Novotný V, Kment P, Lukeš J, Yurchenko V, Kostygov AY. Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int J Parasitol. 2019;49(13–14):1075–1086. doi: 10.1016/j.ijpara.2019.09.004. PubMed DOI

Schoener E, Uebleis SS, Cuk C, Nawratil M, Obwaller AG, Zechmeister T, Lebl K, Radrova J, Zittra C, Votypka J, et al. Trypanosomatid parasites in Austrian mosquitoes. PLoS ONE. 2018;13(4):e0196052. doi: 10.1371/journal.pone.0196052. PubMed DOI PMC

Ganyukova AI, Zolotarev AV, Frolov AO. Geographical distribution and host range of monoxenous trypanosomatid Crithidia brevicula (Frolov et Malysheva, 1989) in the northern regions of Eurasia. Protistology. 2020;14:70–78.

Kostygov AY, Malysheva MN, Ganyukova AI, Razygraev AV, Drachko DO, Yurchenko V, Agasoi VV, Frolov AO. The roles of mosquitoes in the circulation of monoxenous trypanosomatids in temperate climates. Pathogens. 2022;11(11):1326. doi: 10.3390/pathogens11111326. PubMed DOI PMC

Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev. 2019;58–59:1–8. doi: 10.1016/j.gde.2019.07.014. PubMed DOI

Mendonça AG, Alves RJ, Pereira-Leal JB. Loss of genetic redundancy in reductive genome evolution. PLoS Comput Biol. 2011;7(2):e1001082. doi: 10.1371/journal.pcbi.1001082. PubMed DOI PMC

Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution. BioEssays. 2013;35(9):829–837. doi: 10.1002/bies.201300037. PubMed DOI PMC

Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol. 2011;162(6):598–606. doi: 10.1016/j.resmic.2011.03.004. PubMed DOI

Yuan J, Zhang X, Wang M, Sun Y, Liu C, Li S, Yu Y, Gao Y, Liu F, Zhang X, et al. Simple sequence repeats drive genome plasticity and promote adaptive evolution in penaeid shrimp. Commun Biol. 2021;4(1):186. doi: 10.1038/s42003-021-01716-y. PubMed DOI PMC

Fischer G, Rocha EPC, Brunet F, Vergassola M, Dujon B. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PloS Genet. 2006;2(3):253–261. doi: 10.1371/journal.pgen.0020032. PubMed DOI PMC

http://www.repeatmasker.org.

Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Negreira GH, de Groote R, Van Giel D, Monsieurs P, Maes I, de Muylder G, Van den Broeck F, Dujardin JC, Domagalska MA. The adaptive roles of aneuploidy and polyclonality in Leishmania in response to environmental stress. EMBO Rep. 2023:e57413. PubMed PMC

Negreira GH, Monsieurs P, Imamura H, Maes I, Kuk N, Yagoubat A, Van den Broeck F, Sterkers Y, Dujardin JC, Domagalska MA. High throughput single-cell genome sequencing gives insights into the generation and evolution of mosaic aneuploidy in Leishmania donovani. Nucleic Acids Res. 2022;50(1):293–305. doi: 10.1093/nar/gkab1203. PubMed DOI PMC

Minning TA, Weatherly DB, Flibotte S, Tarleton RL. Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genom. 2011;12:139. doi: 10.1186/1471-2164-12-139. PubMed DOI PMC

Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, Mottram JC. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei. G3-Genes Genom Genet. 2021;11(1):jkaa018. doi: 10.1093/g3journal/jkaa018. PubMed DOI PMC

Albanaz ATS, Gerasimov ES, Shaw JJ, Sádlová J, Lukeš J, Volf P, Opperdoes FR, Kostygov AY, Butenko A, Yurchenko V. Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes. 2021;12(3):444. doi: 10.3390/genes12030444. PubMed DOI PMC

Mulindwa J, Ssentamu G, Matovu E, Kamanyi Marucha K, Aresta-Branco F, Helbig C, Clayton C. In vitro culture of freshly isolated Trypanosoma brucei brucei bloodstream forms results in gene copy-number changes. PLoS Negl Trop Dis. 2021;15(9):e0009738. doi: 10.1371/journal.pntd.0009738. PubMed DOI PMC

Cosentino RO, Brink BG, Siegel TN. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom Bioinform. 2021;3(3):lqab082. doi: 10.1093/nargab/lqab082. PubMed DOI PMC

Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9(6):190072. doi: 10.1098/rsob.190072. PubMed DOI PMC

Boynton PJ, Janzen T, Greig D. Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility. Yeast. 2018;35(1):85–98. doi: 10.1002/yea.3282. PubMed DOI

Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO, Baptista RP, Mendes TA, de Morais GL, Guedes R, Macedo AM, Bern C, Gilman RH, et al. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genom. 2015;16(1):499. doi: 10.1186/s12864-015-1680-4. PubMed DOI PMC

Farrer RA, Henk DA, Garner TW, Balloux F, Woodhams DC, Fisher MC. Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet. 2013;9(8):e1003703. doi: 10.1371/journal.pgen.1003703. PubMed DOI PMC

Laffitte MN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Re. 2016;5:2350. doi: 10.12688/f1000research.9218.1. PubMed DOI PMC

Almeida LV, Coqueiro-Dos-Santos A, Rodriguez-Luiz GF, McCulloch R, Bartholomeu DC, Reis-Cunha JL. Chromosomal copy number variation analysis by next generation sequencing confirms ploidy stability in Trypanosoma brucei subspecies. Microb Genom. 2018;4(10):e000223. PubMed PMC

Gutiérrez-Corbo C, Domínguez-Asenjo B, Martínez-Valladares M, Pérez-Pertejo Y, García-Estrada C, Balaña-Fouce R, Reguera RM. Reproduction in trypanosomatids: Past and present. Biology. 2021;10(6):471. doi: 10.3390/biology10060471. PubMed DOI PMC

Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity spectrum depends on ploidy level in natural yeast populations. Mol Biol Evol. 2022;39(11):msac214. doi: 10.1093/molbev/msac214. PubMed DOI PMC

Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016;63(2):198–20. doi: 10.1111/jeu.12268. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinform. 2018;34(17):884–890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Bushnell B, Rood J, Singer E. BBMerge - accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12(10):e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2019. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Allam A, Kalnis P, Solovyev V. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinform. 2015;31(21):3421–3428. doi: 10.1093/bioinformatics/btv415. PubMed DOI

Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinform. 2017;33(4):574–576. doi: 10.1093/bioinformatics/btw663. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24(8):1384–1395. doi: 10.1101/gr.170720.113. PubMed DOI PMC

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18. doi: 10.1186/2047-217X-1-18. PubMed DOI PMC

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC

Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinform. 2018;34(13):142–150. doi: 10.1093/bioinformatics/bty266. PubMed DOI PMC

Vasimuddin M, Misra S, Li H, Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. Int Parall Distrib. 2019:314–324.

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515. doi: 10.1038/nbt.1621. PubMed DOI PMC

Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962. PubMed DOI PMC

Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations] F1000Res. 2017;6:1287. doi: 10.12688/f1000research.12232.1. DOI

Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–368. doi: 10.1038/s41592-021-01101-x. PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Maslov DA, Yurchenko VY, Jirků M, Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol. 2010;57(2):177–188. doi: 10.1111/j.1550-7408.2009.00464.x. PubMed DOI

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117(17):9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

An J, Lai J, Sajjanhar A, Batra J, Wang C, Nelson CC. J-Circos: an interactive Circos plotter. Bioinformatics. 2015;31(9):1463–1465. doi: 10.1093/bioinformatics/btu842. PubMed DOI

https://github.com/WenchaoLin/GCcalc/.

Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44(W1):W160–165. doi: 10.1093/nar/gkw257. PubMed DOI PMC

Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinform. 2018;34(5):867–868. doi: 10.1093/bioinformatics/btx699. PubMed DOI PMC

https://github.com/tidyverse/dplyr.

Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics. 2017;33(17):2759–2761. doi: 10.1093/bioinformatics/btx304. PubMed DOI

Ranallo-Benavidez TR, Jaron KS, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11(1):1432. doi: 10.1038/s41467-020-14998-3. PubMed DOI PMC

Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinform. 2011;27(12):1691–1692. doi: 10.1093/bioinformatics/btr174. PubMed DOI PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Wilkie AO, McVean G, Lunter G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 2014;46(8):912–918. doi: 10.1038/ng.3036. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...