A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28742133
PubMed Central
PMC5542692
DOI
10.1371/journal.pntd.0005782
PII: PNTD-D-17-00398
Knihovny.cz E-zdroje
- MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania mexicana genetika patogenita MeSH
- leishmanióza kožní parazitologie MeSH
- makrofágy parazitologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proteiny vázající GTP genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Psychodidae parazitologie MeSH
- virulence MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny vázající GTP MeSH
- protozoální proteiny MeSH
BACKGROUND: Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector. METHODOLOGY/PRINCIPAL FINDINGS: The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop. We compared differentiation, growth rates, and infective abilities of wild-type and ALD1 null mutant cell lines of L. mexicana. Loss of ALD1 results in retarded growth kinetics but not defects in differentiation in axenic culture. Similarly, when mice and the sand fly vector were infected with the ALD1 null mutant, the primary difference in infection and colonization phenotype relative to wild type was an inability to achieve maximal host pathogenicity. While ability of the ALD1 null mutant cells to infect macrophages in vitro was not affected, replication within macrophages was clearly curtailed. CONCLUSIONS/SIGNIFICANCE: L. mexicana ALD1, encoding a protein with no assigned functional domains or motifs, was identified utilizing multiple comparative analyses with the related and often experimentally overlooked monoxenous flagellates. We found that it plays a role in Leishmania infection and colonization in vitro and in vivo. Results suggest that ALD1 functions in L. mexicana's general metabolic network, rather than function in specific aspect of virulence as anticipated from the compared datasets. This result validates our comparative genomics approach for finding relevant factors, yet highlights the importance of quality laboratory-based analysis of genes tagged by these methods.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budejovice Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Department of Pathology Albert Einstein College of Medicine Bronx New York United States of America
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
University of South Bohemia Faculty of Sciences České Budejovice Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012; 7: e35671 doi: 10.1371/journal.pone.0035671 PubMed DOI PMC
WHO (2016) Leishmaniasis: stuation and trends. Global health observatory (GHO) data.
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLOS Negl Trop Dis. 2016; 10: e0004349 doi: 10.1371/journal.pntd.0004349 PubMed DOI PMC
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013; 27: 123–147. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Seblová V, Sádlová J, Carpenter S, Volf P. Speculations on biting midges and other bloodsucking arthropods as alternative vectors of Leishmania. Parasit Vectors. 2014; 7: 222 doi: 10.1186/1756-3305-7-222 PubMed DOI PMC
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012; 5: 276 doi: 10.1186/1756-3305-5-276 PubMed DOI PMC
Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004; 4: 601–609. https://doi.org/10.2174/1566524043360285 PubMed DOI
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006; 22: 439–445. doi: 10.1016/j.pt.2006.06.012 PubMed DOI
Naderer T, McConville MJ. Intracellular growth and pathogenesis of Leishmania parasites. Essays Biochem. 2011; 51: 81–95. doi: 10.1042/bse0510081 PubMed DOI
Doehl JS, Sádlová J, Aslan H, Pružinová K, Metangmo S, Votýpka J, et al. Leishmania HASP and SHERP genes are required for in vivo differentiation, parasite transmission and virulence attenuation in the host. PLOS Pathog. 2017; 13: e1006130 doi: 10.1371/journal.ppat.1006130 PubMed DOI PMC
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015; 11: e1005186 doi: 10.1371/journal.ppat.1005186 PubMed DOI PMC
Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, Bhattacharjee H, et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol. 2007; 65: 1006–1017. doi: 10.1111/j.1365-2958.2007.05845.x PubMed DOI
Henard CA, Carlsen ED, Hay C, Kima PE, Soong L. Leishmania amazonensis amastigotes highly express a tryparedoxin peroxidase isoform that increases parasite resistance to macrophage antimicrobial defenses and fosters parasite virulence. PLoS Negl Trop Dis. 2014; 8: e3000 doi: 10.1371/journal.pntd.0003000 PubMed DOI PMC
Martinez-Garcia M, Campos-Salinas J, Cabello-Donayre M, Pineda-Molina E, Galvez FJ, Orrego LM, et al. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit Vectors. 2016; 9: 7 doi: 10.1186/s13071-015-1284-5 PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014; 195: 115–122. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Jirků M, Yurchenko VY, Lukeš J, Maslov DA. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012; 59: 537–547. doi: 10.1111/j.1550-7408.2012.00636.x PubMed DOI
Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLOS Negl Trop Dis. 2017; 11: e0005215 doi: 10.1371/journal.pntd.0005215 PubMed DOI PMC
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016; 6: 23704 doi: 10.1038/srep23704 PubMed DOI PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38: D457–462. doi: 10.1093/nar/gkp851 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25: 1189–1191. doi: 10.1093/bioinformatics/btp033 PubMed DOI PMC
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog. 2015; 11: e1005127 doi: 10.1371/journal.ppat.1005127 PubMed DOI PMC
Bates PA. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994; 108 (Pt 1): 1–9. https://doi.org/10.1017/S0031182000078458 PubMed DOI
Ishemgulova A, Kraeva N, Faktorová D, Podešvová L, Lukeš J, Yurchenko V. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol. 2016; 63: 016 https://doi.org/10.14411/fp.2016.016 PubMed DOI
Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, et al. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 2014; 588: 783–788. doi: 10.1016/j.febslet.2014.01.034 PubMed DOI
Merritt C, Stuart K. Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. Mol Biochem Parasitol. 2013; 190: 44–49. doi: 10.1016/j.molbiopara.2013.05.002 PubMed DOI PMC
Kushnir S, Gase K, Breitling R, Alexandrov K. Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expres Purif. 2005; 42: 37–46. https://doi.org/10.1016/j.pep.2005.03.004 PubMed DOI
Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V. Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol. 2014; 198: 11–13. doi: 10.1016/j.molbiopara.2014.11.002 PubMed DOI
Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975; 98: 503–517. https://doi.org/10.1016/b978-0-12-131200-8.50041-1 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9: 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Leštinová T, Vlková M, Votýpka J, Volf P, Rohoušová I. Phlebotomus papatasi exposure cross-protects mice against Leishmania major co-inoculated with Phlebotomus duboscqi salivary gland homogenate. Acta Trop. 2015; 144: 9–18. doi: 10.1016/j.actatropica.2015.01.005 PubMed DOI
Volf P, Volfová V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011; 36 Suppl 1: S1–9. https://doi.org/10.1111/j.1948-7134.2011.00106.x PubMed DOI
Myšková J, Votýpka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008; 45: 133–138. https://doi.org/10.1093/jmedent/45.1.133 PubMed DOI
Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002; 124: 495–507. https://doi.org/10.1017/s0031182002001439 PubMed DOI
Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK. Ribosome biogenesis requires a highly diverged XRN family 5'->3' exoribonuclease for rRNA processing in Trypanosoma brucei. RNA. 2013; 19: 1419–1431. doi: 10.1261/rna.038547.113 PubMed DOI PMC
Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced lookup time accelerated BLAST. Biol Direct. 2012; 7: 12 doi: 10.1186/1745-6150-7-12 PubMed DOI PMC
Thakur M, Kumar MB, Muniyappa K. Mycobacterium tuberculosis UvrB is a robust DNA-stimulated ATPase that also possesses structure-specific ATP-dependent DNA helicase activity. Biochemistry. 2016. https://doi.org/10.1021/acs.biochem.6b00558 PubMed DOI
Theis K, Chen PJ, Skorvaga M, Van Houten B, Kisker C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 1999; 18: 6899–6907. doi: 10.1093/emboj/18.24.6899 PubMed DOI PMC
Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982; 1: 945–951. PubMed PMC
Saraste M, Sibbald PR, Wittinghofer A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990; 15: 430–434. https://doi.org/10.1016/0968-0004(90)90281-f PubMed DOI
Gangwar D, Kalita MK, Gupta D, Chauhan VS, Mohmmed A. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Malar J. 2009; 8: 69 doi: 10.1186/1475-2875-8-69 PubMed DOI PMC
Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, et al. PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014; 42: W337–343. doi: 10.1093/nar/gku366 PubMed DOI PMC
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006; 22: 195–201. doi: 10.1093/bioinformatics/bti770 PubMed DOI
Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 2002; 317: 41–72. doi: 10.1006/jmbi.2001.5378 PubMed DOI
Sádlová J, Svobodová M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol. 1999; 93: 599–611. https://doi.org/10.1080/00034983.1999.11813463 PubMed DOI
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014; 5: 491 doi: 10.3389/fimmu.2014.00491 PubMed DOI PMC
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Elimination of LRVs Elicits Different Responses in Leishmania spp
Catalase impairs Leishmania mexicana development and virulence
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins