CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
29438445
PubMed Central
PMC5811015
DOI
10.1371/journal.pone.0192723
PII: PONE-D-18-02690
Knihovny.cz E-zdroje
- MeSH
- CRISPR-Cas systémy * MeSH
- genový knockout metody MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania mexicana genetika patogenita MeSH
- leishmanióza kožní parazitologie MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- počítačová simulace MeSH
- protozoální geny * MeSH
- Psychodidae parazitologie MeSH
- stanovení celkové genové exprese MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Leishmania parasites cause human cutaneous, mucocutaneous and visceral leishmaniasis. Several studies proposed involvement of certain genes in infectivity of these parasites based on differential mRNA expression data. Due to unusual gene expression mechanism, functions of such genes must be further validated experimentally. Here, we investigated a role of one of the putative virulence factors, LmxM.22.0010-encoded BTN1 (a protein involved in Batten disease in humans), in L. mexicana infectivity. Due to the incredible plasticity of the L. mexicana genome, we failed to obtain a complete knock-out of LmxM.22.0010 using conventional recombination-based approach even after ablating four alleles of this gene. To overcome this, we established a modified CRISPR-Cas9 system with genomic expression of Cas9 nuclease and gRNA. Application of this system allowed us to establish a complete BTN1 KO strain of L. mexicana. The mutant strain did not show any difference in growth kinetics and differentiation in vitro, as well as in the infectivity for insect vectors and mice hosts. Based on the whole-transcriptome profiling, LmxM.22.0010-encoded BTN1 was considered a putative factor of virulence in Leishmania. Our study suggests that ablation of LmxM.22.0010 does not influence L. mexicana infectivity and further illustrates importance of experimental validation of in silico-predicted virulence factors. Here we also describe the whole genome sequencing of the widely used model isolate L. mexicana M379 and report a modified CRISPR/Cas9 system suitable for complete KO of multi-copy genes in organisms with flexible genomes.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budejovice Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
University of South Bohemia Faculty of Sciences České Budejovice Czech Republic
Zobrazit více v PubMed
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. (2016) A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLOS Negl Trop Dis 10: e0004349 doi: 10.1371/journal.pntd.0004349 PubMed DOI PMC
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLOS One 7: e35671 doi: 10.1371/journal.pone.0035671 PubMed DOI PMC
WHO (2016) Leishmaniasis: stuation and trends. Global health observatory (GHO) data.
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L (2013) Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol 27: 123–147. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Seblová V, Sádlová J, Carpenter S, Volf P (2014) Speculations on biting midges and other bloodsucking arthropods as alternative vectors of Leishmania. Parasit Vectors 7: 222 doi: 10.1186/1756-3305-7-222 PubMed DOI PMC
Dostálová A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5: 276 doi: 10.1186/1756-3305-5-276 PubMed DOI PMC
Bates PA, Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med 4: 601–609. PubMed
Fiebig M, Kelly S, Gluenz E (2015) Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLOS Pathog 11: e1005186 doi: 10.1371/journal.ppat.1005186 PubMed DOI PMC
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. (2016) Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6: 23704 doi: 10.1038/srep23704 PubMed DOI PMC
Ishemgulova A, Kraeva N, Hlavacova J, Zimmer SL, Butenko A, Podesvova L, et al. (2017) A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLOS Negl Trop Dis 11: e0005782 doi: 10.1371/journal.pntd.0005782 PubMed DOI PMC
Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D (2015) The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 31: 100–108. doi: 10.1016/j.pt.2014.12.012 PubMed DOI PMC
Mondelaers A, Sanchez-Canete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L, et al. (2016) Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLOS One 11: e0154101 doi: 10.1371/journal.pone.0154101 PubMed DOI PMC
Kim Y, Ramirez-Montealegre D, Pearce DA (2003) A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease. Proc Natl Acad Sci U S A 100: 15458–15462. doi: 10.1073/pnas.2136651100 PubMed DOI PMC
Pearce DA, Ferea T, Nosel SA, Das B, Sherman F (1999) Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nat Genet 22: 55–58. doi: 10.1038/8861 PubMed DOI
Padilla-Lopez S, Pearce DA (2006) Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J Biol Chem 281: 10273–10280. doi: 10.1074/jbc.M510625200 PubMed DOI
Padilla-Lopez S, Langager D, Chan CH, Pearce DA (2012) BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution. Dis Model Mech 5: 191–199. doi: 10.1242/dmm.008490 PubMed DOI PMC
Kyttala A, Ihrke G, Vesa J, Schell MJ, Luzio JP (2004) Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells. Mol Biol Cell 15: 1313–1323. doi: 10.1091/mbc.E03-02-0120 PubMed DOI PMC
Phillips SN, Benedict JW, Weimer JM, Pearce DA (2005) CLN3, the protein associated with batten disease: structure, function and localization. J Neurosci Res 79: 573–583. doi: 10.1002/jnr.20367 PubMed DOI
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. doi: 10.1093/nar/gkp851 PubMed DOI PMC
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577. doi: 10.1080/10635150701472164 PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. (2015) Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLOS Pathog 11: e1005127 doi: 10.1371/journal.ppat.1005127 PubMed DOI PMC
Bates PA (1994) Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology 108 (Pt 1): 1–9. PubMed
Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, et al. (2008) Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9: 255 doi: 10.1186/1471-2164-9-255 PubMed DOI PMC
Sádlová J, Price HP, Smith BA, Votýpka J, Volf P, Smith DF (2010) The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol 12: 1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC
Ishemgulova A, Kraeva N, Faktorová D, Podešvová L, Lukeš J, Yurchenko V (2016) T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol 63: 016. PubMed
Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, et al. (2014) A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett 588: 783–788. doi: 10.1016/j.febslet.2014.01.034 PubMed DOI
Kostygov AY, Butenko A, Nenarokova A, Tashyreva D, Flegontov P, Lukeš J, et al. (2017) Genome of Ca. Pandoraea novymonadis, an endosymbiotic bacterium of the trypanosomatid Novymonas esmeralda s Front Microbiol 8: 1940 doi: 10.3389/fmicb.2017.01940 PubMed DOI PMC
Merritt C, Stuart K (2013) Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. Mol Biochem Parasitol 190: 44–49. doi: 10.1016/j.molbiopara.2013.05.002 PubMed DOI PMC
Kushnir S, Gase K, Breitling R, Alexandrov K (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expres Purif 42: 37–46. PubMed
Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V (2014) Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol 198: 11–13. doi: 10.1016/j.molbiopara.2014.11.002 PubMed DOI
Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517. PubMed
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. doi: 10.1126/science.1231143 PubMed DOI PMC
Nakaar V, Dare AO, Hong D, Ullu E, Tschudi C (1994) Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol 14: 6736–6742. PubMed PMC
Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1: e000033 doi: 10.1099/mgen.0.000033 PubMed DOI PMC
Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, et al. (2015) First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17: 1405–1412. doi: 10.1111/cmi.12456 PubMed DOI
Volf P, Volfová V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9. PubMed
Myšková J, Votýpka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45: 133–138. PubMed
Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495–507. PubMed
Sádlová J, Seblová V, Votýpka J, Warburg A, Volf P (2015) Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: a new laboratory model. Parasit Vectors 8: 158 doi: 10.1186/s13071-015-0765-x PubMed DOI PMC
Jirků M, Yurchenko V, Lukeš J, Maslov DA (2012) New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol 59: 537–547. doi: 10.1111/j.1550-7408.2012.00636.x PubMed DOI
Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, et al. (2011) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 40: 1131–1147. doi: 10.1093/nar/gkr834 PubMed DOI PMC
Laffitte MN, Leprohon P, Papadopoulou B, Ouellette M (2016) Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 5: 2350 doi: 10.12688/f1000research.9218.1 PubMed DOI PMC
Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL (2014) CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 6: e02097–02014. doi: 10.1128/mBio.02097-14 PubMed DOI PMC
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4: 170095 doi: 10.1098/rsos.170095 PubMed DOI PMC
Zhang WW, Matlashewski G (2015) CRISPR-Cas9-mediated genome editing in Leishmania donovani. mBio 6: e00861 doi: 10.1128/mBio.00861-15 PubMed DOI PMC
Zhang WW, Lypaczewski P, Matlashewski G (2017) Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere 2: e00340–00316. PubMed PMC
Wiese M (1998) A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J 17: 2619–2628. doi: 10.1093/emboj/17.9.2619 PubMed DOI PMC
Nakaar V, Gunzl A, Ullu E, Tschudi C (1997) Structure of the Trypanosoma brucei U6 snRNA gene promoter. Mol Biochem Parasitol 88: 13–23. PubMed
Sádlová J, Svobodová M, Volf P (1999) Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol 93: 599–611. PubMed
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Elimination of LRVs Elicits Different Responses in Leishmania spp
Catalase impairs Leishmania mexicana development and virulence
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
The First Non-LRV RNA Virus in Leishmania