Gunacins: Novel Benzo[g]chromene Derivatives from the Fungus Exobasidium sp. and Their Potent Anti-Leishmania and Trypanosoma Activities
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40521455
PubMed Central
PMC12163684
DOI
10.1021/acsomega.5c01325
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Six new pyranonaphthoquinone derivatives, gunacin A-E (2-7), along with the known compounds gunacin (1) and the isocoumarin derivative (+) orthosporin (8), were isolated from the fungus Exobasidium sp. Their chemical structures were elucidated by X-ray crystallography, extensive spectroscopic analysis supported by ROESY experiments, and mass spectrometry. Two tested compounds (1, 5) demonstrated high activity against Leishmania mexicana and four salivarian Trypanosoma species, with the lowest detected EC50 value of 0.02-0.24 μM, a value that is comparable to those of currently used drugs. In addition, compounds 1, 3, 5, 6, and 7 demonstrated antibacterial properties at micromolar concentrations, while 1, 5, 6, and 7 exhibited moderate antifungal activity (MIC 33.3-66.7 μM). In cytotoxicity assays, the compounds exhibited a range of toxicity against mammalian Jurkat, RAT2, MDCK cell lines, HeLa cells, and fibroblasts, with inhibition levels varying from strong to minimal inhibition (EC50 = 0.03-125 μM). This study is among the first to explore Exobasidium, a genus of phytopathogenic fungi and highlights the untapped potential of smut fungi (Basidiomycota: Ustilaginomycetes). The discovery of gunacins, which exhibit potent antiprotozoal activity at submicromolar concentrations, suggests a promising avenue for the development of antiprotozoal agents.
Department of Chemistry Faculty of Sciences Egerton University P O Box 536 Egerton 20115 Kenya
Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 Prague 14220 Czechia
Institute of Parasitology Biology Centre Branišovská 31 České Budějovice 370 05 Czech Republic
See more in PubMed
Sabóia de Melo L. E., Cruz K. S., Soares P. I. L., Nascimento C. C. d., de Souza J. V. B., de Melo Marcelino B. M., de Andrade-Neto V. F., Ferreira A. G., da Paz Lima M.. Antifungal and Antiplasmodial Activity of Isolated Compounds from Handroanthus serratifolius (Vahl) S. Grose Sawdusts. Int. J. Adv. Res. Sci. 2019;6:270–275. doi: 10.22161/ijaers.69.32. DOI
Wu T.-S., Tien H.-J., Yeh M.-Y., Lee K.-H.. Isolation and cytotoxicity of rhinacanthin-A and-B, two; naphthoquinones, from Rhinacanthus nasutus . Phytochemistry. 1988;27(12):3787–3788. doi: 10.1016/0031-9422(88)83017-6. DOI
Werner R. G., Appel K.-R., Merk W. M. A.. Gunacin, a new quinone antibiotic from Ustilago species. J. Antibiot. 1979;32(11):1104. doi: 10.7164/antibiotics.32.1104. PubMed DOI
Stodůlková E., Man P., Kuzma M., Černý J., Císařová I., Kubátová A., Chudíčková M., Kolařík M., Flieger M.. A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol. 2015;60(3):259–267. doi: 10.1007/s12223-014-0366-7. PubMed DOI
Wang X., Shaaban K. A., Elshahawi S. I., Ponomareva L. V., Sunkara M., Zhang Y., Copley G. C., Hower J. C., Morris A. J., Kharel M. K.. et al. Frenolicins C–G, Pyranonaphthoquinones from Streptomyces sp. RM-4–15. J. Nat. Prod. 2013;76(8):1441–1447. doi: 10.1021/np400231r. PubMed DOI PMC
Lü J., He Q., Huang L., Cai X., Guo W., He J., Zhang L., Li A.. Accumulation of a Bioactive Benzoisochromanequinone Compound Kalafungin by a Wild Type Antitumor-Medermycin-Producing Streptomycete Strain. PLoS One. 2015;10(2):e0117690. doi: 10.1371/journal.pone.0117690. PubMed DOI PMC
Burnett A., Thomson R.. Naturally occurring quinones. Part X. The quinonoid constituents of Tabebuia avellanedae (Bignoniaceae) J. Chem. Soc. C. 1967:2100–2104. doi: 10.1039/j39670002100. DOI
Gómez Castellanos J. R., Prieto J. M., Heinrich M.. Red Lapacho (Tabebuia impetiginosa)A global ethnopharmacological commodity? J. Ethnopharmacol. 2009;121(1):1–13. doi: 10.1016/j.jep.2008.10.004. PubMed DOI
Boonyaketgoson S., Rukachaisirikul V., Phongpaichit S., Trisuwan K.. Naphthoquinones from the leaves of Rhinacanthus nasutus having acetylcholinesterase inhibitory and cytotoxic activities. Fitoterapia. 2018;124:206–210. doi: 10.1016/j.fitote.2017.11.011. PubMed DOI
Matsumoto T., Mayer C., Eugster C. H.. α-Caryopteron, ein neues Pyrano-juglon aus Caryopteris clandonensis . Helv. Chim. Acta. 1969;52(3):808–812. doi: 10.1002/hlca.19690520331. DOI
Salustiano E. J. S., Netto C. D., Fernandes R. F., da Silva A. J. M., Bacelar T. S., Castro C. P., Buarque C. D., Maia R. C., Rumjanek V. M., Costa P. R. R.. Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Invest. New Drugs. 2010;28(2):139–144. doi: 10.1007/s10637-009-9231-y. PubMed DOI
Zhang Z., Sibero M. T., Kai A., Fukaya K., Urabe D., Igarashi Y.. TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces . J. Antibiot. 2021;74(7):464–469. doi: 10.1038/s41429-021-00415-4. PubMed DOI
Kodama O., Ichikawa H., Akatsuka T., Santisopasri V., Kato A., Hayashi Y.. Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus . J. Nat. Prod. 1993;56(2):292–294. doi: 10.1021/np50092a018. PubMed DOI
Cho J. Y., Kim H. Y., Choi G. J., Jang K. S., Lim H. K., Lim C. H., Cho K. Y., Kim J.-C.. Dehydro-α-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi. Pest Manage. Sci. 2006;62(5):414–418. doi: 10.1002/ps.1180. PubMed DOI
Woronin, M. S. Exobasidium vaccinii, 1867.
Begerow D., Bauer R., Oberwinkler F.. The Exobasidiales: An evolutionary hypothesis. Mycol. Prog. 2002;1(2):187–199. doi: 10.1007/s11557-006-0018-7. DOI
Ponmurugan P., Manjukarunambika K., Gnanamangai B. M.. Impact of various foliar diseases on the biochemical, volatile and quality constituents of green and black teas. Australas. Plant Pathol. 2016;45(2):175–185. doi: 10.1007/s13313-016-0402-y. DOI
Cline W.. An Exobasidium disease of fruit and leaves of highbush blueberry. Plant Dis. 1998;82(9):1064. doi: 10.1094/PDIS.1998.82.9.1064B. PubMed DOI
Reutenberg E.. Untersuchungen an Exobasidium-Gallen von Rhodendron simsii Planch. J. Phytopathol. 1973;78(3):2.
Norberg, S.-O. Studies in the production of auxins and other growth stimulating substances by
Tamura S., Chang C.-F.. Isolation of L-β-Phenyllactic Acid as a Plant Growth-regulator Produced by Exobasidium . Agric. Biol. Chem. 1965;29(11):1061–1062. doi: 10.1080/00021369.1965.10858512. DOI
Liu M., Ohashi M., Hung Y.-S., Scherlach K., Watanabe K., Hertweck C., Tang Y.. AoiQ Catalyzes Geminal Dichlorination of 1,3-Diketone Natural Products. J. Am. Chem. Soc. 2021;143(19):7267–7271. doi: 10.1021/jacs.1c02868. PubMed DOI PMC
Kutrzeba L. M., Li X.-C., Ding Y., Ferreira D., Zjawiony J. K.. Intramolecular Transacetylation in Salvinorins D and E. J. Nat. Prod. 2010;73(4):707–708. doi: 10.1021/np900447w. PubMed DOI
Elson, S. W. ; Diez, M. E. ; Sanchez-Puelles, J. M. ; Valmaseda, J. M. ; Hueso, R. J. A. ; De La Fuente, J. C. . Natural Tricyclic Products as Inhibitors of the Chemioattracting Protein of Monocytes 1, 1999.
Naysmith B. J., Hume P. A., Sperry J., Brimble M. A.. Pyranonaphthoquinones – isolation, biology and synthesis: an update. Nat. Prod. Rep. 2017;34(1):25–61. doi: 10.1039/C6NP00080K. PubMed DOI
Al Nasr I. S., Jentzsch J., Shaikh A., Singh Shuveksh P., Koko W. S., Khan T. A., Ahmed K., Schobert R., Ersfeld K., Biersack B.. New Pyrano-4H-benzo[g]chromene-5,10-diones with Antiparasitic and Antioxidant Activities. Chem. Biodiversity. 2021;18(1):e2000839. doi: 10.1002/cbdv.202000839. PubMed DOI
Kolařík M., Vrublevskaya M., Kajzrová S., Kulišová M., Kolouchová I. J.. Taxonomic analysis reveals host preference of rare fungi in endophytes of Vitis vinifera from the Czech Republic. Folia Microbiol. 2023;68(6):961–975. doi: 10.1007/s12223-023-01066-8. PubMed DOI
Sheldrick G.. SHELXTIntegrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A. 2015;71(1):3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C:Struct. Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Parsons S., Flack H. D., Wagner T.. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2013;69(3):249–259. doi: 10.1107/S2052519213010014. PubMed DOI PMC
Inc. A. B . IC50 Calculator, 2024, https://www.aatbio.com/tools/ic50-calculator.
Čáslavský J., Klímová Z., Vomastek T.. ERK and RSK regulate distinct steps of a cellular program that induces transition from multicellular epithelium to single cell phenotype. Cell. Signalling. 2013;25(12):2743–2751. doi: 10.1016/j.cellsig.2013.08.024. PubMed DOI
Klímová Z., Bráborec V., Maninová M., Čáslavský J., Weber M. J., Vomastek T.. Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling. Biochim. Biophys. Acta, Mol. Cell Res. 2016;1863(9):2189–2200. doi: 10.1016/j.bbamcr.2016.05.013. PubMed DOI
Boháčková J., Havlíčková L., Semerád J., Titov I., Trhlíková O., Beneš H., Cajthaml T.. In vitro toxicity assessment of polyethylene terephthalate and polyvinyl chloride microplastics using three cell lines from rainbow trout (Oncorhynchus mykiss) Chemosphere. 2023;312:136996. doi: 10.1016/j.chemosphere.2022.136996. PubMed DOI
Dayeh V. R., Schirmer K., Lee L. E., Bols N. C.. Rainbow trout gill cell line microplate cytotoxicity test. Small-scale Freshwater Toxicity Investigations: Toxicity Test Methods. 2005:473–503. doi: 10.1007/1-4020-3120-3_16. DOI
Galbis-Martínez L., Fernández-Cruz M., Alte L., Valdehita A., Rucandio I., Navas J.. Development of a new tool for the long term in vitro ecotoxicity testing of nanomaterials using a rainbow-trout cell line (RTL-W1) Toxicol. in Vitro. 2018;50:305–317. doi: 10.1016/j.tiv.2018.04.007. PubMed DOI
Hirumi H., Hirumi K.. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989;75:985–989. doi: 10.2307/3282883. PubMed DOI
Coustou V., Guegan F., Plazolles N., Baltz T.. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Neglected Trop. Dis. 2010;4(3):e618. doi: 10.1371/journal.pntd.0000618. PubMed DOI PMC
Räz B., Iten M., Grether-Bühler Y., Kaminsky R., Brun R.. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68(2):139–147. doi: 10.1016/s0001-706x(97)00079-x. PubMed DOI
Ishemgulova A., Hlaváčová J., Majerová K., Butenko A., Lukeš J., Votýpka J., Volf P., Yurchenko V.. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS One. 2018;13(2):e0192723. doi: 10.1371/journal.pone.0192723. PubMed DOI PMC
Bates P. A., Robertson C. D., Tetley L., Coombs G. H.. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992;105(2):193–202. doi: 10.1017/S0031182000074102. PubMed DOI