• Something wrong with this record ?

Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality

E. Valencia, N. Gross, JL. Quero, CP. Carmona, V. Ochoa, B. Gozalo, M. Delgado-Baquerizo, K. Dumack, K. Hamonts, BK. Singh, M. Bonkowski, FT. Maestre,

. 2018 ; 24 (12) : 5642-5654. [pub] 20181009

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.

Departamento de Biología y Geología Física y Química Inorgánica Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos Móstoles Spain

Departamento de Biología y Geología Física y Química Inorgánica Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos Móstoles Spain Department of Botany University of South Bohemia Ceske Budejovice Czech Republic

Departamento de Biología y Geología Física y Química Inorgánica Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos Móstoles Spain Hawkesbury Institute for the Environment University of Western Sydney Penrith NSW Australia

Departamento de Biología y Geología Física y Química Inorgánica Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos Móstoles Spain INRA USC1339 Chizé Villiers en Bois France

Departamento de Ingeniería Forestal Escuela Técnica Superior de Ingeniería Agronómica y de Montes Universidad de Córdoba Córdoba Spain

Hawkesbury Institute for the Environment University of Western Sydney Penrith NSW Australia

Hawkesbury Institute for the Environment University of Western Sydney Penrith NSW Australia Global Centre for Land Based Innovation Western Sydney University Penrith NSW Australia

Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Zoologisches Institut Terrestrische Ökologie Universität zu Köln Köln Germany Cluster of Excellence on Plant Sciences University of Cologne Cologne Germany

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012349
003      
CZ-PrNML
005      
20190405092721.0
007      
ta
008      
190405s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/gcb.14440 $2 doi
035    __
$a (PubMed)30239067
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Valencia, Enrique $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. Department of Botany, University of South Bohemia, Ceske Budejovice, Czech Republic.
245    10
$a Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality / $c E. Valencia, N. Gross, JL. Quero, CP. Carmona, V. Ochoa, B. Gozalo, M. Delgado-Baquerizo, K. Dumack, K. Hamonts, BK. Singh, M. Bonkowski, FT. Maestre,
520    9_
$a Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
650    _2
$a fyziologie bakterií $7 D018407
650    _2
$a biodiverzita $7 D044822
650    12
$a klimatické změny $7 D057231
650    _2
$a ekosystém $7 D017753
650    12
$a fyziologie rostlin $7 D018521
650    12
$a půda $x chemie $7 D012987
650    12
$a půdní mikrobiologie $7 D012988
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gross, Nicolas $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. INRA, USC1339 Chizé (CEBC), Villiers en Bois, France. Centre d'étude biologique de Chizé, CNRS-Université La Rochelle (UMR 7372), Villiers en Bois, France.
700    1_
$a Quero, José L $u Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Córdoba, Spain.
700    1_
$a Carmona, Carlos P $u Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
700    1_
$a Ochoa, Victoria $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
700    1_
$a Gozalo, Beatriz $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
700    1_
$a Delgado-Baquerizo, Manuel $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia.
700    1_
$a Dumack, Kenneth $u Zoologisches Institut, Terrestrische Ökologie, Universität zu Köln, Köln, Germany. Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany.
700    1_
$a Hamonts, Kelly $u Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia.
700    1_
$a Singh, Brajesh K $u Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia. Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia.
700    1_
$a Bonkowski, Michael $u Zoologisches Institut, Terrestrische Ökologie, Universität zu Köln, Köln, Germany. Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany.
700    1_
$a Maestre, Fernando T $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
773    0_
$w MED00007661 $t Global change biology $x 1365-2486 $g Roč. 24, č. 12 (2018), s. 5642-5654
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30239067 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190405092730 $b ABA008
999    __
$a ok $b bmc $g 1391659 $s 1050654
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 24 $c 12 $d 5642-5654 $e 20181009 $i 1365-2486 $m Global change biology $n Glob Chang Biol $x MED00007661
LZP    __
$a Pubmed-20190405

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...