-
Something wrong with this record ?
Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality
E. Valencia, N. Gross, JL. Quero, CP. Carmona, V. Ochoa, B. Gozalo, M. Delgado-Baquerizo, K. Dumack, K. Hamonts, BK. Singh, M. Bonkowski, FT. Maestre,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30239067
DOI
10.1111/gcb.14440
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Bacterial Physiological Phenomena MeSH
- Plant Physiological Phenomena * MeSH
- Climate Change * MeSH
- Soil * chemistry MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
Hawkesbury Institute for the Environment University of Western Sydney Penrith NSW Australia
Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012349
- 003
- CZ-PrNML
- 005
- 20190405092721.0
- 007
- ta
- 008
- 190405s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/gcb.14440 $2 doi
- 035 __
- $a (PubMed)30239067
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Valencia, Enrique $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. Department of Botany, University of South Bohemia, Ceske Budejovice, Czech Republic.
- 245 10
- $a Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality / $c E. Valencia, N. Gross, JL. Quero, CP. Carmona, V. Ochoa, B. Gozalo, M. Delgado-Baquerizo, K. Dumack, K. Hamonts, BK. Singh, M. Bonkowski, FT. Maestre,
- 520 9_
- $a Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
- 650 _2
- $a fyziologie bakterií $7 D018407
- 650 _2
- $a biodiverzita $7 D044822
- 650 12
- $a klimatické změny $7 D057231
- 650 _2
- $a ekosystém $7 D017753
- 650 12
- $a fyziologie rostlin $7 D018521
- 650 12
- $a půda $x chemie $7 D012987
- 650 12
- $a půdní mikrobiologie $7 D012988
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gross, Nicolas $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. INRA, USC1339 Chizé (CEBC), Villiers en Bois, France. Centre d'étude biologique de Chizé, CNRS-Université La Rochelle (UMR 7372), Villiers en Bois, France.
- 700 1_
- $a Quero, José L $u Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Córdoba, Spain.
- 700 1_
- $a Carmona, Carlos P $u Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
- 700 1_
- $a Ochoa, Victoria $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
- 700 1_
- $a Gozalo, Beatriz $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
- 700 1_
- $a Delgado-Baquerizo, Manuel $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia.
- 700 1_
- $a Dumack, Kenneth $u Zoologisches Institut, Terrestrische Ökologie, Universität zu Köln, Köln, Germany. Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany.
- 700 1_
- $a Hamonts, Kelly $u Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia.
- 700 1_
- $a Singh, Brajesh K $u Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia. Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia.
- 700 1_
- $a Bonkowski, Michael $u Zoologisches Institut, Terrestrische Ökologie, Universität zu Köln, Köln, Germany. Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany.
- 700 1_
- $a Maestre, Fernando T $u Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain.
- 773 0_
- $w MED00007661 $t Global change biology $x 1365-2486 $g Roč. 24, č. 12 (2018), s. 5642-5654
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30239067 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190405092730 $b ABA008
- 999 __
- $a ok $b bmc $g 1391659 $s 1050654
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 24 $c 12 $d 5642-5654 $e 20181009 $i 1365-2486 $m Global change biology $n Glob Chang Biol $x MED00007661
- LZP __
- $a Pubmed-20190405