• Je něco špatně v tomto záznamu ?

Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes

E. Nývltová, CW. Stairs, I. Hrdý, J. Rídl, J. Mach, J. Pačes, AJ. Roger, J. Tachezy,

. 2015 ; 32 (4) : 1039-55. [pub] 20150107

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16021005

Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16021005
003      
CZ-PrNML
005      
20160729115928.0
007      
ta
008      
160722s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1093/molbev/msu408 $2 doi
024    7_
$a 10.1093/molbev/msu408 $2 doi
035    __
$a (PubMed)25573905
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Nývltová, Eva $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
245    10
$a Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes / $c E. Nývltová, CW. Stairs, I. Hrdý, J. Rídl, J. Mach, J. Pačes, AJ. Roger, J. Tachezy,
520    9_
$a Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
650    _2
$a anaerobióza $x genetika $7 D000693
650    _2
$a Archamoebae $x enzymologie $x genetika $x metabolismus $7 D056896
650    _2
$a struktury buněčné membrány $x genetika $x metabolismus $7 D021961
650    _2
$a energetický metabolismus $x genetika $7 D004734
650    _2
$a enzymy $x genetika $x izolace a purifikace $7 D004798
650    12
$a molekulární evoluce $7 D019143
650    12
$a duplikace genu $7 D020440
650    12
$a přenos genů horizontální $7 D022761
650    _2
$a organely $x enzymologie $x genetika $x metabolismus $7 D015388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Stairs, Courtney W $u Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
700    1_
$a Hrdý, Ivan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
700    1_
$a Rídl, Jakub $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AV CR, Vídeňská, Prague, Czech Republic.
700    1_
$a Mach, Jan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
700    1_
$a Pačes, Jan $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AV CR, Vídeňská, Prague, Czech Republic.
700    1_
$a Roger, Andrew J $u Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
700    1_
$a Tachezy, Jan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic tachezy@natur.cuni.cz.
773    0_
$w MED00006601 $t Molecular biology and evolution $x 1537-1719 $g Roč. 32, č. 4 (2015), s. 1039-55
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25573905 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160729120151 $b ABA008
999    __
$a ok $b bmc $g 1155675 $s 945533
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 32 $c 4 $d 1039-55 $e 20150107 $i 1537-1719 $m Molecular biology and evolution $n Mol Biol Evol $x MED00006601
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...