-
Je něco špatně v tomto záznamu ?
Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes
E. Nývltová, CW. Stairs, I. Hrdý, J. Rídl, J. Mach, J. Pačes, AJ. Roger, J. Tachezy,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1983 do Před 1 rokem
PubMed Central
od 2008
Open Access Digital Library
od 1983-12-01
Open Access Digital Library
od 1983-12-01
Oxford Journals Open Access Collection
od 1996-01-01
Oxford Journals Open Access Collection
od 2002
ROAD: Directory of Open Access Scholarly Resources
od 1983
PubMed
25573905
DOI
10.1093/molbev/msu408
Knihovny.cz E-zdroje
- MeSH
- anaerobióza genetika MeSH
- Archamoebae enzymologie genetika metabolismus MeSH
- duplikace genu * MeSH
- energetický metabolismus genetika MeSH
- enzymy genetika izolace a purifikace MeSH
- molekulární evoluce * MeSH
- organely enzymologie genetika metabolismus MeSH
- přenos genů horizontální * MeSH
- struktury buněčné membrány genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16021005
- 003
- CZ-PrNML
- 005
- 20160729115928.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/molbev/msu408 $2 doi
- 024 7_
- $a 10.1093/molbev/msu408 $2 doi
- 035 __
- $a (PubMed)25573905
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nývltová, Eva $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
- 245 10
- $a Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes / $c E. Nývltová, CW. Stairs, I. Hrdý, J. Rídl, J. Mach, J. Pačes, AJ. Roger, J. Tachezy,
- 520 9_
- $a Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
- 650 _2
- $a anaerobióza $x genetika $7 D000693
- 650 _2
- $a Archamoebae $x enzymologie $x genetika $x metabolismus $7 D056896
- 650 _2
- $a struktury buněčné membrány $x genetika $x metabolismus $7 D021961
- 650 _2
- $a energetický metabolismus $x genetika $7 D004734
- 650 _2
- $a enzymy $x genetika $x izolace a purifikace $7 D004798
- 650 12
- $a molekulární evoluce $7 D019143
- 650 12
- $a duplikace genu $7 D020440
- 650 12
- $a přenos genů horizontální $7 D022761
- 650 _2
- $a organely $x enzymologie $x genetika $x metabolismus $7 D015388
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Stairs, Courtney W $u Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
- 700 1_
- $a Hrdý, Ivan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
- 700 1_
- $a Rídl, Jakub $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AV CR, Vídeňská, Prague, Czech Republic.
- 700 1_
- $a Mach, Jan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic.
- 700 1_
- $a Pačes, Jan $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AV CR, Vídeňská, Prague, Czech Republic.
- 700 1_
- $a Roger, Andrew J $u Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
- 700 1_
- $a Tachezy, Jan $u Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná, Prague, Czech Republic tachezy@natur.cuni.cz.
- 773 0_
- $w MED00006601 $t Molecular biology and evolution $x 1537-1719 $g Roč. 32, č. 4 (2015), s. 1039-55
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25573905 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160729120151 $b ABA008
- 999 __
- $a ok $b bmc $g 1155675 $s 945533
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 32 $c 4 $d 1039-55 $e 20150107 $i 1537-1719 $m Molecular biology and evolution $n Mol Biol Evol $x MED00006601
- LZP __
- $a Pubmed-20160722