The First Non-LRV RNA Virus in Leishmania
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32024293
PubMed Central
PMC7077295
DOI
10.3390/v12020168
PII: v12020168
Knihovny.cz E-zdroje
- Klíčová slova
- Bunyavirales, Leishmania martiniquensis, leishbunyavirus,
- MeSH
- fylogeneze * MeSH
- genom virový * MeSH
- Leishmania patogenita virologie MeSH
- makrofágy parazitologie MeSH
- myši MeSH
- otevřené čtecí rámce MeSH
- reassortantní viry MeSH
- RNA-dependentní RNA-polymerasa MeSH
- RNA-viry klasifikace genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA-dependentní RNA-polymerasa MeSH
In this work, we describe the first Leishmania-infecting leishbunyavirus-the first virus other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmaniamartiniquensis, a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-assortment. The LmarLBV1 facilitates parasites' infectivity in vitro in primary murine macrophages model. The discovery of a virus in L.martiniquensis poses the question of whether it influences pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species.
Central European Institute of Technology Masaryk University 60177 Brno Czech Republic
Department of Parasitology Faculty of Science Charles University 12844 Prague Czech Republic
Laboratory of electron microscopy Veterinary Research Institute 62100 Brno Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Martsinovsky Institute of Medical Parasitology Sechenov University Moscow 119435 Russia
Zobrazit více v PubMed
Lefkowitz E.J., Dempsey D.M., Hendrickson R.C., Orton R.J., Siddell S.G., Smith D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV) Nucleic Acids Res. 2018;46:D708–D717. doi: 10.1093/nar/gkx932. PubMed DOI PMC
Wichgers Schreur P.J., Kormelink R., Kortekaas J. Genome packaging of the Bunyavirales. Curr. Opin. Virol. 2018;33:151–155. doi: 10.1016/j.coviro.2018.08.011. PubMed DOI
Elliott R.M. Molecular biology of the Bunyaviridae. J. Gen. Virol. 1990;71:501–522. doi: 10.1099/0022-1317-71-3-501. PubMed DOI
Sun Y., Li J., Gao G.F., Tien P., Liu W. Bunyavirales ribonucleoproteins: The viral replication and transcription machinery. Crit. Rev. Microbiol. 2018;44:522–540. doi: 10.1080/1040841X.2018.1446901. PubMed DOI
Gerlach P., Malet H., Cusack S., Reguera J. Structural insights into Bunyavirus replication and its regulation by the vRNA promoter. Cell. 2015;161:1267–1279. doi: 10.1016/j.cell.2015.05.006. PubMed DOI PMC
Junglen S. Evolutionary origin of pathogenic arthropod-borne viruses - a case study in the family Bunyaviridae. Curr. Opin. Insect Sci. 2016;16:81–86. doi: 10.1016/j.cois.2016.05.017. PubMed DOI
Li C.X., Shi M., Tian J.H., Lin X.D., Kang Y.J., Chen L.J., Qin X.C., Xu J., Holmes E.C., Zhang Y.Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;4 doi: 10.7554/eLife.05378. PubMed DOI PMC
Shi M., Lin X.D., Tian J.H., Chen L.J., Chen X., Li C.X., Qin X.C., Li J., Cao J.P., Eden J.S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI
Shi M., Lin X.D., Chen X., Tian J.H., Chen L.J., Li K., Wang W., Eden J.S., Shen J.J., Liu L., et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202. doi: 10.1038/s41586-018-0012-7. PubMed DOI
Ullman D.E., German T.L., Sherwood J.L., Westcot D.M., Cantone F.A. Tospovirus replication in insect vector cells - immunocytochemical evidence that the nonstructural protein encoded by the S RNA of Tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology. 1993;83:456–463. doi: 10.1094/Phyto-83-456. DOI
Whitfield A.E., Ullman D.E., German T.L. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 2005;43:459–489. doi: 10.1146/annurev.phyto.43.040204.140017. PubMed DOI
Grybchuk D., Kostygov A.Y., Macedo D.H., d’Avila-Levy C.M., Yurchenko V. RNA viruses in trypanosomatid parasites: A historical overview. Mem Inst. Oswaldo Cruz. 2018;113:e170487. doi: 10.1590/0074-02760170487. PubMed DOI PMC
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI
McGhee R.B., Cosgrove W.B. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 1980;44:140–173. doi: 10.1128/MMBR.44.1.140-173.1980. PubMed DOI PMC
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC
Stevens J.R., Gibson W.C. The evolution of pathogenic trypanosomes. Cad. Saude Publica. 1999;15:673–684. doi: 10.1590/S0102-311X1999000400002. PubMed DOI
Camargo E.P. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 1999;42:29–112. PubMed
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Dvorák V., Shaw J.J., Volf P. Parasite biology: The vectors. In: Bruschi F., Gradoni L., editors. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. pp. 31–77.
Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI
Kostygov A.Y., Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. doi: 10.14411/fp.2017.020. PubMed DOI
Paranaiba L.F., Pinheiro L.J., Macedo D.H., Menezes-Neto A., Torrecilhas A.C., Tafuri W.L., Soares R.P. An overview on Leishmania (Mundinia) enriettii: Biology, immunopathology, LRV and extracellular vesicles during the host-parasite interaction. Parasitology. 2018;145:1265–1273. doi: 10.1017/S0031182017001810. PubMed DOI
Paranaiba L.F., Pinheiro L.J., Torrecilhas A.C., Macedo D.H., Menezes-Neto A., Tafuri W.L., Soares R.P. Leishmania enriettii (Muniz & Medina, 1948): A highly diverse parasite is here to stay. PLoS Pathog. 2017;13:e1006303. doi: 10.1371/journal.ppat.1006303. PubMed DOI PMC
Tarr P.I., Aline R.F., Jr., Smiley B.L., Scholler J., Keithly J., Stuart K. LR1: A candidate RNA virus of Leishmania. Proc. Natl. Acad. Sci. USA. 1988;85:9572–9575. doi: 10.1073/pnas.85.24.9572. PubMed DOI PMC
Stuart K.D., Weeks R., Guilbride L., Myler P.J. Molecular organization of Leishmania RNA virus 1. Proc. Natl. Acad. Sci. USA. 1992;89:8596–8600. doi: 10.1073/pnas.89.18.8596. PubMed DOI PMC
Widmer G., Comeau A.M., Furlong D.B., Wirth D.F., Patterson J.L. Characterization of a RNA virus from the parasite Leishmania. Proc. Natl. Acad. Sci. USA. 1989;86:5979–5982. doi: 10.1073/pnas.86.15.5979. PubMed DOI PMC
Guilbride L., Myler P.J., Stuart K. Distribution and sequence divergence of LRV1 viruses among different Leishmania species. Mol. Biochem. Parasitol. 1992;54:101–104. doi: 10.1016/0166-6851(92)90099-6. PubMed DOI
Scheffter S.M., Ro Y.T., Chung I.K., Patterson J.L. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology. 1995;212:84–90. doi: 10.1006/viro.1995.1456. PubMed DOI
Zangger H., Hailu A., Desponds C., Lye L.F., Akopyants N.S., Dobson D.E., Ronet C., Ghalib H., Beverley S.M., Fasel N. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl. Trop. Dis. 2014;8:e2836. doi: 10.1371/journal.pntd.0002836. PubMed DOI PMC
Hajjaran H., Mahdi M., Mohebali M., Samimi-Rad K., Ataei-Pirkooh A., Kazemi-Rad E., Naddaf S.R., Raoofian R. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch. Virol. 2016;161:3385–3390. doi: 10.1007/s00705-016-3044-z. PubMed DOI
Grybchuk D., Kostygov A.Y., Macedo D.H., Votypka J., Lukes J., Yurchenko V. RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniavirus. mBio. 2018;9:e01932-01918. doi: 10.1128/mBio.01932-18. PubMed DOI PMC
Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M., et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. PubMed PMC
De Carvalho R.V.H., Lima-Junior D.S., da Silva M.V.G., Dilucca M., Rodrigues T.S., Horta C.V., Silva A.L.N., da Silva P.F., Frantz F.G., Lorenzon L.B., et al. Leishmania RNA virus exacerbates leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat. Commun. 2019;10:5273. doi: 10.1038/s41467-019-13356-2. PubMed DOI PMC
Hartley M.A., Bourreau E., Rossi M., Castiglioni P., Eren R.O., Prevel F., Couppie P., Hickerson S.M., Launois P., Beverley S.M., et al. Leishmaniavirus-dependent metastatic leishmaniasis is prevented by blocking IL-17A. PLoS Pathog. 2016;12:e1005852. doi: 10.1371/journal.ppat.1005852. PubMed DOI PMC
Rossi M., Castiglioni P., Hartley M.A., Eren R.O., Prevel F., Desponds C., Utzschneider D.T., Zehn D., Cusi M.G., Kuhlmann F.M., et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl. Acad. Sci. USA. 2017;114:4987–4992. doi: 10.1073/pnas.1621447114. PubMed DOI PMC
Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC
Cantanhêde L.M., da Silva Junior C.F., Ito M.M., Felipin K.P., Nicolete R., Salcedo J.M., Porrozzi R., Cupolillo E., Ferreira Rde G. Further evidence of an association between the presence of Leishmania RNA Virus 1 and the mucosal manifestations in tegumentary leishmaniasis patients. PLoS Negl. Trop. Dis. 2015;9:e0004079. doi: 10.1371/journal.pntd.0004079. PubMed DOI PMC
Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC
Akopyants N.S., Lye L.F., Dobson D.E., Lukeš J., Beverley S.M. A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 2016;4:e00715-00716. doi: 10.1128/genomeA.00715-16. PubMed DOI PMC
Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Yurchenko V., Kostygov A., Havlová J., Grybchuk-Ieremenko A., Ševčíková T., Lukeš J., Ševčík J., Votýpka J. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J. Eukaryot Microbiol. 2016;63:198–209. doi: 10.1111/jeu.12268. PubMed DOI
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., Genome Project Data Processing S. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Wheeler D.L., Church D.M., Federhen S., Lash A.E., Madden T.L., Pontius J.U., Schuler G.D., Schriml L.M., Sequeira E., Tatusova T.A., et al. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 2003;31:28–33. doi: 10.1093/nar/gkg033. PubMed DOI PMC
Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Hofmann K., Stoffel W. TMBase - a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler. 1993;374:166.
Käll L., Krogh A., Sonnhammer E.L. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res. 2007;35:W429–W432. doi: 10.1093/nar/gkm256. PubMed DOI PMC
McGuffin L.J., Bryson K., Jones D.T. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–405. doi: 10.1093/bioinformatics/16.4.404. PubMed DOI
Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Ishemgulova A., Hlavacova J., Majerova K., Butenko A., Lukes J., Votypka J., Volf P., Yurchenko V. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS ONE. 2018;13:e0192723. doi: 10.1371/journal.pone.0192723. PubMed DOI PMC
Ishemgulova A., Kraeva N., Faktorová D., Podešvová L., Lukeš J., Yurchenko V. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol. 2016;63:016. doi: 10.14411/fp.2016.016. PubMed DOI
Garin Y.J., Sulahian A., Meneceur P., Pratlong F., Prina E., Gangneux J., Dedet J.P., Derouin F. Experimental pathogenicity of a presumed monoxenous trypanosomatid isolated from humans in a murine model. J. Eukaryot Microbiol. 2001;48:170–176. doi: 10.1111/j.1550-7408.2001.tb00299.x. PubMed DOI
Giraud E., Leštinová T., Derrick T., Martin O., Dillon R.J., Volf P., Muller I., Bates P.A., Rogers M.E. Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling. PLoS Pathog. 2018;14:e1006794. doi: 10.1371/journal.ppat.1006794. PubMed DOI PMC
Cifuentes-Muñoz N., Salazar-Quiroz N., Tischler N.D. Hantavirus Gn and Gc envelope glycoproteins: Key structural units for virus cell entry and virus assembly. Viruses. 2014;6:1801–1822. doi: 10.3390/v6041801. PubMed DOI PMC
Sanchez A.J., Vincent M.J., Nichol S.T. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J. Virol. 2002;76:7263–7275. doi: 10.1128/JVI.76.14.7263-7275.2002. PubMed DOI PMC
Remnant E.J., Shi M., Buchmann G., Blacquiere T., Holmes E.C., Beekman M., Ashe A. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 2017;91:e00158-00117. doi: 10.1128/JVI.00158-17. PubMed DOI PMC
Albornoz A., Hoffmann A.B., Lozach P.Y., Tischler N.D. Early bunyavirus-host cell interactions. Viruses. 2016;8:143. doi: 10.3390/v8050143. PubMed DOI PMC
Overath P., Stierhof Y.D., Wiese M. Endocytosis and secretion in trypanosomatid parasites - tumultuous traffic in a pocket. Trends Cell Biol. 1997;7:27–33. doi: 10.1016/S0962-8924(97)10046-0. PubMed DOI
Landfear S.M., Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol. Biochem. Parasitol. 2001;115:1–17. doi: 10.1016/S0166-6851(01)00262-6. PubMed DOI
Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L., et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. doi: 10.1016/j.cell.2015.11.051. PubMed DOI PMC
Allen C.L., Goulding D., Field M.C. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22:4991–5002. doi: 10.1093/emboj/cdg481. PubMed DOI PMC
Hung C.H., Qiao X., Lee P.T., Lee M.G. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Eukaryot Cell. 2004;3:1004–1014. doi: 10.1128/EC.3.4.1004-1014.2004. PubMed DOI PMC
Léger P., Lozach P.-Y. Bunyaviruses: From transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol. 2015;10:859–881. doi: 10.2217/fvl.15.52. DOI
Shi X., Elliott R.M. Analysis of glycoproteins of viruses in the family Bunyaviridae. Methods Mol. Biol. 2007;379:137–148. doi: 10.1007/978-1-59745-393-6_10. PubMed DOI
Överby A.K., Pettersson R.F., Neve E.P. The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J. Virol. 2007;81:3198–3205. doi: 10.1128/JVI.02655-06. PubMed DOI PMC
Strandin T., Hepojoki J., Vaheri A. Cytoplasmic tails of bunyavirus Gn glycoproteins – could they act as matrix protein surrogates? Virology. 2013;437:73–80. doi: 10.1016/j.virol.2013.01.001. PubMed DOI
Wu Y., Zhu Y., Gao F., Jiao Y., Oladejo B.O., Chai Y., Bi Y., Lu S., Dong M., Zhang C., et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc. Natl. Acad. Sci. USA. 2017;114:E7564–E7573. doi: 10.1073/pnas.1705176114. PubMed DOI PMC
Guardado-Calvo P., Bignon E.A., Stettner E., Jeffers S.A., Perez-Vargas J., Pehau-Arnaudet G., Tortorici M.A., Jestin J.L., England P., Tischler N.D., et al. Mechanistic insight into Bunyavirus-induced membrane fusion from structure-function analyses of the Hantavirus envelope glycoprotein Gc. PLoS Pathog. 2016;12:e1005813. doi: 10.1371/journal.ppat.1005813. PubMed DOI PMC
Shi X., Goli J., Clark G., Brauburger K., Elliott R.M. Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein. J. Gen. Virol. 2009;90:2483–2492. doi: 10.1099/vir.0.013540-0. PubMed DOI PMC
Spodareva V.V., Grybchuk-Ieremenko A., Losev A., Votýpka J., Lukeš J., Yurchenko V., Kostygov A.Y. Diversity and evolution of anuran trypanosomes: Insights from the study of European species. Parasit Vectors. 2018;11:447. doi: 10.1186/s13071-018-3023-1. PubMed DOI PMC
Kozminsky E., Kraeva N., Ishemgulova A., Dobáková E., Lukeš J., Kment P., Yurchenko V., Votýpka J., Maslov D.A. Host-specificity of monoxenous trypanosomatids: Statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015;166:551–568. doi: 10.1016/j.protis.2015.08.004. PubMed DOI
Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., et al. Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11:e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC
Votýpka J., d’Avila-Levy C.M., Grellier P., Maslov D.A., Lukeš J., Yurchenko V. New approaches to systematics of Trypanosomatidae: Criteria for taxonomic (re)description. Trends Parasitol. 2015;31:460–469. doi: 10.1016/j.pt.2015.06.015. PubMed DOI
Grybchuk-Ieremenko A., Losev A., Kostygov A.Y., Lukeš J., Yurchenko V. High prevalence of trypanosome co-infections in freshwater fishes. Folia Parasitol. 2014;61:495–504. doi: 10.14411/fp.2014.064. PubMed DOI
Muniz J., Medina H. [Cutaneous leishmaniasis of the guinea pig, Leishmania enriettii n. sp] Hospital (Rio J.) 1948;33:7–25. PubMed
Jariyapan N., Daroontum T., Jaiwong K., Chanmol W., Intakhan N., Sor-Suwan S., Siriyasatien P., Somboon P., Bates M.D., Bates P.A. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasit Vectors. 2018;11:351. doi: 10.1186/s13071-018-2908-3. PubMed DOI PMC
Dougall A., Shilton C., Low Choy J., Alexander B., Walton S. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol Infect. 2009;137:1516–1520. doi: 10.1017/S0950268809002313. PubMed DOI
Rose K., Curtis J., Baldwin T., Mathis A., Kumar B., Sakthianandeswaren A., Spurck T., Low Choy J., Handman E. Cutaneous leishmaniasis in red kangaroos: Isolation and characterisation of the causative organisms. Int. J. Parasitol. 2004;34:655–664. doi: 10.1016/j.ijpara.2004.03.001. PubMed DOI
Barratt J., Kaufer A., Peters B., Craig D., Lawrence A., Roberts T., Lee R., McAuliffe G., Stark D., Ellis J. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl. Trop. Dis. 2017;11:e0005215. doi: 10.1371/journal.pntd.0005215. PubMed DOI PMC
Desbois N., Pratlong F., Quist D., Dedet J.P. Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies) Parasite. 2014;21:12. doi: 10.1051/parasite/2014011. PubMed DOI PMC
Seblová V., Sádlová J., Vojtková B., Votýpka J., Carpenter S., Bates P.A., Volf P. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is capable of developing late stage infections of Leishmania enriettii. PLoS Negl. Trop. Dis. 2015;9:e0004060. doi: 10.1371/journal.pntd.0004060. PubMed DOI PMC
Dougall A.M., Alexander B., Holt D.C., Harris T., Sultan A.H., Bates P.A., Rose K., Walton S.F. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 2011;41:571–579. doi: 10.1016/j.ijpara.2010.12.008. PubMed DOI
Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genomics. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC
Zídková L., Čepička I., Votýpka J., Svobodová M. Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera) Int. J. Syst. Evol. Microbiol. 2010;60:2236–2246. doi: 10.1099/ijs.0.014555-0. PubMed DOI
Svobodová M., Zídková L., Čepička I., Oborník M., Lukeš J., Votýpka J. Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera) Int. J. Syst. Evol. Microbiol. 2007;57:423–432. doi: 10.1099/ijs.0.64557-0. PubMed DOI
Podlipaev S., Votýpka J., Jirků M., Svobodová M., Lukeš J. Herpetomonas ztiplika n. sp. (Kinetoplastida: Trypanosomatidae): A parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae) J. Parasitol. 2004;90:342–347. doi: 10.1645/GE-156R. PubMed DOI
Bualert L., Charungkiattikul W., Thongsuksai P., Mungthin M., Siripattanapipong S., Khositnithikul R., Naaglor T., Ravel C., El Baidouri F., Leelayoova S. Autochthonous disseminated dermal and visceral leishmaniasis in an AIDS patient, southern Thailand, caused by Leishmania siamensis. Am. J. Trop Med. Hyg. 2012;86:821–824. doi: 10.4269/ajtmh.2012.11-0707. PubMed DOI PMC
Dedet J.P., Roche B., Pratlong F., Cales-Quist D., Jouannelle J., Benichou J.C., Huerre M. Diffuse cutaneous infection caused by a presumed monoxenous trypanosomatid in a patient infected with HIV. Trans. R. Soc. Trop. Med. Hyg. 1995;89:644–646. doi: 10.1016/0035-9203(95)90427-1. PubMed DOI
Chicharro C., Alvar J. Lower trypanosomatids in HIV/AIDS patients. Ann. Trop. Med. Parasitol. 2003;97(Suppl. 1):75–78. doi: 10.1179/000349803225002552. PubMed DOI
Dedet J.P., Pratlong F. Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J. Eukaryot Microbiol. 2000;47:37–39. doi: 10.1111/j.1550-7408.2000.tb00008.x. PubMed DOI
Hartley M.A., Ronet C., Zangger H., Beverley S.M., Fasel N. Leishmania RNA virus: When the host pays the toll. Front. Cell Infect. Microbiol. 2012;2:99. doi: 10.3389/fcimb.2012.00099. PubMed DOI PMC
Analysis of Leishbuviridae from Trypanosomatids
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Jorvik: A membrane-containing phage that will likely found a new family within Vinavirales
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Catalase impairs Leishmania mexicana development and virulence
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses