• This record comes from PubMed

Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling

. 2018 Jan ; 14 (1) : e1006794. [epub] 20180119

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Wellcome Trust - United Kingdom
BB/H022406/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Links

PubMed 29352310
PubMed Central PMC5792026
DOI 10.1371/journal.ppat.1006794
PII: PPATHOGENS-D-17-01673
Knihovny.cz E-resources

Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1β, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel's ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG's ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages.

See more in PubMed

Sacks D, Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55: 453–483. doi: 10.1146/annurev.micro.55.1.453 PubMed DOI

Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P (2017) Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 11: e0005600 doi: 10.1371/journal.pntd.0005600 PubMed DOI PMC

Titus RG, Ribeiro JM (1988) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhanced Leishmania infectivity. Science 239: 1306–1308. PubMed

Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks DL (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 1351–1354. PubMed

Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG (2008) Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response toward protection or exacerbation of disease. PLoS Negl Trop Dis 2: e226 doi: 10.1371/journal.pntd.0000226 PubMed DOI PMC

Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430: 463–467. doi: 10.1038/nature02675 PubMed DOI PMC

Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37: 1097–1106. doi: 10.1016/j.ijpara.2007.04.003 PubMed DOI PMC

Stierhof YD, Bates PA, Jacobson RL, Rogers ME, Schlein Y, et al. (1999) Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur J Cell Biol 78: 675–689. doi: 10.1016/S0171-9335(99)80036-3 PubMed DOI

Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495–507. PubMed

Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3: e91 doi: 10.1371/journal.ppat.0030091 PubMed DOI PMC

Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, et al. (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci USA 105: 10125–10130. doi: 10.1073/pnas.0802331105 PubMed DOI PMC

Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, et al. (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5: e1000555 doi: 10.1371/journal.ppat.1000555 PubMed DOI PMC

Rogers M, Corware K, Müller I, Bates P (2010) Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes Infect 12: 875–879. doi: 10.1016/j.micinf.2010.05.014 PubMed DOI

Ilg T (2000) Proteophosphoglycans of Leishmania. Parasitol Today 16: 489–497. PubMed

Niu Y, Miao M, Cao X, Song F, Ji X, Dong J, Lu S. (2014) Infiltration of macrophages and their phenotype in the healing process of full-thickness wound in rat. Zhonghua Shao Shang Za Zhi 30:109–115. PubMed

Murray HW, Xiang Z, Ma X. (2006) Responses to Leishmania donovani in mice deficient in both phagocyte oxidase and inducible nitric oxide synthase. Am J Trop Med Hyg 74:1013–1015. PubMed

Bauer S, Müller T, Hamm S. (2009) Pattern recognition by Toll-like receptors. Adv Exp Med Biol 653:15–34. PubMed

Tuon FF, Amato VS, Bacha HA, Almusawi T, Duarte MI, Amato Neto V. (2008) Toll-like receptors and leishmaniasis. Infect Immun 76:866–872. doi: 10.1128/IAI.01090-07 PubMed DOI PMC

Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC. (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7:975–987. doi: 10.1038/nri2199 PubMed DOI PMC

Byers DE, Holtzman MJ. (2011) Alternatively activated macrophages and airway disease. Chest 140:768–774. doi: 10.1378/chest.10-2132 PubMed DOI PMC

Wanasen N, Soong L. (2008) L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 41:15–25. doi: 10.1007/s12026-007-8012-y PubMed DOI PMC

Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, et al. (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174: 6561–6562. PubMed

Kropf P, Fuentes JM, Fähnrich E, Arpa L, Herath S et al. (2005) Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J 19: 1000–1002. doi: 10.1096/fj.04-3416fje PubMed DOI

Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, et al. (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 279: 23668–23678. doi: 10.1074/jbc.M402042200 PubMed DOI

Yizengaw E, Getahun M, Tajebe F, Cruz Cervera E, Adem E, et al. (2016) Visceral Leishmaniasis Patients Display Altered Composition and Maturity of Neutrophils as well as Impaired Neutrophil Effector Functions. Front Immunol 7: 517 doi: 10.3389/fimmu.2016.00517 PubMed DOI PMC

Mortazavi H, Sadeghipour P, Taslimi Y, Habibzadeh S, Zali F, et al. (2016) Comparing acute and chronic human cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica focusing on arginase activity. J Eur Acad Dermatol Venereol 30:2118–2121. doi: 10.1111/jdv.13838 PubMed DOI

Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, et al. (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321: 970–974. doi: 10.1126/science.1159194 PubMed DOI PMC

Sakthianandeswaren A, Elso CM, Simpson K, Curtis JM, Kumar B, et al. (2005) The wound repair response controls outcome to cutaneous leishmaniasis. Proc Natl Acad Sci USA 102: 15551–15556. doi: 10.1073/pnas.0505630102 PubMed DOI PMC

Bertho AL, Santiago MA, Coutinho SG (1994) An experimental model of the production of metastases in murine cutaneous leishmaniasis. J Parasitol 80: 93–99. PubMed

Wortmann GW, Aronson NE, Miller RS, Blazes D, Oster CN (2000) Cutaneous leishmaniasis following local trauma: a clinical pearl. Clin Infect Dis 31: 199–201. doi: 10.1086/313924 PubMed DOI

Späth GF, Beverley SM. (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99: 97–103. doi: 10.1006/expr.2001.4656 PubMed DOI

Telleria EL, Sant'Anna MR, Ortigão-Farias JR, Pitaluga AN, Dillon VM, et al. (2012) Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem 287: 12985–12993. doi: 10.1074/jbc.M111.331561 PubMed DOI PMC

de La Llave E, Lecoeur H, Besse A, Milon G, Prina E, et al. (2011) A combined luciferase imaging and reverse transcription polymerase chain reaction assay for the study of Leishmania amastigote burden and correlated mouse tissue transcript fluctuations. Cell Microbiol 13: 81–91. doi: 10.1111/j.1462-5822.2010.01521.x PubMed DOI

Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, et al. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7: 3 doi: 10.1186/1471-2199-7-3 PubMed DOI PMC

Bolstad BM, Irizarry RA, Astrand M, Speed TP. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193. PubMed

Jain N, Thatte J, Braciale T, Ley K, O'Connell M, et al. (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19: 1945–1951. PubMed

Benjamini Y, Hochberg Y. (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811–818. PubMed

Prina E, Roux E, Mattei D, Milon G. (2007) Leishmania DNA is rapidly degraded following parasite death: an analysis by microscopy and real-time PCR. Microbes Infect 9: 1307–1315. doi: 10.1016/j.micinf.2007.06.005 PubMed DOI

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. (2007) qBase relative quantification framework and software for management and automated analysis of realtime quantitative PCR data. Genome Biol 8: R19 doi: 10.1186/gb-2007-8-2-r19 PubMed DOI PMC

Lecoeur H, de La Llave E, Osorio Y Fortéa J, Goyard S, Kiefer-Biasizzo H, et al. (2010) Sorting of Leishmania-bearing dendritic cells reveals subtle parasite-induced modulation of host-cell gene expression. Microbes Infect 12: 46–54. doi: 10.1016/j.micinf.2009.09.014 PubMed DOI

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034. PubMed PMC

Andersen CL, Jensen JL, Orntoft TF. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 PubMed DOI

Liang CC, Park AY, Guan JL. (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329–333. doi: 10.1038/nprot.2007.30 PubMed DOI

Osorio y Fortea J, de La Llave E, Regnault B, Coppee JY, Milon G, et al. (2009) Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes. BMC Genomics 10: 119 doi: 10.1186/1471-2164-10-119 PubMed DOI PMC

Krenn HW, Aspöck H. (2012) Form, function and evolution of the mouthparts of blood-feeding Arthropoda. Arthropod Struct Dev 41:101–118. doi: 10.1016/j.asd.2011.12.001 PubMed DOI

Delavary MB, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. (2011) Macrophages in skin injury and repair. Immunobiol 216: 753–762. PubMed

Sato Y, Ohshima T, Kondo T. (1999) Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun 265: 194–199. doi: 10.1006/bbrc.1999.1455 PubMed DOI

Moore KW, O'Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. (1993) Interleukin-10. Annu Rev Immunol 11: 165–190. doi: 10.1146/annurev.iy.11.040193.001121 PubMed DOI

Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, et al. (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194: 1497–1506. PubMed PMC

Ajuebor MN, Das AM, Virag L, Szabo C, Perretti M. (1999) Regulation of macrophage inflammatory protein-1 alpha expression and function by endogenous interleukin-10 in a model of acute inflammation. Biochem Biophys Res Commun 255: 279–282. doi: 10.1006/bbrc.1999.0196 PubMed DOI

Rheinwald JG, Green H. (1977) Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265: 421–424. PubMed

Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI, et al. (2000) Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 151: 209–220. PubMed PMC

Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, et al. (1995) Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 270: 12607–12613. PubMed

Gille J, Khalik M, Konig V, Kaufmann R. (1998) Hepatocyte growth factor/scatter factor (HGF/SF) induces vascular permeability factor (VPF/VEGF) expression by cultured keratinocytes. J Invest Dermatol 111: 1160–1165. doi: 10.1046/j.1523-1747.1998.00418.x PubMed DOI

Knighton DR, Silver IA, Hunt TK. (1981) Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 90: 262–270. PubMed

Singer AJ, Clark RA. (1999) Cutaneous wound healing. N Engl J Med 341: 738–746. doi: 10.1056/NEJM199909023411006 PubMed DOI

Albina JE, Mills CD, Barbul A, Thirkill CE, Henry WL Jr, Mastrofrancesco B, et al. (1988) Arginine metabolism in wounds. Am J Physiol (1988) 254:E459–67. doi: 10.1152/ajpendo.1988.254.4.E459 PubMed DOI

Albina JE, Mills CD, Henry WL Jr, Caldwell MD. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol (1990) 144:3877–80. PubMed

Iniesta V, Gómez-Nieto LC, Molano I, Mohedano A, Carcelén J, Mirón C, Alonso C, Corraliza I. (2002) Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol 24:113–118. PubMed

Vendrame CM, Carvalho MD, Tempone AG, Goto H. (2014) Insulin-like growth factor-I induces arginase activity in Leishmania amazonensis amastigote-infected macrophages through a cytokine-independent mechanism. Mediators Inflamm 2014: 475919 doi: 10.1155/2014/475919 PubMed DOI PMC

Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, Murray PJ. (2004) Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol 172:7565–7573. PubMed

El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, et al. (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9:1399–1406. doi: 10.1038/ni.1671 PubMed DOI PMC

Goto H, Gomes CM, Corbett CE, Monteiro HP, Gidlund M. (1998) Insulin-like growth factor I is a growth-promoting factor for Leishmania promastigotes and amastigotes. Proc Natl Acad Sci USA 95: 13211–13216. PubMed PMC

Vendrame CM, Carvalho MD, Rios FJ, Manuli ER, Petitto-Assis F, et al. (2007) Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro. Scand J Immunol 66: 287–296. doi: 10.1111/j.1365-3083.2007.01950.x PubMed DOI

Reis LC, Ramos-Sanchez EM, Goto H (2013) The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages. Parasite Immunol. 35: 239–244. doi: 10.1111/pim.12041 PubMed DOI PMC

Gomes R, Oliveira F. (2012) The immune response to sand fly salivary proteins and its influence on Leishmania immunity. Front Immunol 3: 110 doi: 10.3389/fimmu.2012.00110 PubMed DOI PMC

Solbach W, Laskay T. (2000) The host response to Leishmania infection. Adv Immunol.74:275–317. PubMed

Wiethe C, Debus A, Mohrs M, Steinkasserer A, Lutz M, Gessner A. (2008) Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection. J Immunol 180:4371–4381. PubMed

Belkaid Y, Rouse BT. (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360. doi: 10.1038/ni1181 PubMed DOI

Sacks D, Kamhawi S. (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55: 453–483. doi: 10.1146/annurev.micro.55.1.453 PubMed DOI

Giraud E, Lecoeur H, Soubigou G, Coppée JY, Milon G, et al. (2012) Distinct transcriptional signatures of bone marrow-derived C57BL/6 and DBA/2 dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis 6: e1980 doi: 10.1371/journal.pntd.0001980 PubMed DOI PMC

Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A. (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunol. 8:959–968. doi: 10.1038/mi.2015.63 PubMed DOI PMC

Naiyer MM, Saha S, Hemke V, Roy S, Singh S, Musti KV, Saha B. (2013) Identification and characterization of a human IL-10 receptor antagonist. Hum Immunol 74:28–31. doi: 10.1016/j.humimm.2012.09.002 PubMed DOI

Lucas M, Zhang X, Prasanna V, Mosser DM. (2005) ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 175:469–477. PubMed

Osorio EY, Travi BL, daCruz AM, Saldarriaga OA, Medina AA, Melby PC. (2014). Growth factor and Th2 cytokine signalling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathog 10:e1004165 doi: 10.1371/journal.ppat.1004165 PubMed DOI PMC

Tonkin J, Sampson L, Gallego-Colon E, Barberi L, et al. (2015) Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Mol Ther 23: 1189–1200. doi: 10.1038/mt.2015.66 PubMed DOI PMC

Yin Y, Hua H, Li M, Liu S, Kong Q, et al. (2016) mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Research. 26: 46–65. doi: 10.1038/cr.2015.133 PubMed DOI PMC

Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, et al. (2012) An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med 18: 260–266. doi: 10.1038/nm.2628 PubMed DOI PMC

Prates DB, Araújo-Santos T, Luz NF, Andrade BB, França-Costa J, et al. (2011) Lutzomyia longipalpis saliva drives apoptosis and enhances parasite burden in neutrophils. J Leukoc Biol 90: 575–582. doi: 10.1189/jlb.0211105 PubMed DOI

van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, et al. (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173: 6521–6525. PubMed

Peters NC, Kimblin N, Secundino N, Kamhawi S, Lawyer P, et al. (2009) Vector transmission of leishmania abrogates vaccine-induced protective immunity. PLoS Pathog 5: e1000484 doi: 10.1371/journal.ppat.1000484 PubMed DOI PMC

Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, et al. (2015) Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell Rep 13:957–967. doi: 10.1016/j.celrep.2015.09.058 PubMed DOI PMC

Cho KA, Suh JW, Lee KH, Kang JL, Woo SY. (2012) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1beta by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol 24: 147–158. doi: 10.1093/intimm/dxr110 PubMed DOI

Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL, et al. (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40: 2830–2836. doi: 10.1002/eji.200940115 PubMed DOI

Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. (2013) Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol 133:783–792. doi: 10.1038/jid.2012.368 PubMed DOI

Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, et al. (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119: 2379–2387. doi: 10.1172/JCI38813 PubMed DOI PMC

Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, et al. (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182: 3039–3046. doi: 10.4049/jimmunol.0713598 PubMed DOI PMC

Braune J, Weyer U, Hobusch C, Mauer J, Brüning JC, Bechmann I, Gericke M. (2017). IL-6 Regulates M2 Polarization and Local Proliferation of Adipose Tissue Macrophages in Obesity. J Immunol. 198: 2927–2934. doi: 10.4049/jimmunol.1600476 PubMed DOI

Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, et al. (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 15: 423–430. doi: 10.1038/ni.2865 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...