A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Z01 AI000810-11
Intramural NIH HHS - United States
PubMed
20940421
PubMed Central
PMC3031492
DOI
10.1182/blood-2010-06-293241
PII: S0006-4971(20)59223-9
Knihovny.cz E-zdroje
- MeSH
- agregace trombocytů genetika imunologie MeSH
- chymasy imunologie metabolismus MeSH
- exprese genu MeSH
- hmyzí proteiny genetika imunologie metabolismus MeSH
- kathepsin G imunologie metabolismus MeSH
- klíště genetika imunologie metabolismus MeSH
- krystalizace MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza proteinů MeSH
- serpiny genetika imunologie metabolismus MeSH
- slinné proteiny a peptidy genetika imunologie metabolismus MeSH
- zánět imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chymasy MeSH
- hmyzí proteiny MeSH
- kathepsin G MeSH
- serpin-2 MeSH Prohlížeč
- serpiny MeSH
- slinné proteiny a peptidy MeSH
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 Å. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications.
Zobrazit více v PubMed
Ribeiro JM, Makoul GT, Levine J, Robinson DR, Spielman A. Antihemostatic, anti-inflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med. 1985;161(2):332–344. PubMed PMC
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–2088. PubMed PMC
Deruaz M, Frauenschuh A, Alessandri AL, et al. Ticks produce highly selective chemokine binding proteins with anti-inflammatory activity. J Exp Med. 2008;205(9):2019–2031. PubMed PMC
Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, Ribeiro JM. Anti-inflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick, Ixodes scapularis. J Biol Chem. 2006;281(36):26298–26307. PubMed
Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36(2):111–129. PubMed
Chmelar J, Anderson JM, Mu J, Jochim RC, Valenzuela JG, Kopecky J. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics. 2008;9:233. PubMed PMC
Francischetti IM, My Pham V, Mans BJ, et al. The transcriptome of the salivary glands of the female western black-legged tick, Ixodes pacificus (Acari: Ixodidae). Insect Biochem Mol Biol. 2005;35(10):1142–1161. PubMed PMC
Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994;269(23):15957–15960. PubMed
Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 2000;10(12):1845–1864. PubMed
Mulenga A, Khumthong R, Chalaire KC. Ixodes scapularis tick serine proteinase inhibitor (serpin) gene family: annotation and transcriptional analysis. BMC Genomics. 2009;10:217. PubMed PMC
Mulenga A, Khumthong R, Blandon MA. Molecular and expression analysis of a family of the Amblyomma americanum tick, Lospins. J Exp Biol. 2007;219(18):3188–3198. PubMed
Sugino M, Imamura S, Mulenga A, et al. A serine proteinase inhibitor (serpin) from ixodid tick, Haemaphysalis longicornis: cloning and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine. 2003;21(21-22):2844–2851. PubMed
Mulenga A, Tsuda A, Onuma M, Sugimoto C. Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus: cDNA cloning and preliminary characterization. Insect Biochem Mol Biol. 2003;33(2):267–276. PubMed
Leboulle G, Crippa M, Decrem Y, et al. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J Biol Chem. 2002;277(12):10083–10089. PubMed
Prevot PP, Adam B, Boudjeltia KZ, et al. Anti-hemostatic effects of a serpin from the saliva of the tick, Ixodes ricinus. J Biol Chem. 2006;281(36):26361–26369. PubMed
Prevot PP, Beschin A, Lins L, et al. Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick, Ixodes ricinus. FEBS J. 2009;276(12):3235–3246. PubMed
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1989.
Andersen JF, Francischetti IM, Valenzuela JG, Schuck P, Ribeiro JM. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J Biol Chem. 2003;278(7):4611–4617. PubMed
Kovářová Z, Chmelař J, Šanda M, Brynda J, Mareš M, Řezáčová P. Crystallization and diffraction analysis of the serpin, IRS-2, from the hard tick, Ixodes ricinus. Acta Crystallogr F Struct Biol Cryst Commun. In press. PubMed PMC
Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr. 2006;62(8):859–866. PubMed
Vagin A, Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr D Biol Crystallogr. 2000;56(12):1622–1624. PubMed
Baumann U, Bode W, Huber R, Travis J, Potempa J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 A resolution. J Mol Biol. 1992;226(4):1207–1218. PubMed
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(3):240–255. PubMed
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50(5):760–763. PubMed
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(12,1):2126–2132. PubMed
Winn MD, Isupov MN, Murshudov GN. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr. 2001;57(1):122–133. PubMed
Davis IW, Leaver-Fay A, Chen VB, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–W383. (Web Server issue) PubMed PMC
De Lano WL. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific LLC; 2002.
Holm L, Sander C. Searching protein structure databases has come of age. Proteins. 1994;19(3):165–173. PubMed
Laskowski RA, Macarthur MW, Moss DS, Thornton JM. Procheck—a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291.
Levy L. Carrageenan paw edema in the mouse. Life Sci. 1969;8(11):601–606. PubMed
Pejler G, Abrink M, Ringvall M, Wernersson S. Mast cell proteases. Adv Immunol. 2007;95:167–255. PubMed
Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000;275(10):6819–6823. PubMed
Francischetti IM, Saliou B, Leduc M, et al. Convulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. Toxicon. 1997;35(8):1217–1228. PubMed
Betts MJ, Sternberg MJ. An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng. 1999;12(4):271–283. PubMed
Andersson MK, Enoksson M, Gallwitz M, Hellman L. The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile. Int Immunol. 2009;21(1):95–104. PubMed
Rehault S, Brillard-Bourdet M, Juliano MA, Juliano L, Gauthier F, Moreau T. New, sensitive fluorogenic substrates for human cathepsin G based on the sequence of serpin-reactive site loops. J Biol Chem. 1999;274(20):13810–13817. PubMed
Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007;21(2):99–111. PubMed
McDougall JJ, Zhang C, Cellars L, Joubert E, Dixon CM, Vergnolle N. Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum. 2009;60(3):728–737. PubMed
Schiemann F, Grimm TA, Hoch J, et al. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counter-regulation by PF-4 through inhibition of chymase and cathepsin G. Blood. 2006;107(6):2234–2242. PubMed
Cui P, Tani K, Kitamura H, et al. A novel bioactive 31-amino-acid, endothelin-1, is a potent chemotactic peptide for human neutrophils and monocytes. J Leukoc Biol. 2001;70(2):306–312. PubMed
Genome sequences of four Ixodes species expands understanding of tick evolution
Conformational transition of the Ixodes ricinus salivary serpin Iripin-4
Serpins in Tick Physiology and Tick-Host Interaction
Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus
Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement
Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk
Tick Salivary Compounds for Targeted Immunomodulatory Therapy
Novel targets and strategies to combat borreliosis
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions
Modulation of host immunity by tick saliva
Deep Sequencing Analysis of the Ixodes ricinus Haemocytome