In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26745503
PubMed Central
PMC4706430
DOI
10.1371/journal.pntd.0004298
PII: PNTD-D-15-01573
Knihovny.cz E-zdroje
- MeSH
- agregace trombocytů účinky léků MeSH
- buněčné linie MeSH
- exprese genu MeSH
- faktor XIa antagonisté a inhibitory MeSH
- fibrinolytika izolace a purifikace metabolismus MeSH
- gastrointestinální trakt chemie MeSH
- inhibitory proteas izolace a purifikace metabolismus MeSH
- kalikreiny antagonisté a inhibitory MeSH
- lidé MeSH
- myši MeSH
- rekombinantní proteiny genetika izolace a purifikace metabolismus MeSH
- Rhipicephalus chemie MeSH
- thrombin antagonisté a inhibitory MeSH
- trombóza chemicky indukované prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor XIa MeSH
- fibrinolytika MeSH
- inhibitory proteas MeSH
- kalikreiny MeSH
- rekombinantní proteiny MeSH
- thrombin MeSH
BACKGROUND: Hematophagous mosquitos and ticks avoid host hemostatic system through expression of enzyme inhibitors targeting proteolytic reactions of the coagulation and complement cascades. While most inhibitors characterized to date were found in the salivary glands, relatively few others have been identified in the midgut. Among those, Boophilin is a 2-Kunitz multifunctional inhibitor targeting thrombin, elastase, and kallikrein. However, the kinetics of Boophilin interaction with these enzymes, how it modulates platelet function, and whether it inhibits thrombosis in vivo have not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Boophilin was expressed in HEK293 cells and purified to homogeneity. Using amidolytic assays and surface plasmon resonance experiments, we have demonstrated that Boophilin behaves as a classical, non-competitive inhibitor of thrombin with respect to small chromogenic substrates by a mechanism dependent on both exosite-1 and catalytic site. Inhibition is accompanied by blockade of platelet aggregation, fibrin formation, and clot-bound thrombin in vitro. Notably, we also identified Boophilin as a non-competitive inhibitor of FXIa, preventing FIX activation. In addition, Boophilin inhibits kallikrein activity and the reciprocal activation, indicating that it targets the contact pathway. Furthermore, Boophilin abrogates cathepsin G- and plasmin-induced platelet aggregation and partially affects elastase-mediated cleavage of Tissue Factor Pathway Inhibitor (TFPI). Finally, Boophilin inhibits carotid artery occlusion in vivo triggered by FeCl3, and promotes bleeding according to the mice tail transection method. CONCLUSION/SIGNIFICANCE: Through inhibition of several enzymes involved in proteolytic cascades and cell activation, Boophilin plays a major role in keeping the midgut microenvironment at low hemostatic and inflammatory tonus. This response allows ticks to successfully digest a blood meal which is critical for metabolism and egg development. Boophilin is the first tick midgut FXIa anticoagulant also found to inhibit thrombosis.
Zobrazit více v PubMed
Corral-Rodriguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P (2009) Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol 39: 579–595. 10.1016/j.ibmb.2009.07.003 PubMed DOI
Koh CY, Kini RM (2009) Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost 102: 437–453. 10.1160/TH09-04-0221 PubMed DOI
Louw E, van der Merwe NA, Neitz AW, Maritz-Olivier C (2012) Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol. PubMed
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM (2009) The role of saliva in tick feeding. Front Biosci 14: 2051–2088. PubMed PMC
Ribeiro JM, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 73–88. PubMed
Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47: 1–20. PubMed
Mans BJ, Francischetti I.M.B. (2010) Sialomic perspectives on the evolution of blood-feeding behavior in arthropods: future therapeutics by natural design Toxins and Hemostasis From bench to bedside Eds Kini, RM, Clemetson, KJ, Markland, FS, McLane, MA, Morita, T 21–44. Springer, New York.
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, et al. (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10: 483–511. 10.1146/annurev.genom.9.081307.164356 PubMed DOI
Francischetti IM (2010) Platelet aggregation inhibitors from hematophagous animals. Toxicon 56: 1130–1144. 10.1016/j.toxicon.2009.12.003 PubMed DOI PMC
Chmelar J, Kotal J, Karim S, Kopacek P, Francischetti IM, et al. (2015) Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. PubMed PMC
van de Locht A, Stubbs MT, Bode W, Friedrich T, Bollschweiler C, et al. (1996) The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J 15: 6011–6017. PubMed PMC
Araujo RN, Campos IT, Tanaka AS, Santos A, Gontijo NF, et al. (2007) Brasiliensin: A novel intestinal thrombin inhibitor from Triatoma brasiliensis (Hemiptera: Reduviidae) with an important role in blood intake. Int J Parasitol 37: 1351–1358. PubMed PMC
Mende K, Petoukhova O, Koulitchkova V, Schaub GA, Lange U, et al. (1999) Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. Eur J Biochem 266: 583–590. PubMed
van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, et al. (1995) Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14: 5149–5157. PubMed PMC
Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS (2006) The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673–681. PubMed
Campos IT, Amino R, Sampaio CA, Auerswald EA, Friedrich T, et al. (2002) Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochem Mol Biol 32: 991–997. PubMed
Xu Y, Cai TQ, Castriota G, Zhou Y, Hoos L, et al. (2014) Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb Haemost 111: 694–704. 10.1160/TH13-08-0668 PubMed DOI
Hagedorn I, Schmidbauer S, Pleines I, Kleinschnitz C, Kronthaler U, et al. (2010) Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 121: 1510–1517. 10.1161/CIRCULATIONAHA.109.924761 PubMed DOI
Cao J, Shi L, Zhou Y, Gao X, Zhang H, et al. (2013) Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Arch Insect Biochem Physiol 84: 104–113. 10.1002/arch.21118 PubMed DOI
Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, et al. (2008) Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3: e1624 10.1371/journal.pone.0001624 PubMed DOI PMC
Soares TS, Watanabe RM, Tanaka-Azevedo AM, Torquato RJ, Lu S, et al. (2012) Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet Parasitol 187: 521–528. 10.1016/j.vetpar.2012.01.027 PubMed DOI
Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, et al. (2006) From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24: 374–390. PubMed
Ma D, Mizurini DM, Assumpcao TC, Li Y, Qi Y, et al. (2013) Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 122: 4094–4106. 10.1182/blood-2013-08-517474 PubMed DOI PMC
Assumpcao TC, Ma D, Schwarz A, Reiter K, Santana JM, et al. (2013) Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge OFormula and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst. J Biol Chem 288: 14341–14361. 10.1074/jbc.M113.466995 PubMed DOI PMC
Francischetti IM, Valenzuela JG, Ribeiro JM (1999) Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 38: 16678–16685. PubMed
Collin N, Assumpcao TC, Mizurini DM, Gilmore DC, Dutra-Oliveira A, et al. (2012) Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo. Arterioscler Thromb Vasc Biol 32: 2185–2198. 10.1161/ATVBAHA.112.253906 PubMed DOI PMC
Navaneetham D, Wu W, Li H, Sinha D, Tuma RF, et al. (2013) P1 and P2' site mutations convert protease nexin-2 from a factor XIa inhibitor to a plasmin inhibitor. J Biochem 153: 221–231. 10.1093/jb/mvs133 PubMed DOI PMC
Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, et al. (2006) Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem 281: 26298–26307. PubMed
Assumpcao TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM (2010) Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 285: 39001–39012. 10.1074/jbc.M110.152835 PubMed DOI PMC
Waisberg M, Molina-Cruz A, Mizurini DM, Gera N, Sousa BC, et al. (2014) Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 10: e1004338 10.1371/journal.ppat.1004338 PubMed DOI PMC
Mizurini DM, Francischetti IM, Andersen JF, Monteiro RQ (2010) Nitrophorin 2, a factor IX(a)-directed anticoagulant, inhibits arterial thrombosis without impairing haemostasis. Thromb Haemost 104: 1116–1123. 10.1160/TH10.1160/TH10-03-0186 PubMed DOI PMC
Huntington JA (2014) Natural inhibitors of thrombin. Thromb Haemost 111: 583–589. 10.1160/TH13-10-0811 PubMed DOI
Gailani D, Bane CE, Gruber A (2015) Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 13: 1383–1395. 10.1111/jth.13005 PubMed DOI PMC
Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126: 582–588. 10.1182/blood-2014-08-531582 PubMed DOI PMC
Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, et al. (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16: 887–896. 10.1038/nm.2184 PubMed DOI
Ruf W, Ruggeri ZM (2010) Neutrophils release brakes of coagulation. Nat Med 16: 851–852. 10.1038/nm0810-851 PubMed DOI
Syrovets T, Lunov O, Simmet T (2012) Plasmin as a proinflammatory cell activator. J Leukoc Biol 92: 509–519. 10.1189/jlb.0212056 PubMed DOI
Faraday N, Schunke K, Saleem S, Fu J, Wang B, et al. (2013) Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils. PLoS One 8: e71447 10.1371/journal.pone.0071447 PubMed DOI PMC
Chmelar J, Oliveira CJ, Rezacova P, Francischetti IM, Kovarova Z, et al. (2011) A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117: 736–744. 10.1182/blood-2010-06-293241 PubMed DOI PMC
Higuchi DA, Wun TC, Likert KM, Broze GJ Jr. (1992) The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 79: 1712–1719. PubMed
Mizurini DM, Francischetti IM, Monteiro RQ (2013) Aegyptin inhibits collagen-induced coagulation activation in vitro and thromboembolism in vivo. Biochem Biophys Res Commun 436: 235–239. 10.1016/j.bbrc.2013.05.082 PubMed DOI
Barros VC, Assumpcao JG, Cadete AM, Santos VC, Cavalcante RR, et al. (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4: e6047 10.1371/journal.pone.0006047 PubMed DOI PMC
Paim RM, Araujo RN, Soares AC, Lemos LC, Tanaka AS, et al. (2011) Influence of the intestinal anticoagulant in the feeding performance of triatomine bugs (Hemiptera; Reduviidae). Int J Parasitol 41: 765–773. 10.1016/j.ijpara.2011.01.014 PubMed DOI
Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3: 1800–1814. PubMed
Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123: 2768–2776. 10.1182/blood-2013-10-463646 PubMed DOI PMC
Redecha P, Tilley R, Tencati M, Salmon JE, Kirchhofer D, et al. (2007) Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110: 2423–2431. PubMed PMC
Diaz JA, Obi AT, Myers DD Jr., Wrobleski SK, Henke PK, et al. (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32: 556–562. 10.1161/ATVBAHA.111.244608 PubMed DOI PMC
Sojka D, Franta Z, Horn M, Caffrey CR, Mares M, et al. (2013) New insights into the machinery of blood digestion by ticks. Trends Parasitol 29: 276–285. 10.1016/j.pt.2013.04.002 PubMed DOI
Horn F, dos Santos PC, Termignoni C (2000) Boophilus microplus anticoagulant protein: an antithrombin inhibitor isolated from the cattle tick saliva. Arch Biochem Biophys 384: 68–73. PubMed
Ciprandi A, de Oliveira SK, Masuda A, Horn F, Termignoni C (2006) Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor. Exp Parasitol 114: 40–46. PubMed
Xu T, Lew-Tabor A, Rodriguez-Valle M (2015) Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis. PubMed
Choumet V, Attout T, Chartier L, Khun H, Sautereau J, et al. (2012) Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice. PLoS One 7: e50464 10.1371/journal.pone.0050464 PubMed DOI PMC
Soares AC, Araujo RN, Carvalho-Tavares J, Gontijo Nde F, Pereira MH (2014) Intravital microscopy and image analysis of Rhodnius prolixus (Hemiptera: Reduviidae) hematophagy: the challenge of blood intake from mouse skin. Parasitol Int 63: 229–236. 10.1016/j.parint.2013.07.001 PubMed DOI
Krenn HW, Aspock H (2012) Form, function and evolution of the mouthparts of blood-feeding Arthropoda. Arthropod Struct Dev 41: 101–118. 10.1016/j.asd.2011.12.001 PubMed DOI
RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks