Ixonnexin from Tick Saliva Promotes Fibrinolysis by Interacting with Plasminogen and Tissue-Type Plasminogen Activator, and Prevents Arterial Thrombosis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
ZIA AI000810
Intramural NIH HHS - United States
ZIA AI000810
NIAID NIH HHS - United States
PubMed
29555911
PubMed Central
PMC5859130
DOI
10.1038/s41598-018-22780-1
PII: 10.1038/s41598-018-22780-1
Knihovny.cz E-zdroje
- MeSH
- arteriální okluzní nemoci chemicky indukované patologie prevence a kontrola MeSH
- chloridy toxicita MeSH
- fibrinolýza účinky léků MeSH
- klíšťata metabolismus MeSH
- myši MeSH
- noxy toxicita MeSH
- plazminogen metabolismus MeSH
- slinné proteiny a peptidy farmakologie MeSH
- sliny metabolismus MeSH
- tkáňový aktivátor plazminogenu metabolismus MeSH
- trombóza chemicky indukované patologie prevence a kontrola MeSH
- železité sloučeniny toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- chloridy MeSH
- ferric chloride MeSH Prohlížeč
- noxy MeSH
- plazminogen MeSH
- slinné proteiny a peptidy MeSH
- tkáňový aktivátor plazminogenu MeSH
- železité sloučeniny MeSH
Tick saliva is a rich source of modulators of vascular biology. We have characterized Ixonnexin, a member of the "Basic-tail" family of salivary proteins from the tick Ixodes scapularis. Ixonnexin is a 104 residues (11.8 KDa), non-enzymatic basic protein which contains 3 disulfide bonds and a C-terminal rich in lysine. It is homologous to SALP14, a tick salivary FXa anticoagulant. Ixonnexin was produced by ligation of synthesized fragments (51-104) and (1-50) followed by folding. Ixonnexin, like SALP14, interacts with FXa. Notably, Ixonnexin also modulates fibrinolysis in vitro by a unique salivary mechanism. Accordingly, it accelerates plasminogen activation by tissue-type plasminogen activator (t-PA) with Km 100 nM; however, it does not affect urokinase-mediated fibrinolysis. Additionally, lysine analogue ε-aminocaproic acid inhibits Ixonnexin-mediated plasmin generation implying that lysine-binding sites of Kringle domain(s) of plasminogen or t-PA are involved in this process. Moreover, surface plasmon resonance experiments shows that Ixonnexin binds t-PA, and plasminogen (KD 10 nM), but not urokinase. These results imply that Ixonnexin promotes fibrinolysis by supporting the interaction of plasminogen with t-PA through formation of an enzymatically productive ternary complex. Finally, in vivo experiments demonstrates that Ixonnexin inhibits FeCl3-induced thrombosis in mice. Ixonnexin emerges as novel modulator of fibrinolysis which may also affect parasite-vector-host interactions.
Institute of Medical Biochemistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
Laboratory of Malaria and Vector Research NIAID National Institutes of Health Bethesda USA
Rhode Island Center for Vector Borne Disease University of Rhode Island Kingston Rhode Island USA
Zobrazit více v PubMed
Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26:41–48. doi: 10.1161/01.ATV.0000193624.28251.83. PubMed DOI
Broze GJ., Jr. Tissue factor pathway inhibitor and the revised theory of coagulation. Annu Rev Med. 1995;46:103–112. doi: 10.1146/annurev.med.46.1.103. PubMed DOI
Collen D, Lijnen HR. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol. 2009;29:1151–1155. doi: 10.1161/ATVBAHA.108.179655. PubMed DOI
Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982;257:2912–2919. PubMed
Docagne F, Parcq J, Lijnen R, Ali C, Vivien D. Understanding the functions of endogenous and exogenous tissue-type plasminogen activator during stroke. Stroke. 2015;46:314–320. doi: 10.1161/STROKEAHA.114.006698. PubMed DOI
Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost. 2015;13(Suppl 1):S98–105. doi: 10.1111/jth.12935. PubMed DOI
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24. doi: 10.1016/j.blre.2014.09.003. PubMed DOI PMC
Medcalf RL. What drives “fibrinolysis”? Hamostaseologie. 2015;35:303–310. doi: 10.5482/HAMO-14-10-0050. PubMed DOI
Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003;48:73–88. doi: 10.1146/annurev.ento.48.060402.102812. PubMed DOI
Louw, E., van der Merwe, N. A., Neitz, A. W. & Maritz-Olivier, C. Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol (2012). PubMed
Hovius JW, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med. 2008;5:e43. doi: 10.1371/journal.pmed.0050043. PubMed DOI PMC
Koh CY, Kini RM. Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost. 2009;102:437–453. PubMed
Francischetti IM. Platelet aggregation inhibitors from hematophagous animals. Toxicon. 2010;56:1130–1144. doi: 10.1016/j.toxicon.2009.12.003. PubMed DOI PMC
Mans, B. J., & Francischetti, I. M. B. Sialomic perspectives on the evolution of blood-feeding behavior in arthropods: future therapeutics by natural design. Toxins and Hemostasis. From bench to bedside. Eds Kini, R. M., Clemetson, K. J., Markland, F. S., McLane, M. A., Morita, T., 21–44. Springer, New York (2010).
Steen NA, Barker SC, Alewood PF. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 2006;47:1–20. doi: 10.1016/j.toxicon.2005.09.010. PubMed DOI
Francischetti IM, Mather TN, Ribeiro JM. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun. 2003;305:869–875. doi: 10.1016/S0006-291X(03)00857-X. PubMed DOI PMC
Decrem Y, et al. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J. 2008;275:1485–1499. doi: 10.1111/j.1742-4658.2008.06308.x. PubMed DOI
Arolas JL, et al. A carboxypeptidase inhibitor from the tick Rhipicephalus bursa: isolation, cDNA cloning, recombinant expression, and characterization. J Biol Chem. 2005;280:3441–3448. doi: 10.1074/jbc.M411086200. PubMed DOI
Diaz-Martin V, Manzano-Roman R, Oleaga A, Encinas-Grandes A, Perez-Sanchez R. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol. 2013;191:301–314. doi: 10.1016/j.vetpar.2012.09.019. PubMed DOI
Kazimirova M, et al. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol. 2017;7:339. doi: 10.3389/fcimb.2017.00339. PubMed DOI PMC
Simo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Vieira ML, Nascimento AL. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol. 2016;42:573–587. PubMed
Degen JL, Bugge TH, Goguen JD. Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost. 2007;5(Suppl 1):24–31. doi: 10.1111/j.1538-7836.2007.02519.x. PubMed DOI
Nogueira SV, Smith AA, Qin JH, Pal U. A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Infect Immun. 2012;80:82–90. doi: 10.1128/IAI.05671-11. PubMed DOI PMC
Toledo, A., Coleman, J. L., Kuhlow, C. J., Crowley, J. T. & Benach, J. L. The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun80 (2012). PubMed PMC
Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am. 2008;22:217–234. doi: 10.1016/j.idc.2007.12.013. PubMed DOI PMC
Coleman JL, et al. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell. 1997;89:1111–1119. doi: 10.1016/S0092-8674(00)80298-6. PubMed DOI
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Ribeiro JM, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
Valenzuela JG, et al. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol. 2002;205:2843–2864. PubMed
Narasimhan S, et al. A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect Mol Biol. 2002;11:641–650. doi: 10.1046/j.1365-2583.2002.00375.x. PubMed DOI
Schuijt, T. J. et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe10 (2011). PubMed PMC
Krishnaswamy S. Exosite-driven substrate specificity and function in coagulation. J Thromb Haemost. 2005;3:54–67. doi: 10.1111/j.1538-7836.2004.01021.x. PubMed DOI
Rezaie AR. Heparin-binding exosite of factor Xa. Trends Cardiovasc Med. 2000;10:333–338. doi: 10.1016/S1050-1738(01)00070-6. PubMed DOI
Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129:307–321. doi: 10.1111/j.1365-2141.2005.05444.x. PubMed DOI
Schwarz A, et al. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 2013;27:4745–4756. doi: 10.1096/fj.13-232140. PubMed DOI PMC
Silva MM, Thelwell C, Williams SC, Longstaff C. Regulation of fibrinolysis by C-terminal lysines operates through plasminogen and plasmin but not tissue-type plasminogen activator. J Thromb Haemost. 2012;10:2354–2360. doi: 10.1111/j.1538-7836.2012.04925.x. PubMed DOI
Arai K, et al. Role of the kringle domain in plasminogen activation with staphylokinase. J Biochem. 1998;123:71–77. doi: 10.1093/oxfordjournals.jbchem.a021918. PubMed DOI
Monteiro RQ, Rezaie AR, Ribeiro JM, Francischetti IM. Ixolaris: a factor Xa heparin-binding exosite inhibitor. Biochem J. 2005;387:871–877. doi: 10.1042/BJ20041738. PubMed DOI PMC
Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost. 2013;11:26–34. doi: 10.1111/jth.12064. PubMed DOI
Longstaff C, Williams S, Thelwell C. Fibrin binding and the regulation of plasminogen activators during thrombolytic therapy. Cardiovascular & hematological agents in medicinal chemistry. 2008;6:212–223. doi: 10.2174/187152508784871945. PubMed DOI
Madureira PA, et al. The role of the annexin A2 heterotetramer in vascular fibrinolysis. Blood. 2011;118:4789–4797. doi: 10.1182/blood-2011-06-334672. PubMed DOI
Luo M, Hajjar KA. Annexin A2 system in human biology: cell surface and beyond. Semin Thromb Hemost. 2013;39:338–346. doi: 10.1055/s-0033-1334143. PubMed DOI PMC
Epple G, et al. Prion protein stimulates tissue-type plasminogen activator-mediated plasmin generation via a lysine-binding site on kringle 2. J Thromb Haemost. 2004;2:962–968. doi: 10.1111/j.1538-7836.2004.00675.x. PubMed DOI
Francischetti IM, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JM. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99:3602–3612. doi: 10.1182/blood-2001-12-0237. PubMed DOI
Nazareth RA, et al. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb Haemost. 2006;96:7–13. PubMed PMC
Assumpcao TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM. Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem. 2010;285:39001–39012. doi: 10.1074/jbc.M110.152835. PubMed DOI PMC
Xu X, Francischetti IM, Lai R, Ribeiro JM, Andersen JF. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. J Biol Chem. 2012;287:10967–10976. doi: 10.1074/jbc.M112.340471. PubMed DOI PMC
Andersen JF, Francischetti IM, Valenzuela JG, Schuck P, Ribeiro JM. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J Biol Chem. 2003;278:4611–4617. doi: 10.1074/jbc.M211438200. PubMed DOI
Assumpcao, T. C. et al. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl Trop Dis10 (2016). PubMed PMC
Prevot PP, et al. Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus. FEBS J. 2009;276:3235–3246. doi: 10.1111/j.1742-4658.2009.07038.x. PubMed DOI
Wang W, Boffa MB, Bajzar L, Walker JB, Nesheim ME. A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activable fibrinolysis inhibitor. J Biol Chem. 1998;273:27176–27181. doi: 10.1074/jbc.273.42.27176. PubMed DOI
Kim, T. K. et al. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis10 (2016). PubMed PMC
Vora A, et al. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Sci Rep. 2017;7:44593. doi: 10.1038/srep44593. PubMed DOI PMC
Narasimhan S, et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc Natl Acad Sci USA. 2004;101:1141–1146. doi: 10.1073/pnas.0307669100. PubMed DOI PMC
Ribeiro JM, Anderson JM, Manoukis NC, Meng Z, Francischetti IM. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics. 2011;12:136. doi: 10.1186/1471-2164-12-136. PubMed DOI PMC
Francischetti IM, Anderson JM, Manoukis N, Pham VM, Ribeiro JM. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteomics. 2011;74:2892–2908. doi: 10.1016/j.jprot.2011.07.015. PubMed DOI PMC
de Castro MH, de Klerk D, Pienaar R, Rees DJG, Mans BJ. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding. Parasit Vectors. 2017;10:384. doi: 10.1186/s13071-017-2312-4. PubMed DOI PMC
Ribeiro, J. M. et al. The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food. Insect Biochem Mol Biol42 (2012). PubMed PMC
Wolberg AS, et al. Venous thrombosis. Nature reviews. Disease primers. 2015;1:15006. doi: 10.1038/nrdp.2015.6. PubMed DOI
McMahon BJ, Kwaan HC. Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. Adv Exp Med Biol. 2015;867:145–156. doi: 10.1007/978-94-017-7215-0_10. PubMed DOI
Francischetti IM, Mather TN, Ribeiro JM. Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb Haemost. 2005;94:167–174. PubMed PMC
Assumpcao TC, et al. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res. 2011;10:669–679. doi: 10.1021/pr100866h. PubMed DOI PMC
Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Synthesis of proteins by native chemical ligation. Science. 1994;266:776–779. doi: 10.1126/science.7973629. PubMed DOI
Ma D, et al. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood. 2013;122:4094–4106. doi: 10.1182/blood-2013-08-517474. PubMed DOI PMC
Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem. 1994;269:21198–21203. PubMed
Choi KS, et al. Regulation of plasmin-dependent fibrin clot lysis by annexin II heterotetramer. J Biol Chem. 2001;276:25212–25221. doi: 10.1074/jbc.M101426200. PubMed DOI
Kassam G, et al. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem. 1998;273:4790–4799. doi: 10.1074/jbc.273.8.4790. PubMed DOI
Mizurini DM, Francischetti IM, Andersen JF, Monteiro RQ. Nitrophorin 2, a factor IX(a)-directed anticoagulant, inhibits arterial thrombosis without impairing haemostasis. Thromb Haemost. 2010;104:1116–1123. doi: 10.1160/TH10-03-0186. PubMed DOI PMC
Collin N, et al. Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo. Arterioscler Thromb Vasc Biol. 2012;32:2185–2198. doi: 10.1161/ATVBAHA.112.253906. PubMed DOI PMC