Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
31772476
National Natural Science Foundation of China
31861143050
National Natural Science Foundation of China
31911530077
National Natural Science Foundation of China
82070038
National Natural Science Foundation of China
PubMed
33875135
PubMed Central
PMC8057816
DOI
10.7554/elife.64411
PII: 64411
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial peptides, cathelicidin, immunology, inflammation, microhyla heymonsivogt, mouse, sepsis,
- MeSH
- antiinfekční látky chemie farmakologie MeSH
- fylogeneze MeSH
- kathelicidiny chemie farmakologie MeSH
- proteiny obojživelníků chemie farmakologie MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- sepse farmakoterapie MeSH
- žáby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiinfekční látky MeSH
- kathelicidiny MeSH
- proteiny obojživelníků MeSH
Antimicrobial peptides form part of the innate immune response and play a vital role in host defense against pathogens. Here we report a new antimicrobial peptide belonging to the cathelicidin family, cathelicidin-MH (cath-MH), from the skin of Microhyla heymonsivogt frog. Cath-MH has a single α-helical structure in membrane-mimetic environments and is antimicrobial against fungi and bacteria, especially Gram-negative bacteria. In contrast to other cathelicidins, cath-MH suppresses coagulation by affecting the enzymatic activities of tissue plasminogen activator, plasmin, β-tryptase, elastase, thrombin, and chymase. Cath-MH protects against lipopolysaccharide (LPS)- and cecal ligation and puncture-induced sepsis, effectively ameliorating multiorgan pathology and inflammatory cytokine through its antimicrobial, LPS-neutralizing, coagulation suppressing effects as well as suppression of MAPK signaling. Taken together, these data suggest that cath-MH is an attractive candidate therapeutic agent for the treatment of septic shock.
Department of Respiratory Medicine Zhujiang Hospital Southern Medical University Guangzhou China
Faculty of Science University of South Bohemia in Ceske Budejovice Branisovska Czech Republic
Institute of Parasitology Biology Center of the Czech Academy of Sciences Branisovska Czech Republic
Zobrazit více v PubMed
Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Central European Journal of Immunology. 2015;40:225–235. doi: 10.5114/ceji.2015.51359. PubMed DOI PMC
Assumpção TC, Mizurini DM, Ma D, Monteiro RQ, Ahlstedt S, Reyes M, Kotsyfakis M, Mather TN, Andersen JF, Lukszo J, Ribeiro JMC, Francischetti IMB. Ixonnexin from tick saliva promotes fibrinolysis by interacting with plasminogen and Tissue-Type plasminogen activator, and prevents arterial thrombosis. Scientific Reports. 2018;8:4806. doi: 10.1038/s41598-018-22780-1. PubMed DOI PMC
Cao X, Wang Y, Wu C, Li X, Fu Z, Yang M, Bian W, Wang S, Song Y, Tang J, Yang X. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Scientific Reports. 2018;8:943. doi: 10.1038/s41598-018-19486-9. PubMed DOI PMC
Coorens M, Schneider VAF, de Groot AM, van Dijk A, Meijerink M, Wells JM, Scheenstra MR, Veldhuizen EJA, Haagsman HP. Cathelicidins inhibit Escherichia coli-Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. The Journal of Immunology. 2017;199:1418–1428. doi: 10.4049/jimmunol.1602164. PubMed DOI PMC
Cowtan K. The buccaneer software for automated model building. 1. tracing protein chains. Acta Crystallographica. 2006;62:1002–1011. doi: 10.1107/S0907444906022116. PubMed DOI
de Pádua Lúcio K, Rabelo ACS, Araújo CM, Brandão GC, de Souza GHB, da Silva RG, de Souza DMS, Talvani A, Bezerra FS, Cruz Calsavara AJ, Costa DC. Anti-Inflammatory and Antioxidant Properties of Black Mulberry ( Morus nigra L.) in a Model of LPS-Induced Sepsis. Oxidative Medicine and Cellular Longevity. 2018;2018:1–13. doi: 10.1155/2018/5048031. PubMed DOI PMC
Delano W. Pymol Molecular Graphics System: An open-source molecular graphics tool. 2.4.1PyMOL. 2002 https://pymol.org/2/
Dürr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2006;1758:1408–1425. doi: 10.1016/j.bbamem.2006.03.030. PubMed DOI
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallographica. Section D, Biological Crystallography. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, D'Amato G, Circo R, Orlando F, Skerlavaj B, Silvestri C, Saba V, Zanetti M, Scalise G. Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock. American Journal of Respiratory and Critical Care Medicine. 2004;169:187–194. doi: 10.1164/rccm.200307-971OC. PubMed DOI
Gould TJ, Vu TT, Stafford AR, Dwivedi DJ, Kim PY, Fox-Robichaud AE, Weitz JI, Liaw PC. Cell-Free DNA modulates clot structure and impairs fibrinolysis in Sepsis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35:2544–2553. doi: 10.1161/ATVBAHA.115.306035. PubMed DOI
Hao X, Yang H, Wei L, Yang S, Zhu W, Ma D, Yu H, Lai R. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids. 2012;43:677–685. doi: 10.1007/s00726-011-1116-7. PubMed DOI
Hu Z, Murakami T, Suzuki K, Tamura H, Reich J, Kuwahara-Arai K, Iba T, Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. International Immunology. 2016;28:245–253. doi: 10.1093/intimm/dxv113. PubMed DOI PMC
Huang M, Cai S, Su J. The pathogenesis of Sepsis and potential therapeutic targets. International Journal of Molecular Sciences. 2019;20:5376. doi: 10.3390/ijms20215376. PubMed DOI PMC
Isozaki Y, Yoshida N, Kuroda M, Handa O, Takagi T, Kokura S, Ichikawa H, Naito Y, Okanoue T, Yoshikawa T. Anti-tryptase treatment using nafamostat mesilate has a therapeutic effect on experimental colitis. Scandinavian Journal of Gastroenterology. 2006;41:944–953. doi: 10.1080/00365520500529470. PubMed DOI
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D Biological Crystallography. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
Kim TH, Yoon SJ, Lee SM. Genipin attenuates Sepsis by inhibiting Toll-like receptor signaling. Molecular Medicine. 2012;18:455–465. doi: 10.2119/molmed.2011.00308. PubMed DOI PMC
Kotsyfakis M, Sá-Nunes A, Francischetti IMB, Mather TN, Andersen JF, Ribeiro JMC. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. Journal of Biological Chemistry. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. Journal of Leukocyte Biology. 2016;100:927–941. doi: 10.1189/jlb.2MR0316-117RR. PubMed DOI PMC
Levi M, van der Poll T. Coagulation and sepsis. Thrombosis Research. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007. PubMed DOI
Li G, Jia J, Ji K, Gong X, Wang R, Zhang X, Wang H, Zang B. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats. International Journal of Molecular Medicine. 2016;38:767–775. doi: 10.3892/ijmm.2016.2665. PubMed DOI PMC
Ling G, Gao J, Zhang S, Xie Z, Wei L, Yu H, Wang Y. Cathelicidins from the bullfrog rana catesbeiana provides novel template for peptide antibiotic design. PLOS ONE. 2014;9:e93216. doi: 10.1371/journal.pone.0093216. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Long F, Vagin AA, Young P, Murshudov GN. BALBES: a molecular-replacement pipeline. Acta Crystallographica. 2008;64:125–132. doi: 10.1107/S0907444907050172. PubMed DOI PMC
Ma D, Xu X, An S, Liu H, Yang X, Andersen JF, Wang Y, Tokumasu F, Ribeiro JM, Francischetti IM, Lai R. A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets alphaIIbbeta3 or alphaVbeta3 and inhibits platelet aggregation and angiogenesis. Thrombosis and Haemostasis. 2011;105:1032–1045. doi: 10.1160/TH11-01-0029. PubMed DOI PMC
Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008;295:L379–L399. doi: 10.1152/ajplung.00010.2008. PubMed DOI PMC
McCrudden MT, Orr DF, Yu Y, Coulter WA, Manning G, Irwin CR, Lundy FT. LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. Journal of Clinical Periodontology. 2013;40:933–941. doi: 10.1111/jcpe.12141. PubMed DOI
Mu L, Zhou L, Yang J, Zhuang L, Tang J, Liu T, Wu J, Yang H. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids. 2017;49:1571–1585. doi: 10.1007/s00726-017-2449-7. PubMed DOI PMC
Mueller U, Förster R, Hellmig M, Huschmann FU, Kastner A, Malecki P, Pühringer S, Röwer M, Sparta K, Steffien M, Ühlein M, Wilk P, Weiss MS. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. The European Physical Journal Plus. 2015;130:141. doi: 10.1140/epjp/i2015-15141-2. DOI
Murakami T, Obata T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. Antimicrobial cathelicidin polypeptide CAP11 suppresses the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. International Immunology. 2009;21:905–912. doi: 10.1093/intimm/dxp057. PubMed DOI
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Qi RH, Chen Y, Guo ZL, Zhang F, Fang Z, Huang K, Hn Y, Wang YP. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zoological Research. 2019;40:94–101. doi: 10.24272/j.issn.2095-8137.2018.062. PubMed DOI PMC
Qin X, Zhu G, Huang L, Zhang W, Huang Y, Xi X. LL-37 and its analog FF/CAP18 attenuate neutrophil migration in sepsis-induced acute lung injury. Journal of Cellular Biochemistry. 2019;120:4863–4871. doi: 10.1002/jcb.27641. PubMed DOI
Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental Sepsis by cecal ligation and puncture. Nature Protocols. 2009;4:31–36. doi: 10.1038/nprot.2008.214. PubMed DOI PMC
Salomao R, Brunialti MK, Rapozo MM, Baggio-Zappia GL, Galanos C, Freudenberg M. Bacterial sensing, cell signaling, and modulation of the immune response during Sepsis. Shock. 2012;38:227–242. doi: 10.1097/SHK.0b013e318262c4b0. PubMed DOI
Sancho-Vaello E, François P, Bonetti EJ, Lilie H, Finger S, Gil-Ortiz F, Gil-Carton D, Zeth K. Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species. Scientific Reports. 2017;7:15371. doi: 10.1038/s41598-017-14206-1. PubMed DOI PMC
Schiemann F, Brandt E, Gross R, Lindner B, Mittelstädt J, Sommerhoff CP, Schulmistrat J, Petersen F. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: counter-regulation by CXCL4. The Journal of Immunology. 2009;183:2223–2231. doi: 10.4049/jimmunol.0803587. PubMed DOI
Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. The Journal of Immunology. 2002;169:3883–3891. doi: 10.4049/jimmunol.169.7.3883. PubMed DOI
Song D, Zong X, Zhang H, Wang T, Yi H, Luan C, Wang Y. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia. International Immunopharmacology. 2015;25:141–147. doi: 10.1016/j.intimp.2015.01.017. PubMed DOI
Sparta KM, Krug M, Heinemann U, Mueller U, Weiss MS. Xdsapp2.0. Journal of Applied Crystallography. 2016;49:1085–1092. doi: 10.1107/S1600576716004416. DOI
Suzuki K, Okada H, Takemura G, Takada C, Kuroda A, Yano H, Zaikokuji R, Morishita K, Tomita H, Oda K, Matsuo S, Uchida A, Fukuta T, Sampei S, Miyazaki N, Kawaguchi T, Watanabe T, Yoshida T, Ushikoshi H, Yoshida S, Maekawa Y, Ogura S. Neutrophil elastase damages the pulmonary endothelial glycocalyx in Lipopolysaccharide-Induced experimental endotoxemia. The American Journal of Pathology. 2019;189:1526–1535. doi: 10.1016/j.ajpath.2019.05.002. PubMed DOI
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallographica. Section D, Structural Biology. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial Sepsis and septic shock. Clinical Microbiology Reviews. 2003;16:379–414. doi: 10.1128/CMR.16.3.379-414.2003. PubMed DOI PMC
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog skin innate immune defences: sensing and surviving pathogens. Frontiers in Immunology. 2018;9:3128. doi: 10.3389/fimmu.2018.03128. PubMed DOI PMC
Villar J, Cabrera-Benítez NE, Valladares F, García-Hernández S, Ramos-Nuez Á, Martín-Barrasa JL, Muros M, Kacmarek RM, Slutsky AS. Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury. Critical Care. 2015;19:138. doi: 10.1186/s13054-015-0878-9. PubMed DOI PMC
Wei L, Yang J, He X, Mo G, Hong J, Yan X, Lin D, Lai R. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. Journal of Medicinal Chemistry. 2013;56:3546–3556. doi: 10.1021/jm4004158. PubMed DOI
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: more and better reference data for improved all-atom structure validation. Protein Science. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Wu J, Yang J, Wang X, Wei L, Mi K, Shen Y, Liu T, Yang H, Mu L. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochemical Journal. 2018;475:2785–2799. doi: 10.1042/BCJ20180286. PubMed DOI PMC
Xu X, Liu W, Li W, Liu S. Anticoagulant activity of crude extract of Holotrichia diomphalia larvae. Journal of Ethnopharmacology. 2016;177:28–34. doi: 10.1016/j.jep.2015.11.015. PubMed DOI
Yang H, Lu B, Zhou D, Zhao L, Song W, Wang L. Identification of the first cathelicidin gene from skin of chinese giant salamanders Andrias davidianus with its potent antimicrobial activity. Developmental & Comparative Immunology. 2017;77:141–149. doi: 10.1016/j.dci.2017.08.002. PubMed DOI
Yu H, Cai S, Gao J, Zhang S, Lu Y, Qiao X, Yang H, Wang Y. Identification and polymorphism discovery of the cathelicidins, Lf-CATHs in ranid amphibian (Limnonectes fragilis) FEBS Journal. 2013;280:6022–6032. doi: 10.1111/febs.12521. PubMed DOI
Zeerleder S, Schroeder V, Lämmle B, Wuillemin WA, Hack CE, Kohler HP. Factor XIII in severe Sepsis and septic shock. Thrombosis Research. 2007;119:311–318. doi: 10.1016/j.thromres.2006.02.003. PubMed DOI
Zeng B, Chai J, Deng Z, Ye T, Chen W, Li D, Chen X, Chen M, Xu X. Functional characterization of a novel Lipopolysaccharide-Binding antimicrobial and Anti-Inflammatory peptide in vitro and in vivo. Journal of Medicinal Chemistry. 2018;61:10709–10723. doi: 10.1021/acs.jmedchem.8b01358. PubMed DOI
Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation