Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation

. 2024 Dec 24 ; 14 (1) : . [epub] 20241224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39858288

Grantová podpora
101090272 Horizon Europe
TQ03000264 Technology Agency of the Czech Republic
LX22NPO5102 Ministry of Education, Youth and Sports, Czech Republic
CZ.02.01.01/00/23_021/0008856 ERDF Programme Johannes Amos Comenius, Czech Republic

Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.

Zobrazit více v PubMed

Antimicrobial Peptide Database. [(accessed on 16 December 2024)]. Available online: https://aps.unmc.edu/home.

Bhattacharjya S., Zhang Z., Ramamoorthy A. LL-37: Structures, antimicrobial activity, and influence on amyloid-related diseases. Biomolecules. 2024;14:320. doi: 10.3390/biom14030320. PubMed DOI PMC

Kościuczuk E.M., Lisowski P., Jarczak J., Strzałkowska N., Jóźwik A., Horbańczuk J., Krzyżewski J., Zwierzchowski L., Bagnicka E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012;39:10957–10970. doi: 10.1007/s11033-012-1997-x. PubMed DOI PMC

Alencar-Silva T., Braga M.C., Santana G.O.S., Saldanha-Araujo F., Pogue R., Dias S.C., Franco O.L., Carvalho J.L. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol. Adv. 2018;36:2019–2031. doi: 10.1016/j.biotechadv.2018.08.005. PubMed DOI

Dijksteel G.S., Ulrich M.M.W., Middelkoop E., Boekema B.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs) Front. Microbiol. 2021;12:61697. doi: 10.3389/fmicb.2021.616979. PubMed DOI PMC

Moretta A., Scieuzo C., Petrone A.M., Salvia R., Manniello M.D., Franco A., Lucchetti D., Vassallo A., Vogel H., Sgambato A., et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 2021;11:668632. doi: 10.3389/fcimb.2021.668632. PubMed DOI PMC

Aghazadeh H., Memariani H., Ranjbar R., Pooshang Bagheri K. The activity and action mechanism of novel short selective LL-37-derived anticancer peptides against clinical isolates of Escherichia coli. Chem. Biol. Drug Des. 2019;93:75–83. doi: 10.1111/cbdd.13381. PubMed DOI

Zanetti M., Gennaro R., Romeo D. Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995;374:1–5. doi: 10.1016/0014-5793(95)01050-O. PubMed DOI

Scheenstra M.R., van Harten R.M., Veldhuizen E.J.A., Haagsman H.P., Coorens M. Cathelicidins modulate TLR-activation and inflammation. Front. Immunol. 2020;11:1137. doi: 10.3389/fimmu.2020.01137. PubMed DOI PMC

Leite M.L., Duque H.M., Rodrigues G.R., da Cunha N.B., Franco O.L. The LL-37 domain: A clue to cathelicidin immunomodulatory response? Peptides. 2023;165:171011. doi: 10.1016/j.peptides.2023.171011. PubMed DOI

Chen C., Brock R., Luh F., Chou P.J., Larrick J.W., Huang R.F., Huang T.H. The solution structure of the active domain of CAP18—A lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1995;370:46–52. doi: 10.1016/0014-5793(95)00792-8. PubMed DOI

Wang G., Narayana J.L., Mishra B., Zhang Y., Wang F., Wang C., Zarena D., Lushnikova T., Wang X. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. Adv. Exp. Med. Biol. 2019;1117:215–240. doi: 10.1007/978-981-13-3588-4_12. PubMed DOI

Wang G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 2008;283:32637–32643. doi: 10.1074/jbc.M805533200. PubMed DOI

Wang G., Mishra B., Epand R.F., Epand R.M. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta. 2014;1838:2160–2172. doi: 10.1016/j.bbamem.2014.01.016. PubMed DOI PMC

Wang G., Elliott M., Cogen A.L., Ezell E.L., Gallo R.L., Hancock R.E. Structure, dynamics, and antimicrobial and immune modulatory activities of human LL-23 and its single-residue variants mutated on the basis of homologous primate cathelicidins. Biochemistry. 2012;51:653–664. doi: 10.1021/bi2016266. PubMed DOI PMC

Xhindoli D., Pacor S., Benincasa M., Scocchi M., Gennaro R., Tossi A. The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta. 2016;1858:546–566. doi: 10.1016/j.bbamem.2015.11.003. PubMed DOI

Baumann A., Kiener M.S., Haigh B., Perreten V., Summerfield A. Differential ability of bovine antimicrobial cathelicidins to mediate nucleic acid sensing by epithelial cells. Front. Immunol. 2017;8:59. doi: 10.3389/fimmu.2017.00059. PubMed DOI PMC

Gudmundsson G.H., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 1996;238:325–332. doi: 10.1111/j.1432-1033.1996.0325z.x. PubMed DOI

Sørensen O.E., Gram L., Johnsen A.H., Andersson E., Bangsbøll S., Tjabringa G.S., Hiemstra P.S., Malm J., Egesten A., Borregaard N. Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: A novel mechanism of generating antimicrobial peptides in vagina. J. Biol. Chem. 2003;278:28540–28546. doi: 10.1074/jbc.M301608200. Erratum in J. Biol. Chem. 2006, 281, 12999. PubMed DOI

Yamasaki K., Schauber J., Coda A., Lin H., Dorschner R.A., Schechter N.M., Bonnart C., Descargues P., Hovnanian A., Gallo R.L. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 2006;20:2068–2080. doi: 10.1096/fj.06-6075com. PubMed DOI

Murakami M., Lopez-Garcia B., Braff M., Dorschner R.A., Gallo R.L. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol. 2004;172:3070–3077. doi: 10.4049/jimmunol.172.5.3070. PubMed DOI

Murakami M., Kameda K., Tsumoto H., Tsuda T., Masuda K., Utsunomiya R., Mori H., Miura Y., Sayama K. TLN-58, an additional hCAP18 processing form, found in the lesion vesicle of palmoplantar pustulosis in the skin. J. Investig. Dermatol. 2017;137:322–331. doi: 10.1016/j.jid.2016.07.044. PubMed DOI

Zelezetsky I., Pontillo A., Puzzi L., Antcheva N., Segat L., Pacor S., Crovella S., Tossi A. Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J. Biol. Chem. 2006;281:19861–19871. doi: 10.1074/jbc.M511108200. PubMed DOI

Zhao C., Nguyen T., Boo L.M., Hong T., Espiritu C., Orlov D., Wang W., Waring A., Lehrer R.I. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob. Agents Chemother. 2001;45:2695–2702. doi: 10.1128/AAC.45.10.2695-2702.2001. PubMed DOI PMC

Romeo D., Skerlavaj B., Bolognesi M., Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 1988;263:9573–9575. doi: 10.1016/S0021-9258(19)81553-3. PubMed DOI

Gennaro R., Skerlavaj B., Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 1989;57:3142–3146. doi: 10.1128/iai.57.10.3142-3146.1989. PubMed DOI PMC

Skerlavaj B., Gennaro R., Bagella L., Merluzzi L., Risso A., Zanetti M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem. 1996;271:28375–28381. doi: 10.1074/jbc.271.45.28375. PubMed DOI

Scocchi M., Wang S., Zanetti M. Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett. 1997;417:311–315. doi: 10.1016/S0014-5793(97)01310-0. PubMed DOI

Selsted M.E., Novotny M.J., Morris W.L., Tang Y.Q., Smith W., Cullor J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 1992;267:4292–4295. doi: 10.1016/S0021-9258(18)42830-X. PubMed DOI

Anderson R.C., Yu P.L. Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem. Biophys. Res. Commun. 2003;312:1139–1146. doi: 10.1016/j.bbrc.2003.11.045. Erratum in Biochem. Biophys. Res. Commun. 2004, 315, 246. PubMed DOI

Yang L., Hang B.L., Xu Y.Z., Wang L., Xia X.J., Dong M.M. Biological activity of a novel bovine-borne antimicrobial peptide BSN-37. Chin. J. Vet. Sci. 2018;38:2088–2093. (In Chinese)

Brahma B., Patra M.C., Karri S., Chopra M., Mishra P., De B.C., Kumar S., Mahaty S., Thakur K., Poluri K.M., et al. Diversity, antimicrobial action and structure-activity relationship of buffalo cathelicidins. PLoS ONE. 2015;10:e0144741. doi: 10.1371/journal.pone.0144741. PubMed DOI PMC

Scocchi M., Bontempo D., Boscolo S., Tomasinsig L., Giulotto E., Zanetti M. Novel cathelicidins in horse leukocytes. FEBS Lett. 1999;457:459–464. doi: 10.1016/S0014-5793(99)01097-2. PubMed DOI

Lu Z., Wang Y., Zhai L., Che Q., Wang H., Du S., Wang D., Feng F., Liu J., Lai R., et al. Novel cathelicidin-derived antimicrobial peptides from Equus asinus. FEBS J. 2010;277:2329–2339. doi: 10.1111/j.1742-4658.2010.07648.x. PubMed DOI

Lawyer C., Pai S., Watabe M., Borgia P., Mashimo T., Eagleton L., Watabe K. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. 1996;390:95–98. doi: 10.1016/0014-5793(96)00637-0. PubMed DOI

Tamamura H., Murakami T., Horiuchi S., Sugihara K., Otaka A., Takada W., Ibuka T., Waki M., Yamamoto N., Fuji N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem. Pharm. Bull. 1995;43:853–858. doi: 10.1248/cpb.43.853. PubMed DOI

Storici P., Zanetti M. A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence. Biochem. Biophys. Res. Commun. 1993;196:1363–1368. doi: 10.1006/bbrc.1993.2403. PubMed DOI

Kokryakov V.N., Harwig S.S., Panyutich E.A., Shevchenko A.A., Aleshina G.M., Shamova O.V., Korneva H.A., Lehrer R.I. Protegrins: Leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993;327:231–236. doi: 10.1016/0014-5793(93)80175-T. PubMed DOI

Zhao C., Liu L., Lehrer R.I. Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett. 1994;346:285–288. doi: 10.1016/0014-5793(94)00493-5. PubMed DOI

Zhao C., Ganz T., Lehrer R.I. The structure of porcine protegrin genes. FEBS Lett. 1995;368:197–202. doi: 10.1016/0014-5793(95)00633-K. PubMed DOI

Zanetti M., Storici P., Tossi A., Scocchi M., Gennaro R. Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells. J. Biol. Chem. 1994;269:7855–7858. doi: 10.1016/S0021-9258(17)37128-4. PubMed DOI

Tossi A., Scocchi M., Zanetti M., Storici P., Gennaro R. PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur. J. Biochem. 1995;228:941–946. doi: 10.1111/j.1432-1033.1995.tb20344.x. PubMed DOI

Agerberth B., Lee J.Y., Bergman T., Carlquist M., Boman H.G., Mutt V., Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 1991;202:849–854. doi: 10.1111/j.1432-1033.1991.tb16442.x. PubMed DOI

Harwig S.S., Kokryakov V.N., Swiderek K.M., Aleshina G.M., Zhao C., Lehrer R.I. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 1995;362:65–69. doi: 10.1016/0014-5793(95)00210-Z. PubMed DOI

Zhao C., Ganz T., Lehrer R.I. Structures of genes for two cathelin-associated antimicrobial peptides: Prophenin-2 and PR-39. FEBS Lett. 1995;376:130–134. doi: 10.1016/0014-5793(95)01237-3. PubMed DOI

Jeon H., Le M.T., Ahn B., Cho H.S., Le V.C.Q., Yum J., Hong K., Kim J.H., Song H., Park C. Copy number variation of PR-39 cathelicidin, and identification of PR-35, a natural variant of PR-39 with reduced mammalian cytotoxicity. Gene. 2019;692:88–93. doi: 10.1016/j.gene.2018.12.065. PubMed DOI

Bagella L., Scocchi M., Zanetti M. cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett. 1995;376:225–228. doi: 10.1016/0014-5793(95)01285-3. PubMed DOI

Mahoney M.M., Lee A.Y., Brezinski-Caliguri D.J., Huttner K.M. Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS Lett. 1995;377:519–522. doi: 10.1016/0014-5793(95)01390-3. PubMed DOI

Travis S.M., Anderson N.N., Forsyth W.R., Espiritu C., Conway B.D., Greenberg E.P., McCray P.B., Jr., Lehrer R.I., Welsh M.J., Tack B.F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun. 2000;68:2748–2755. doi: 10.1128/IAI.68.5.2748-2755.2000. PubMed DOI PMC

Huttner K.M., Lambeth M.R., Burkin H.R., Burkin D.J., Broad T.E. Localization and genomic organization of sheep antimicrobial peptide genes. Gene. 1998;206:85–91. doi: 10.1016/S0378-1119(97)00569-6. PubMed DOI

Shamova O.V., Orlov D.S., Zharkova M.S., Balandin S.V., Yamschikova E.V., Knappe D., Hoffman R., Kokryakov V.N., Ovchinnikova T.V. Minibactenecins ChBac7.Nα and ChBac7.Nβ—Antimicrobial peptides from leukocytes of the goat Capra hircus. Acta Naturae. 2016;8:136–146. doi: 10.32607/20758251-2016-8-3-136-146. PubMed DOI PMC

Shamova O., Orlov D., Stegemann C., Czihal P., Hoffmann R., Brogden K., Kolodkin N., Sakuta G., Tossi A., Sahl H.G., et al. ChBac3.4: A novel proline-rich antimicrobial peptide from goat leukocytes. Int. J. Pept. Res. Ther. 2009;15:31–42. doi: 10.1007/s10989-008-9159-7. DOI

Shamova O., Brogden K.A., Zhao C., Nguyen T., Kokryakov V.N., Lehrer R.I. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 1999;67:4106–4111. doi: 10.1128/IAI.67.8.4106-4111.1999. PubMed DOI PMC

Panteleev P.V., Safronova V.N., Kruglikov R.N., Bolosov I.A., Bogdanov I.V., Ovchinnikova T.V. A novel proline-rich cathelicidin from the Alpaca vicugna pacos with potency to combat antibiotic-resistant bacteria: Mechanism of action and the functional role of the C-terminal region. Membranes. 2022;12:515. doi: 10.3390/membranes12050515. PubMed DOI PMC

Treffers C., Chen L., Anderson R.C., Yu P.L. Isolation and characterisation of antimicrobial peptides from deer neutrophils. Int. J. Antimicrob. Agents. 2005;26:165–169. doi: 10.1016/j.ijantimicag.2005.05.001. PubMed DOI

Yan X., Zhong J., Liu H., Liu C., Zhang K., Lai R. The cathelicidin-like peptide derived from panda genome is a potential antimicrobial peptide. Gene. 2012;492:368–374. doi: 10.1016/j.gene.2011.11.009. PubMed DOI

Sang Y., Ortega M.T., Rune K., Xiau W., Zhang G., Soulages J.L., Lushington G.H., Fang J., Williams T.D., Blecha F., et al. Canine cathelicidin (K9CATH): Gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Dev. Comp. Immunol. 2007;31:1278–1296. doi: 10.1016/j.dci.2007.03.007. PubMed DOI

Peel E., Cheng Y., Djordjevic J.T., Fox S., Sorrell T.C., Belov K. Cathelicidins in the tasmanian devil (Sarcophilus harrisii) Sci. Rep. 2016;6:35019. doi: 10.1038/srep35019. PubMed DOI PMC

Leonard B.C., Chu H., Johns J.L., Gallo R.L., Moore P.F., Marks S.L., Bevins C.L. Expression and activity of a novel cathelicidin from domestic cats. PLoS ONE. 2011;6:e18756. doi: 10.1371/journal.pone.0018756. PubMed DOI PMC

Wang J., Wong E.S., Whitley J.C., Li J., Stringer J.M., Short K.R., Renfree M.B., Belov K., Cocks B.G. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE. 2011;6:e24030. doi: 10.1371/journal.pone.0024030. PubMed DOI PMC

Peel E., Cheng Y., Djordjevic J.T., Kuhn M., Sorrell T., Belov K. Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. Microbiology. 2017;163:1457–1465. doi: 10.1099/mic.0.000536. PubMed DOI

Cho H.S., Yum J., Larivière A., Lévêque N., Le Q.V.C., Ahn B., Jeon H., Hong K., Soundrarajan N., Kim J.H., et al. Opossum cathelicidins exhibit antimicrobial activity against a broad spectrum of pathogens including west Nile virus. Front. Immunol. 2020;11:347. doi: 10.3389/fimmu.2020.00347. PubMed DOI PMC

Peel E., Cheng Y., Djordjevic J.T., O’Meally D., Thomas M., Kuhn M., Sorrell T.C., Huston W.M., Belov K. Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLoS ONE. 2021;16:e0249658. doi: 10.1371/journal.pone.0249658. PubMed DOI PMC

Choi M., Cho H.S., Ahn B., Prathap S., Nagasundarapandian S., Park C. Genomewide analysis and biological characterization of cathelicidins with potent antimicrobial activity and low cytotoxicity from three bat species. Antibiotics. 2022;11:989. doi: 10.3390/antibiotics11080989. PubMed DOI PMC

Otazo-Pérez A., Asensio-Calavia P., González-Acosta S., Baca-González V., López M.R., Morales-delaNuez A., Pérez de la Lastra J.M. Antimicrobial activity of cathelicidin-derived peptide from the iberian mole Talpa occidentalis. Vaccines. 2022;10:1105. doi: 10.3390/vaccines10071105. PubMed DOI PMC

Cho H.S., Soundrarajan N., Le Van Chanh Q., Jeon H., Cha S.Y., Kang M., Ahn B.Y., Hong K., Song H., Kim J.H., et al. The novel cathelicidin of naked mole rats, Hg-CATH, showed potent antimicrobial activity and low cytotoxicity. Gene. 2018;676:164–170. doi: 10.1016/j.gene.2018.07.005. PubMed DOI

Pestonjamasp V.K., Huttner K.H., Gallo R.L. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides. 2001;22:1643–1650. doi: 10.1016/S0196-9781(01)00499-5. PubMed DOI

Larrick J.W., Hirata M., Shimomoura Y., Yoshida M., Zheng H., Zhong J., Wright S.C. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob. Agents Chemother. 1993;37:2534–2539. doi: 10.1128/AAC.37.12.2534. PubMed DOI PMC

Li C., Cai Y., Luo L., Tian G., Wang X., Yan A., Wang L., Wu S., Wu Z., Zhang T., et al. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience. 2024;27:110404. doi: 10.1016/j.isci.2024.110404. PubMed DOI PMC

Yomogida S., Nagaoka I., Yamashita T. Comparative studies on the extracellular release and biological activity of guinea pig neutrophil cationic antibacterial polypeptide of 11 kDa (CAP11) and defensins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997;116:99–107. doi: 10.1016/S0305-0491(96)00222-2. PubMed DOI

Wang J., Zhang M., Li C., Liu M., Qi Y., Xie X., Zhou C., Ma L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput. Struct. Biotechnol. J. 2024;23:2388–2406. doi: 10.1016/j.csbj.2024.05.020. PubMed DOI PMC

Xiao Y., Cai Y., Bommineni Y.R., Fernando S.C., Prakash O., Gilliland S.E., Zhang G. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J. Biol. Chem. 2006;281:2858–2867. doi: 10.1074/jbc.M507180200. PubMed DOI

van Dijk A., Veldhuizen E.J., van Asten A.J., Haagsman H.P. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet. Immunol. Immunopathol. 2005;106:321–327. doi: 10.1016/j.vetimm.2005.03.003. PubMed DOI

Goitsuka R., Chen C.L., Benyon L., Asano Y., Kitamura D., Cooper M.D. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proc. Natl. Acad. Sci. USA. 2007;104:15063–15068. doi: 10.1073/pnas.0707037104. PubMed DOI PMC

Yu H., Lu Y., Qiao X., Wei L., Fu T., Cai S., Wang C., Liu X., Zhong S., Wang Y. Novel cathelicidins from pigeon highlights evolutionary convergence in avain cathelicidins and functions in modulation of innate immunity. Sci. Rep. 2015;5:11082. doi: 10.1038/srep11082. PubMed DOI PMC

Gao W., Xing L., Qu P., Tan T., Yang N., Li D., Chen H., Feng X. Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. Sci. Rep. 2015;5:17260. doi: 10.1038/srep17260. PubMed DOI PMC

Wang Y., Lu Z., Feng F., Zhu W., Guang H., Liu J., He W., Chi L., Li W., Yu H. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus. Dev. Comp. Immunol. 2011;35:314–322. doi: 10.1016/j.dci.2010.10.004. PubMed DOI

Feng F., Chen C., Zhu W., He W., Guang H., Li Z., Wang D., Liu J., Chen M., Wang Y., et al. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix. FEBS J. 2011;278:1573–1584. doi: 10.1111/j.1742-4658.2011.08080.x. PubMed DOI

Kannoth S., Ali N., Prasanth G.K., Arvind K., Mohany M., Hembrom P.S., Sadanandan S., Vasu D.A., Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci. Rep. 2023;13:18728. doi: 10.1038/s41598-023-45875-w. PubMed DOI PMC

Broekman D.C., Frei D.M., Gylfason G.A., Steinarsson A., Jörnvall H., Agerberth B., Gudmundsson G.H., Maier V.H. Cod cathelicidin: Isolation of the mature peptide, cleavage site characterisation and developmental expression. Dev. Comp. Immunol. 2011;35:296–303. doi: 10.1016/j.dci.2010.10.002. PubMed DOI

Lu X.J., Chen J., Huang Z.A., Shi Y.H., Lu J.N. Identification and characterization of a novel cathelicidin from ayu, Plecoglossus altivelis. Fish Shellfish Immunol. 2011;31:52–57. doi: 10.1016/j.fsi.2011.03.005. PubMed DOI

Li Z., Zhang S., Gao J., Guang H., Tian Y., Zhao Z., Wang Y., Yu H. Structural and functional characterization of CATH_BRALE, the defense molecule in the ancient salmonoid, Brachymystax lenok. Fish Shellfish Immunol. 2013;34:1–7. doi: 10.1016/j.fsi.2012.07.004. PubMed DOI

Uzzell T., Stolzenberg E.D., Shinnar A.E., Zasloff M. Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides. 2003;24:1655–1667. doi: 10.1016/j.peptides.2003.08.024. PubMed DOI

Chang C.I., Pleguezuelos O., Zhang Y.A., Zou J., Secombes C.J. Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss. Infect. Immun. 2005;73:5053–5064. doi: 10.1128/IAI.73.8.5053-5064.2005. PubMed DOI PMC

Zhang X.J., Zhang X.Y., Zhang N., Guo X., Peng K.S., Wu H., Lu L.F., Wu N., Chen D.D., Li S., et al. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish. J. Immunol. 2015;194:4974–4987. doi: 10.4049/jimmunol.1500182. PubMed DOI

Zhao H., Gan T.X., Liu X.D., Jin Y., Lee W.H., Shen J.H., Zhang Y. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides. 2008;29:1685–1691. doi: 10.1016/j.peptides.2008.06.008. PubMed DOI

Wei L., Gao J., Zhang S., Wu S., Xie Z., Ling G., Kuang Y.Q., Yang Y., Yu H., Wang Y. Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J. Biol. Chem. 2015;290:16633–16652. doi: 10.1074/jbc.M115.642645. PubMed DOI PMC

Falcao C.B., de La Torre B.G., Pérez-Peinado C., Barron A.E., Andreu D., Rádis-Baptista G. Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids. 2014;46:2561–2571. doi: 10.1007/s00726-014-1801-4. PubMed DOI

Wang Y., Hong J., Liu X., Yang H., Liu R., Wu J., Wang A., Lin D., Lai R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE. 2008;3:e3217. doi: 10.1371/journal.pone.0003217. PubMed DOI PMC

Cai S., Qiao X., Feng L., Shi N., Wang H., Yang H., Guo Z., Wang M., Chen Y., Wang Y., et al. Python cathelicidin CATHPb1 protects against multidrug-resistant staphylococcal infections by antimicrobial-immunomodulatory duality. J. Med. Chem. 2018;61:2075–2086. doi: 10.1021/acs.jmedchem.8b00036. PubMed DOI

Wang A., Zhang F., Guo Z., Chen Y., Zhang M., Yu H., Wang Y. Characterization of a cathelicidin from the colubrinae snake, Sinonatrix annularis. Zool. Sci. 2019;36:68–76. doi: 10.2108/zs180064. PubMed DOI

Hernández-Arvizu E.E., Silis-Moreno T.M., García-Arredondo J.A., Rodríguez-Torres A., Cervantes-Chávez J.A., Mosqueda J. Aquiluscidin, a cathelicidin from Crotalus aquilus, and the Vcn-23 derivative peptide, have anti-microbial activity against gram-negative and gram-positive bacteria. Microorganisms. 2023;11:2778. doi: 10.3390/microorganisms11112778. PubMed DOI PMC

Cai Y., Wang X., Zhang T., Yan A., Luo L., Li C., Tian G., Wu Z., Wang X., Shen D., et al. Rational design of a potent antimicrobial peptide based on the active region of a gecko cathelicidin. ACS Infect. Dis. 2024;10:951–960. doi: 10.1021/acsinfecdis.3c00575. PubMed DOI

Cai S., Meng K., Liu P., Cao X., Wang G. Suppressive effects of gecko cathelicidin on biofilm formation and cariogenic virulence factors of Streptococcus mutans. Arch. Oral Biol. 2021;129:105205. doi: 10.1016/j.archoralbio.2021.105205. PubMed DOI

Shi N., Cai S., Gao J., Qiao X., Yang H., Wang Y., Yu H. Roles of polymorphic cathelicidins in innate immunity of soft-shell turtle, Pelodiscus sinensis. Dev. Comp. Immunol. 2019;92:179–192. doi: 10.1016/j.dci.2018.11.010. PubMed DOI

Qiao X., Yang H., Gao J., Zhang F., Chu P., Yang Y., Zhang M., Wang Y., Yu H. Diversity, immunoregulatory action and structure-activity relationship of green sea turtle cathelicidins. Dev. Comp. Immunol. 2019;98:189–204. doi: 10.1016/j.dci.2019.05.005. PubMed DOI

Chen Y., Cai S., Qiao X., Wu M., Guo Z., Wang R., Kuang Y.Q., Yu H., Wang Y. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses. Biochem. J. 2017;474:2861–2885. doi: 10.1042/BCJ20170334. PubMed DOI

Santana F.L., Estrada K., Alford M.A., Wu B.C., Dostert M., Pedraz L., Akhoundsadegh N., Kalsi P., Haney E.F., Straus S.K., et al. Novel alligator cathelicidin As-CATH8 demonstrates anti-infective activity against clinically relevant and crocodylian bacterial pathogens. Antibiotics. 2022;11:1603. doi: 10.3390/antibiotics11111603. PubMed DOI PMC

Barksdale S.M., Hrifko E.J., van Hoek M.L. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Dev. Comp. Immunol. 2017;70:135–144. doi: 10.1016/j.dci.2017.01.011. PubMed DOI

Hao X., Yang H., Wei L., Yang S., Zhu W., Ma D., Yu H., Lai R. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids. 2012;43:677–685. doi: 10.1007/s00726-011-1116-7. PubMed DOI

Wei L., Yang J., He X., Mo G., Hong J., Yan X., Lin D., Lai R. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J. Med. Chem. 2013;56:3546–3556. doi: 10.1021/jm4004158. PubMed DOI

Yu H., Cai S., Gao J., Zhang S., Lu Y., Qiao X., Yang H., Wang Y. Identification and polymorphism discovery of the cathelicidins, Lf-CATHs in ranid amphibian (Limnonectes fragilis) FEBS J. 2013;280:6022–6032. doi: 10.1111/febs.12521. PubMed DOI

Ling G., Gao J., Zhang S., Xie Z., Wei L., Yu H., Wang Y. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design. PLoS ONE. 2014;9:e93216. doi: 10.1371/journal.pone.0093216. PubMed DOI PMC

Sun T., Zhan B., Gao Y. A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria. Gene. 2015;571:172–177. doi: 10.1016/j.gene.2015.06.034. PubMed DOI

Mu L., Zhou L., Yang J., Zhuang L., Tang J., Liu T., Wu J., Yang H. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids. 2017;49:1571–1585. doi: 10.1007/s00726-017-2449-7. PubMed DOI PMC

Qi R.H., Chen Y., Guo Z.L., Zhang F., Fang Z., Huang K., Yu H.N., Wang X.P. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zool. Res. 2019;40:94–101. doi: 10.24272/j.issn.2095-8137.2018.062. PubMed DOI PMC

Chen J., Lin Y.F., Chen J.H., Chen X., Lin Z.H. Molecular characterization of cathelicidin in tiger frog (Hoplobatrachus rugulosus): Antimicrobial activity and immunomodulatory activity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021;247:109072. doi: 10.1016/j.cbpc.2021.109072. PubMed DOI

Chai J., Chen X., Ye T., Zeng B., Zeng Q., Wu J., Kascakova B., Martins L.A., Prudnikova T., Smatanova I.K., et al. Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties. eLife. 2021;10:e64411. doi: 10.7554/eLife.64411. PubMed DOI PMC

Wang Y., Ouyang J., Luo X., Zhang M., Jiang Y., Zhang F., Zhou J., Wang Y. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev. Comp. Immunol. 2021;116:103928. doi: 10.1016/j.dci.2020.103928. PubMed DOI

Luo Q., Deng H., Yin M., Chen C., Zhou J. Novel cathelicidin antimicrobial peptides from Paa robertingeri. Ann. Res. Rev. Biol. 2019;32:1–10. doi: 10.9734/arrb/2019/v32i430093. DOI

Chen J., Zhang C.Y., Wang Y., Zhang L., Seah R.W.X., Ma L., Ding G.H. Discovery of Ll-CATH: A novel cathelicidin from the Chong’an Moustache Toad (Leptobrachium liui) with antibacterial and immunomodulatory activity. BMC Vet. Res. 2024;20:343. doi: 10.1186/s12917-024-04202-9. PubMed DOI PMC

Zheng W.C., Cheng X.Y., Tao Y.H., Mao Y.S., Lu C.P., Lin Z.H., Chen J. Assessment of the antimicrobial and immunomodulatory activity of QS-CATH, a promising therapeutic agent isolated from the Chinese spiny frogs (Quasipaa spinosa) Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2024;283:109943. doi: 10.1016/j.cbpc.2024.109943. PubMed DOI

Wu J., Yang J., Wang X., Wei L., Mi K., Shen Y., Liu T., Yang H., Mu L. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J. 2018;475:2785–2799. doi: 10.1042/BCJ20180286. PubMed DOI PMC

Shi J., Wu J., Chen Q., Shen Y., Mi K., Yang H., Mu L. A frog-derived cathelicidin peptide with dual antimicrobial and immunomodulatory activities effectively ameliorates Staphylococcus aureus-induced peritonitis in mice. ACS Infect. Dis. 2022;8:2464–2479. doi: 10.1021/acsinfecdis.2c00260. PubMed DOI

He Y., Shen Y., Feng X., Ruan S., Zhao Y., Mu L., Wu J., Yang H. Tree frog-derived cathelicidin protects mice against bacterial infection through its antimicrobial and anti-inflammatory activities and regulatory effect on phagocytes. ACS Infect. Dis. 2023;9:2252–2268. doi: 10.1021/acsinfecdis.3c00316. PubMed DOI

Shi Y., Li C., Wang M., Chen Z., Luo Y., Xia X.S., Song Y., Sun Y., Zhang A.M. Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has wound-healing therapeutic potential. ACS Omega. 2020;5:9301–9310. doi: 10.1021/acsomega.0c00189. PubMed DOI PMC

Gao F., Xu W.F., Tang L.P., Wang M.M., Wang X.J., Qian Y.C. Characteristics of cathelicidin-Bg, a novel gene expressed in the ear-side gland of Bufo gargarizans. Genet. Mol. Res. 2016;15:gmr.15038481. doi: 10.4238/gmr.15038481. PubMed DOI

Yang H., Lu B., Zhou D., Zhao L., Song W., Wang L. Identification of the first cathelicidin gene from skin of chinese giant salamanders Andrias davidianus with its potent antimicrobial activity. Dev. Comp. Immunol. 2017;77:141–149. doi: 10.1016/j.dci.2017.08.002. PubMed DOI

Eissa A., Amodeo V., Smith C.R., Diamandis E.P. Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J. Biol. Chem. 2011;286:687–706. doi: 10.1074/jbc.M110.125310. PubMed DOI PMC

Sørensen O.E., Follin P., Johnsen A.H., Calafat J., Tjabringa G.S., Hiemstra P.S., Borregaard N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97:3951–3959. doi: 10.1182/blood.V97.12.3951. PubMed DOI

Matus C.E., Ehrenfeld P., Figueroa C.D. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am. J. Physiol. Cell Physiol. 2022;323:C1070–C1087. doi: 10.1152/ajpcell.00012.2022. PubMed DOI

Niyonsaba F., Kiatsurayanon C., Chieosilapatham P., Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 2017;26:989–998. doi: 10.1111/exd.13314. PubMed DOI

Suwanchote S., Waitayangkoon P., Chancheewa B., Inthanachai T., Niwetbowornchai N., Edwards S.W., Virakul S., Thammahong A., Kiatsurayanon C., Rerknimitr P., et al. Role of antimicrobial peptides in atopic dermatitis. Int. J. Dermatol. 2022;61:532–540. doi: 10.1111/ijd.15814. PubMed DOI

Zhang Q.Y., Yan Z.B., Meng Y.M., Hong X.Y., Shao G., Ma J.J., Cheng X.R., Liu J., Kang J., Fu C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021;8:48. doi: 10.1186/s40779-021-00343-2. PubMed DOI PMC

Lin T.Y., Weibel D.B. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol. 2016;100:4255–4267. doi: 10.1007/s00253-016-7468-x. PubMed DOI

Renne M.F., de Kroon A.I.P.M. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 2018;592:1330–1345. doi: 10.1002/1873-3468.12944. PubMed DOI PMC

Huan Y., Kong Q., Mou H., Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779. PubMed DOI PMC

Li X., Zuo S., Wang B., Zhang K., Wang Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. 2022;27:2675. doi: 10.3390/molecules27092675. PubMed DOI PMC

Langham A.A., Ahmad A.S., Kaznessis Y.N. On the nature of antimicrobial activity: A model for protegrin-1 pores. J. Am. Chem. Soc. 2008;130:4338–4346. doi: 10.1021/ja0780380. PubMed DOI PMC

Bolintineanu D.S., Vivcharuk V., Kaznessis Y.N. Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int. J. Mol. Sci. 2012;13:11000–11011. doi: 10.3390/ijms130911000. PubMed DOI PMC

Lipkin R.B., Lazaridis T. Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs. J. Membr. Biol. 2015;248:469–486. doi: 10.1007/s00232-014-9759-4. PubMed DOI PMC

Hale J.D., Hancock R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti-Infect. Ther. 2007;5:951–959. doi: 10.1586/14787210.5.6.951. PubMed DOI

Mookherjee N., Anderson M.A., Haagsman H.P., Davidson D.J. Antimicrobial host defense peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020;19:311–332. doi: 10.1038/s41573-019-0058-8. PubMed DOI

Majewska M., Zamlynny V., Pieta I.S., Nowakowski R., Pieta P. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry. 2021;141:107842. doi: 10.1016/j.bioelechem.2021.107842. PubMed DOI

Shenkarev Z.O., Balandin S.V., Trunov K.I., Paramonov A.S., Sukhanov S.V., Barsukov L.I., Arseniev A.S., Ovchinnikova T.V. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: Oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry. 2011;50:6255–6265. doi: 10.1021/bi200746t. PubMed DOI

Corrêa J.A.F., Evangelista A.G., Nazareth T.D.M., Luciano F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia. 2019;8:100494. doi: 10.1016/j.mtla.2019.100494. DOI

Cardoso M.H., Meneguetti B.T., Costa B.O., Buccini D.F., Oshiro K.G.N., Preza S.L.E., Carvalho C.M.E., Migliolo L., Franco O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci. 2019;20:4877. doi: 10.3390/ijms20194877. PubMed DOI PMC

Mardirossian M., Barrière Q., Timchenko T., Müller C., Pacor S., Mergaert P., Scocchi M., Wilson D.N. Fragments of the nonlytic proline-rich antimicrobial peptide Bac5 kill Escherichia coli cells by inhibiting protein synthesis. Antimicrob. Agents Chemother. 2018;62:e00534-18. doi: 10.1128/AAC.00534-18. PubMed DOI PMC

Yang H., Fu J., Zhao Y., Shi H., Hu H., Wang H. Escherichia coli PagP enzyme-based de novo design and in vitro activity of antibacterial peptide LL-37. Med. Sci. Monit. 2017;23:2558–2564. doi: 10.12659/MSM.902095. PubMed DOI PMC

Tripathi S., Verma A., Kim E.J., White M.R., Hartshorn K.L. LL-37 modulates human neutrophil responses to influenza A virus. J. Leukoc. Biol. 2014;96:931–938. doi: 10.1189/jlb.4A1113-604RR. PubMed DOI PMC

Brice D.C., Toth Z., Diamond G. LL-37 disrupts the Kaposi’s sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antivir. Res. 2018;158:25–33. doi: 10.1016/j.antiviral.2018.07.025. PubMed DOI PMC

Sousa F.H., Casanova V., Findlay F., Stevens C., Svoboda P., Pohl J., Proudfoot L., Barlow P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides. 2017;95:76–83. doi: 10.1016/j.peptides.2017.07.013. PubMed DOI PMC

Ordonez S.R., Amarullah I.H., Wubbolts R.W., Veldhuizen E.J., Haagsman H.P. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob. Agents Chemother. 2014;58:2240–2248. doi: 10.1128/AAC.01670-13. PubMed DOI PMC

Choi K.Y., Mookherjee N. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immunol. 2012;3:149. doi: 10.3389/fimmu.2012.00149. PubMed DOI PMC

Agier J., Efenberger M., Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol. 2015;40:225–235. doi: 10.5114/ceji.2015.51359. PubMed DOI PMC

Hancock R.E., Haney E.F., Gill E.E. The immunology of host defense peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 2016;16:321–334. doi: 10.1038/nri.2016.29. PubMed DOI

Mookherjee N., Lippert D.N., Hamill P., Falsafi R., Nijnik A., Kindrachuk J., Pistolic J., Gardy J., Miri P., Naseer M., et al. Intracellular receptor for human host defense peptide LL-37 in monocytes. J. Immunol. 2009;183:2688–2696. doi: 10.4049/jimmunol.0802586. PubMed DOI

Zhang Z., Cherryholmes G., Chang F., Rose D.M., Schraufstatter I., Shively J.E. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol. 2009;39:3181–3194. doi: 10.1002/eji.200939496. PubMed DOI PMC

Zheng Y., Niyonsaba F., Ushio H., Nagaoka I., Ikeda S., Okumura K., Ogawa H. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br. J. Dermatol. 2007;157:1124–1131. doi: 10.1111/j.1365-2133.2007.08196.x. PubMed DOI

Beaumont P.E., McHugh B., Findlay E.G., Mackellar A., Mackenzie K.J., Gallo R.L., Govan J.R.W., Simpson A.J., Davidson D.J. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS ONE. 2014;9:e99029. doi: 10.1371/journal.pone.0099029. PubMed DOI PMC

Davidson D.J., Currie A.J., Reid G.S., Bowdish D.M., MacDonald K.L., Ma R.C., Hancock R.E.W., Speert D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004;172:1146–1156. doi: 10.4049/jimmunol.172.2.1146. PubMed DOI

Findlay E.G., Currie A.J., Zhang A., Ovciarikova J., Young L., Stevens H., McHugh B.J., Canel M., Gray M., Milling S.W.F., et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106. doi: 10.1080/2162402X.2019.1608106. PubMed DOI PMC

Kim S.H., Kim Y.N., Jang Y.S. Cutting edge: LL-37-mediated formyl peptide receptor-2 signaling in follicular dendritic cells contributes to B cell activation in Peyer’s patch germinal centers. J. Immunol. 2017;198:629–633. doi: 10.4049/jimmunol.1600886. PubMed DOI

Putsep K., Carlsson G., Boman H.G., Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: An observation study. Lancet. 2002;360:1144–1149. doi: 10.1016/S0140-6736(02)11201-3. PubMed DOI

Severino P., Ariga S.K., Barbeiro H.V., de Lima T.M., de Paula Silva E., Barbeiro D.F., Machado M.C.C., Nizet V., da Silva F.P. Cathelicidin-deficient mice exhibit increased survival and upregulation of key inflammatory response genes following cecal ligation and puncture. J. Mol. Med. 2017;95:995–1003. doi: 10.1007/s00109-017-1555-z. PubMed DOI

Niyonsaba F., Suzuki A., Ushio H., Nagaoka I., Ogawa H., Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 2009;160:243–249. doi: 10.1111/j.1365-2133.2008.08925.x. PubMed DOI

Kahlenberg J.M., Kaplan M.J. Little peptide, big effects: The role of LL-37 in inflammation and autoimmune disease. J. Immunol. 2013;191:4895–4901. doi: 10.4049/jimmunol.1302005. PubMed DOI PMC

Dombrowski Y., Peric M., Koglin S., Kammerbauer C., Göss C., Anz D., Simanski M., Gläser R., Harder J., Hornung V., et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med. 2011;3:82ra38. doi: 10.1126/scitranslmed.3002001. PubMed DOI PMC

Chen X., Niyonsaba F., Ushio H., Nagaoka I., Ikeda S., Okumura K., Ogawa H. Human cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation, and phosphorylates MAP kinases p38 and ERK in mast cells. J. Dermatol. Sci. 2006;43:63–66. doi: 10.1016/j.jdermsci.2006.03.001. PubMed DOI

Niyonsaba F., Ushio H., Hara M., Yokoi H., Tominaga M., Takamori K., Kajiwara N., Saito H., Nagaoka I., Ogawa H., et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol. 2010;184:3526–3534. doi: 10.4049/jimmunol.0900712. PubMed DOI

Ganguly D., Chamilos G., Lande R., Gregorio J., Meller S., Facchinetti V., Homey B., Barrat F.J., Zal T., Gilliet M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 2009;206:1983–1994. doi: 10.1084/jem.20090480. PubMed DOI PMC

Morizane S., Yamasaki K., Mühleisen B., Kotol P.F., Murakami M., Aoyama Y., Iwatsuki K., Hata T., Gallo R.L. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Investig. Dermatol. 2012;132:135–143. doi: 10.1038/jid.2011.259. PubMed DOI PMC

Smithrithee R., Niyonsaba F., Kiatsurayanon C., Ushio H., Ikeda S., Okumura K., Ogawa H. Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J. Dermatol. Sci. 2015;77:46–53. doi: 10.1016/j.jdermsci.2014.12.001. PubMed DOI

Yamasaki K., Di Nardo A., Bardan A., Murakami M., Ohtake T., Coda A., Dorschner R.A., Bonnart C., Descargues P., Hovnanian A., et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat. Med. 2007;13:975–980. doi: 10.1038/nm1616. PubMed DOI

Yamasaki K., Kanada K., Macleod D.T., Borkowski A.W., Morizane S., Nakatsuji T., Cogen A.L., Gallo R.L. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Investig. Dermatol. 2011;131:688–697. doi: 10.1038/jid.2010.351. PubMed DOI PMC

Diegelmann R.F., Evans M.C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004;9:283–289. doi: 10.2741/1184. PubMed DOI

Park H.J., Cho D.H., Kim H.J. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J. Investig. Dermatol. 2009;129:843–850. doi: 10.1038/jid.2008.320. PubMed DOI PMC

Ramos R., Silva J.P., Rodrigues A.C., Costa R., Guardão L., Schmitt F., Raquel Soares R., Vilanova M., Domingues L., Gama M. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011;32:1469–1476. doi: 10.1016/j.peptides.2011.06.005. PubMed DOI

Elbe-Bürger A. Skin architecture and function. In: Kamolz L.P., Jeschke M.G., Horch R.E., Küntscher M., Brychta P., editors. Handbook of Burns: Reconstruction and Rehabilitation Volume 2. Springer; Vienna, Austria: 2012. pp. 29–46. DOI

Biondo N.E., Argenta F.D., Rauber S.G., Caon T. How to define the experimental conditions of skin permeation assays for drugs presenting biopharmaceutical limitations? The experience with testosterone. Int. J. Pharm. 2021;607:120987. doi: 10.1016/j.ijpharm.2021.120987. PubMed DOI

Laurent A., Mistretta F., Bottigioli D., Dahel K., Goujon C., Nicolas J.F., Hennino A., Laurent P.E. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine. 2007;25:6423–6430. doi: 10.1016/j.vaccine.2007.05.046. PubMed DOI

Granieri G., Oranges T., Morganti R., Janowska A., Romanelli M., Manni E., Dini V. Ultra-high frequency ultrasound detection of the dermo-epidermal junction: Its potential role in dermatology. Exp. Dermatol. 2022;31:1863–1871. doi: 10.1111/exd.14664. PubMed DOI

Cinotti E., Bovi C., Tonini G., Labeille B., Heusèle C., Nizard C., Schnebert S., Aubailly S., Barthélémy J.C., Cambazard F., et al. Structural skin changes in elderly people investigated by reflectance confocal microscopy. J. Eur. Acad. Dermatol. Venereol. 2020;34:2652–2658. doi: 10.1111/jdv.16466. PubMed DOI

Van Mulder T.J.S., Van Nuffel D., Demolder M., De Meyer G., Moens S., Beyers K.C.L. Skin thickness measurements for optimal intradermal injections in children. Vaccine. 2020;38:763–768. doi: 10.1016/j.vaccine.2019.11.002. PubMed DOI

Firooz A., Rajabi-Estarabadi A., Zartab H., Pazhohi N., Fanian F., Janani L. The influence of gender and age on the thickness and echo-density of skin. Skin Res. Technol. 2017;23:13–20. doi: 10.1111/srt.12294. PubMed DOI

Ashcroft G.S., Mills S.J. Androgen receptor-mediated inhibition of cutaneous wound healing. J. Clin. Investig. 2002;110:615–624. doi: 10.1172/JCI0215704. PubMed DOI PMC

Jacobi U., Kaiser M., Toll R., Mangelsdorf S., Audring H., Otberg N., Sterry W., Lademann J. Porcine ear skin: An in vitro model for human skin. Skin Res. Technol. 2007;13:19–24. doi: 10.1111/j.1600-0846.2006.00179.x. PubMed DOI

Calabro K., Curtis A., Galarneau J.R., Krucker T., Bigio I.J. Gender variations in the optical properties of skin in murine animal models. J. Biomed. Opt. 2011;16:011008. doi: 10.1117/1.3525565. PubMed DOI

Otberg N., Richter H., Schaefer H., Blume-Peytavi U., Sterry W., Lademann R.J. Variations of hair follicle size and distribution in different body sites. J. Investig. Dermatol. 2004;122:14–19. doi: 10.1046/j.0022-202X.2003.22110.x. PubMed DOI

Mangelsdorf S., Vergou T., Sterry W., Lademann J., Patzelt A. Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Res. Technol. 2014;20:147–154. doi: 10.1111/srt.12098. PubMed DOI

van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta. 2014;1841:295–313. doi: 10.1016/j.bbalip.2013.11.006. PubMed DOI

Menon G.K., Cleary G.W., Lane M.E. The structure and function of the stratum corneum. Int. J. Pharm. 2012;435:3–9. doi: 10.1016/j.ijpharm.2012.06.005. PubMed DOI

Alexander A., Dwivedi S., Ajazuddin, Giri T.K., Saraf S., Saraf S., Tripathi D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release. 2012;164:26–40. doi: 10.1016/j.jconrel.2012.09.017. PubMed DOI

Caselli L., Malmsten M. Skin and wound delivery systems for antimicrobial peptides. Curr. Opin. Colloid Interface Sci. 2023;65:101701. doi: 10.1016/j.cocis.2023.101701. DOI

Zhang L., Dong Z., Liu W., Wu X., He H., Lu Y., Wu W., Qi J. Novel pharmaceutical strategies for enhancing skin penetration of biomacromolecules. Pharmaceuticals. 2022;15:877. doi: 10.3390/ph15070877. PubMed DOI PMC

Kanaujia K.A., Mishra N., Rajinikanth P.S., Saraf S.A. Antimicrobial peptides as antimicrobials for wound care management: A comprehensive review. J. Drug Deliv. Sci. Technol. 2024;95:105570. doi: 10.1016/j.jddst.2024.105570. DOI

Nauroy P., Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol. Plus. 2020;6–7:100019. doi: 10.1016/j.mbplus.2019.100019. PubMed DOI PMC

Eissa A., Diamandis E.P. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol. Chem. 2008;389:669–680. doi: 10.1515/BC.2008.079. PubMed DOI

Ji S., Zhu Z., Sun X., Fu X. Functional hair follicle regeneration: An updated review. Signal Transduct. Target. Ther. 2021;6:66. doi: 10.1038/s41392-020-00441-y. PubMed DOI PMC

WHO The Clinical Trials Search Portal. [(accessed on 16 December 2024)]. Available online: https://trialsearch.who.int/Default.aspx.

Miranda E., Bramono K., Yunir E., Reksodiputro M.H., Suwarsa O., Rengganis I., Harahap A.R., Subekti D., Suwarto S., Hayun H., et al. Efficacy of LL-37 cream in enhancing healing of diabetic foot ulcer: A randomized double-blind controlled trial. Arch. Dermatol. Res. 2023;315:2623–2633. doi: 10.1007/s00403-023-02657-8. PubMed DOI PMC

Peek N.F.A.W., Nell M.J., Brand R., Jansen-Werkhoven T., van Hoogdalem E.J., Verrijk R., Vonk M.J., Wafelman A.R., Valentijn A.R.P.M., Frijns J.H.M., et al. Ototopical drops containing a novel antibacterial synthetic peptide: Safety and efficacy in adults with chronic suppurative otitis media. PLoS ONE. 2020;15:e0231573. doi: 10.1371/journal.pone.0231573. PubMed DOI PMC

Zhao Y., Zhang H., Zhao Z., Liu F., Dong M., Chen L., Shen M., Luan Z., Zhang H., Wu J., et al. Efficacy and safety of oral LL-37 against the omicron BA.5.1.3 variant of SARS-CoV-2: A randomized trial. J. Med. Virol. 2023;95:e29035. doi: 10.1002/jmv.29035. PubMed DOI

Grönberg A., Mahlapuu M., Ståhle M., Whately-Smith C., Rollman O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Rep. Reg. 2014;22:613–621. doi: 10.1111/wrr.12211. PubMed DOI

Mahlapuu M., Sidorowicz A., Mikosinski J., Krzyżanowski M., Orleanski J., Twardowska-Saucha K., Nykaza M.D.A., Dyaczynski M.D.M., Belz-Lagoda M.D.B., Dziwiszek M.D.G., et al. Evaluation of LL-37 in healing of hard-to-heal venous leg ulcers: A multicentric prospective randomized placebo-controlled clinical trial. Wound Rep. Reg. 2021;29:938–950. doi: 10.1111/wrr.12977. PubMed DOI PMC

Rousel J., Saghari M., Pagan L., Nădăban A., Gambrah T., Theelen B., de Kam M.D., Haakman J., van der Wall H.V.D., Feiss G., et al. Treatment with the topical antimicrobial peptide omiganan in mild-to-moderate facial seborrheic dermatitis versus ketoconazole and placebo: Results of a randomized controlled proof-of-concept trial. Int. J. Mol. Sci. 2023;24:14315. doi: 10.3390/ijms241814315. PubMed DOI PMC

Niemeyer-van der Kolk T., Buters T.P., Krouwels L., Boltjes J., de Kam M.L., van der Wall H., van Alewijk D.C.J.G., van den Munckhof E.H.A., Becker M.J., Feiss G., et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022;86:854–862. doi: 10.1016/j.jaad.2020.08.132. PubMed DOI

Niemeyer-van der Kolk T., van der Wall H., Hogendoorn G.K., Rijneveld R., Luijten S., van Alewijk D.C.J.G., van den Munckhof E.H.A., de Kam M.L., Feiss G.L., Prens E.P., et al. Pharmacodynamic effects of topical omiganan in patients with mild to moderate atopic dermatitis in a randomized, placebo-controlled, Phase II trial. Clin. Transl. Sci. 2020;13:994–1003. doi: 10.1111/cts.12792. PubMed DOI PMC

Isaacson R.E. MBI-226. Micrologix/Fujisawa. Curr. Opin. Investig. Drugs. 2003;4:999–1003. PubMed

Niemeyer-van der Kolk T., Assil S., Buters T.P., Rijsbergen M., Klaassen E.S., Feiss G., Florencia E., Prens E.P., Burggraaf J., van Doorn M.B.A., et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin. Transl. Sci. 2020;13:573–579. doi: 10.1111/cts.12741. PubMed DOI PMC

Rijsbergen M., Rijneveld R., Todd M., Feiss G.L., Kouwenhoven S.T.P., Quint K.D., van Alewijk D.C.J.G., de Koning M.N.C., Klaassen E.S., Burggraaf J., et al. Results of phase 2 trials exploring the safety and efficacy of omiganan in patients with human papillomavirus-induced genital lesions. Br. J. Clin. Pharmacol. 2020;86:2133–2143. doi: 10.1111/bcp.14181. PubMed DOI PMC

Liang L., Sonis S.T. Comparisons of successful and failed Phase III trials of drugs and biologicals tested for mitigation of oral mucositis in patients being treated with radiotherapy with or without concomitant chemotherapy for cancers of the head and neck. Drug Dev. Res. 2024;85:e22188. doi: 10.1002/ddr.22188. PubMed DOI

Soligenix, Inc. [(accessed on 20 August 2024)]. Available online: https://www.soligenix.com/clinical-trials/

Dale G.E., Halabi A., Petersen-Sylla M., Wach A., Zwingelstein C. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob. Agents Chemother. 2018;62:e00490-18. doi: 10.1128/AAC.00490-18. PubMed DOI PMC

Wach A., Dembowsky K., Dale G.E. Pharmacokinetics and safety of intravenous murepavadin infusion in healthy adult subjects administered single and multiple ascending doses. Antimicrob. Agents Chemother. 2018;62:e02355-17. doi: 10.1128/AAC.02355-17. PubMed DOI PMC

Kollef M., Pittet D., Sánchez García M., Chastre J., Fagon J.Y., Bonten M., Hyzy R., Fleming T.R., Fuchs H., Bellm L., et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2006;173:91–97. doi: 10.1164/rccm.200504-656OC. PubMed DOI

Giles F.J., Rodriguez R., Weisdorf D., Wingard J.R., Martin P.J., Fleming T.R., Goldberg S.L., Anaissie E.J., Bolwell B.J., Chao N.J., et al. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res. 2004;28:559–565. doi: 10.1016/j.leukres.2003.10.021. PubMed DOI

Haisma E.M., Göblyös A., Ravensbergen B., Adriaans A.E., Cordfunke R.A., Schrumpf J., Limpens R.W.A.L., Schimmel K.J.M., den Hartigh J., Hiemstra P.S., et al. Antimicrobial peptide P60.4Ac-containing creams and gel for eradication of methicillin-resistant Staphylococcus aureus from cultured skin and airway epithelial surfaces. Antimicrob. Agents Chemother. 2016;60:4063–4072. doi: 10.1128/AAC.03001-15. PubMed DOI PMC

de Breij A., Riool M., Cordfunke R.A., Malanovic N., de Boer L., Koning R.I., Ravensbergen E., Franken M., van der Heijde T., Boekema B.K., et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018;10:eaan4044. doi: 10.1126/scitranslmed.aan4044. Erratum in Sci. Transl. Med. 2018, 10, eaat5731. PubMed DOI

Woodburn K.W., Jaynes J.M., Clemens L.E. Evaluation of the antimicrobial peptide, RP557, for the broad-spectrum treatment of wound pathogens and biofilm. Front. Microbiol. 2019;10:1688. doi: 10.3389/fmicb.2019.01688. PubMed DOI PMC

Li B., Zhang Y., Guo Q., He S., Fan J., Xu L., Zhang Z., Wu W., Chu H. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation. Sci. Total Environ. 2022;807:151855. doi: 10.1016/j.scitotenv.2021.151855. PubMed DOI

Soligenix. [(accessed on 21 May 2024)]. Available online: https://www.soligenix.com/pipeline-programs/

North J.R., Takenaka S., Rozek A., Kielczewska A., Opal S., Morici L.A., Finlay B.B., Schaber C.J., Straube R., Donini O. A novel approach for emerging and antibiotic-resistant infections: Innate defense regulators as an agnostic therapy. J. Biotechnol. 2016;226:24–34. doi: 10.1016/j.jbiotec.2016.03.032. PubMed DOI PMC

Fritsche T.R., Rhomberg P.R., Sader H.S., Jones R.N. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother. 2008;61:1092–1098. doi: 10.1093/jac/dkn074. PubMed DOI

Toney J.H. Iseganan (IntraBiotics pharmaceuticals) Curr. Opin. Investig. Drugs. 2002;3:225–228. PubMed

Trotti A., Garden A., Warde P., Symonds P., Langer C., Redman R., Pajak T.F., Fleming T.R., Henke M., Bourhis J., et al. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:674–681. doi: 10.1016/S0360-3016(03)01627-4. PubMed DOI

Donnelly J.P., Bellm L.A., Epstein J.B., Sonis S.T., Symonds R.P. Antimicrobial therapy to prevent or treat oral mucositis. Lancet Infect. Dis. 2003;3:405–412. doi: 10.1016/S1473-3099(03)00668-6. Erratum in Lancet Infect. Dis. 2003, 3, 598. PubMed DOI

BioSpace Polyphor Temporarily Halts Enrollment in the Phase III Studies of Murepavadin for the Treatment of Patients with Nosocomial Pneumonia. [(accessed on 10 June 2024)]. Available online: https://www.biospace.com/article/polyphor-temporarily-halts-enrollment-in-the-phase-iii-studies-of-murepavadin-for-the-treatment-of-patients-with-nosocomial-pneumonia/

Wang T.T., Nestel F.P., Bourdeau V., Nagai Y., Wang Q., Liao J., Tavera-Mendoza L., Lin R., Hanrahan J.W., Mader S., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004;173:2909–2912. doi: 10.4049/jimmunol.173.5.2909. Erratum in J. Immunol. 2004, 173, 6490. PubMed DOI

Weber G., Heilborn J.D., Chamorro Jimenez C.I., Hammarsjo A., Törmä H., Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Investig. Dermatol. 2005;124:1080–1082. doi: 10.1111/j.0022-202X.2005.23687.x. PubMed DOI

Albenali L.H., Danby S., Moustafa M., Brown K., Chittock J., Shackley F., Cork M.J. Vitamin D and antimicrobial peptide levels in patients with atopic dermatitis and atopic dermatitis complicated by eczema herpeticum: A pilot study. J. Allergy Clin. Immunol. 2016;138:1715–1719.e4. doi: 10.1016/j.jaci.2016.05.039. PubMed DOI

Hata T.R., Kotol P., Jackson M., Nguyen M., Paik A., Udall D., Kanada K., Yamasaki K., Alexandrescu D., Gallo R.L. Administration of oral vitamin D induces cathelicidin production in atopic individuals. J. Allergy Clin. Immunol. 2008;122:829–831. doi: 10.1016/j.jaci.2008.08.020. PubMed DOI PMC

Chen X., Zou X., Qi G., Tang Y., Guo Y., Si J., Liang L. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell. Physiol. Biochem. 2018;47:1060–1073. doi: 10.1159/000490183. PubMed DOI

Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., Ochoa M.T., Schauber J., Wu K., Meinken C., et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–1773. doi: 10.1126/science.1123933. PubMed DOI

Amrein K., Scherkl M., Hoffmann M., Neuwersch-Sommeregger S., Köstenberger M., Tmava Berisha A., Martucci G., Pilz S., Malle O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020;74:1498–1513. doi: 10.1038/s41430-020-0558-y. PubMed DOI PMC

Yamshchikov A.V., Kurbatova E.V., Kumari M., Blumberg H.M., Ziegler T.R., Ray S.M., Tangpricha V. Vitamin D status and antimicrobial peptide cathelicidin (LL-37) concentrations in patients with active pulmonary tuberculosis. Am. J. Clin. Nutr. 2010;92:603–611. doi: 10.3945/ajcn.2010.29411. PubMed DOI PMC

Kordi M., Talkhounche P.G., Vahedi H., Farrokhi N., Tabarzad M. Heterologous production of antimicrobial peptides: Notes to consider. Protein J. 2024;43:129–158. doi: 10.1007/s10930-023-10174-w. PubMed DOI

Chen N., Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023;255:115377. doi: 10.1016/j.ejmech.2023.115377. PubMed DOI

Roca-Pinilla R., Lisowski L., Arís A., Garcia-Fruitós E. The future of recombinant host defense peptides. Microb. Cell Factories. 2022;21:267. doi: 10.1186/s12934-022-01991-2. PubMed DOI PMC

Wibowo D., Zhao C.X. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl. Microbiol. Biotechnol. 2019;103:659–671. doi: 10.1007/s00253-018-9524-1. PubMed DOI

Chaudhary S., Ali Z., Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. Plant Biotechnol. J. 2024;22:2282–2300. doi: 10.1111/pbi.14344. PubMed DOI PMC

Deo S., Turton K.L., Kainth T., Kumar A., Wieden H.J. Strategies for improving antimicrobial peptide production. Biotechnol. Adv. 2022;59:107968. doi: 10.1016/j.biotechadv.2022.107968. PubMed DOI

Vieira Gomes A.M., Souza Carmo T., Silva Carvalho L., Mendonça Bahia F., Parachin N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms. 2018;6:38. doi: 10.3390/microorganisms6020038. PubMed DOI PMC

Li Y. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein. Protein Expr. Purif. 2012;81:201–210. doi: 10.1016/j.pep.2011.10.011. PubMed DOI

Li Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system. Protein Expr. Purif. 2013;87:72–78. doi: 10.1016/j.pep.2012.10.008. PubMed DOI

Colomina-Alfaro L., Marchesan S., Stamboulis A., Bandiera A. Smart tools for antimicrobial peptides expression and application: The elastic perspective. Biotechnol. Bioeng. 2023;120:323–332. doi: 10.1002/bit.28283. PubMed DOI

Zhao C.X., Dwyer M.D., Yu A.L., Wu Y., Fang S., Middelberg A.P. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol. Bioeng. 2015;112:957–964. doi: 10.1002/bit.25505. PubMed DOI

Dwyer M.D., Brech M., Yu L., Middelberg A.P.J. Intensified expression and purification of a recombinant biosurfactant protein. Chem. Eng. Sci. 2014;105:12–21. doi: 10.1016/j.ces.2013.10.024. DOI

Sun B., Wibowo D., Middelberg A.P.J., Zhao C.X. Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express. 2018;8:6. doi: 10.1186/s13568-018-0541-3. PubMed DOI PMC

Sousa D.A., Mulder K.C.L., Nobre K.S., Parachin N.S., Franco O.L. Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J. Biotechnol. 2016;234:83–89. doi: 10.1016/j.jbiotec.2016.07.021. PubMed DOI

Colomina-Alfaro L., Sist P., Marchesan S., Urbani R., Stamboulis A., Bandiera A. A versatile elastin-like carrier for bioactive antimicrobial peptide production and delivery. Macromol. Biosci. 2024;24:e2300236. doi: 10.1002/mabi.202470007. PubMed DOI

Holásková E., Galuszka P., Mičúchová A., Šebela M., Öz M.T., Frébort I. Molecular farming in barley: Development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol. J. 2018;13:1700628. doi: 10.1002/biot.201700628. PubMed DOI

Pane K., Durante L., Pizzo E., Varcamonti M., Zanfardino A., Sgambati V., Di Maro A., Carpentieri A., Izzo V., Di Donato A., et al. Rational design of a carrier protein for the production of recombinant toxic peptides in Escherichia coli. PLoS ONE. 2016;11:e0146552. doi: 10.1371/journal.pone.0146552. PubMed DOI PMC

He Q., Fu A., Li T. Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2015;42:647–653. doi: 10.1007/s10295-014-1582-5. PubMed DOI

Zhou N., An T., Zhang Y., Zhao G., Wei C., Shen X., Li F., Wang X. Improving photocleavage efficiency of photocleavable protein for antimicrobial peptide histatin 1 expression. Protein Pept. Lett. 2024;31:141–152. doi: 10.2174/0109298665276722231212053009. PubMed DOI

Li Y., Li X., Wang G. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr. Purif. 2006;47:498–505. doi: 10.1016/j.pep.2005.10.022. PubMed DOI

Wei X., Wu R., Zhang L., Ahmad B., Si D., Zhang R. Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules. 2018;23:1491. doi: 10.3390/molecules23061491. PubMed DOI PMC

Deng T., Ge H., He H., Liu Y., Zhai C., Feng L., Yi L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif. 2017;140:52–59. doi: 10.1016/j.pep.2017.08.003. PubMed DOI

Morin K.M., Arcidiacono S., Beckwitt R., Mello C.M. Recombinant expression of indolicidin concatamers in Escherichia coli. Appl. Microbiol. Biotechnol. 2006;70:698–704. doi: 10.1007/s00253-005-0132-5. PubMed DOI

Xiao S., Gao Y., Wang X., Shen W., Wang J., Zhou X., Cai M., Zhang Y. Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris. Prep. Biochem. Biotechnol. 2017;47:229–235. doi: 10.1080/10826068.2016.1201684. PubMed DOI

Dong X., Shan H., Wang S., Jiang Z., Wang S., Qin Z. High expression of antimicrobial peptides cathelicidin-BF in Pichia pastoris and verification of its activity. Front. Microbiol. 2023;14:1153365. doi: 10.3389/fmicb.2023.1153365. PubMed DOI PMC

Wei X.B., Wu R.J., Si D.Y., Liao X.D., Zhang L.L., Zhang R.J. Novel hybrid peptide cecropin A (1-8)-LL37 (17-30) with potential antibacterial activity. Int. J. Mol. Sci. 2016;17:983. doi: 10.3390/ijms17070983. PubMed DOI PMC

Abbasi M., Behmard E., Yousefi M.H., Shekarforoush S.S., Mahmoodi S. Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch. Microbiol. 2023;205:199. doi: 10.1007/s00203-023-03529-5. PubMed DOI

Zhao L., Li L., Hu M., Fang Y., Dong N., Shan A. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris. J. Biotechnol. 2024;381:19–26. doi: 10.1016/j.jbiotec.2023.12.015. PubMed DOI

Roca-Pinilla R., López-Cano A., Saubi C., Garcia-Fruitós E., Arís A. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. Microb. Cell Factories. 2020;19:122. doi: 10.1186/s12934-020-01380-7. PubMed DOI PMC

Holásková E., Galuszka P., Frébort I., Oz M.T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv. 2015;33:1005–1023. doi: 10.1016/j.biotechadv.2015.03.007. PubMed DOI

Shanmugaraj B., Bulaon C.J.I., Malla A., Phoolcharoen W. Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules. 2021;26:4032. doi: 10.3390/molecules26134032. PubMed DOI PMC

Gerszberg A., Hnatuszko-Konka K. Compendium on food crop plants as a platform for pharmaceutical protein production. Int. J. Mol. Sci. 2022;23:3236. doi: 10.3390/ijms23063236. PubMed DOI PMC

Morassutti C., De Amicis F., Skerlavaj B., Zanetti M., Marchetti S. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 2002;519:141–146. doi: 10.1016/S0014-5793(02)02741-2. PubMed DOI

Jung Y.J., Lee S.Y., Moon Y.S., Kang K.K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep. 2012;6:39–46. doi: 10.1007/s11816-011-0193-0. PubMed DOI PMC

Jung Y.J. Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol. Bioprocess Eng. 2013;18:615–624. doi: 10.1007/s12257-013-0392-3. DOI

Lee I.H., Jung Y.J., Cho Y.G., Nou I.S., Huq M.A., Nogoy F.M., Kang K.K. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice. PLoS ONE. 2017;12:e0172936. doi: 10.1371/journal.pone.0172936. PubMed DOI PMC

Lee S.B., Li B., Jin S., Daniell H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 2011;9:100–115. doi: 10.1111/j.1467-7652.2010.00538.x. PubMed DOI PMC

Patiño-Rodríguez O., Ortega-Berlanga B., Llamas-González Y.Y., Mario A., Flores-Valdez M.A., Herrera-Díaz A., Montes-de-Octa-Luna R., Korban S., Alpuche-Solís A. Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult. 2013;115:99–106. doi: 10.1007/s11240-013-0344-9. DOI

Lau O.S., Sun S.S. Plant seeds as bioreactors for recombinant protein production. Biotechnol. Adv. 2009;27:1015–1022. doi: 10.1016/j.biotechadv.2009.05.005. PubMed DOI

Mirzaee M., Holásková E., Mičúchová A., Kopečný D.J., Osmani Z., Frébort I. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics. 2021;10:898. doi: 10.3390/antibiotics10080898. PubMed DOI PMC

Bundó M., Shi X., Vernet M., Marcos J.F., López-García B., Coca M. Rice seeds as biofactories of rationally designed and cell-penetrating antifungal PAF peptides. Front. Plant Sci. 2019;10:731. doi: 10.3389/fpls.2019.00731. PubMed DOI PMC

Peng C.A., Kozubowski L., Marcotte W.R., Jr. Advances in plant-derived scaffold proteins. Front. Plant Sci. 2020;11:122. doi: 10.3389/fpls.2020.00122. PubMed DOI PMC

Elmowafy M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B: Biointerfaces. 2021;203:111748. doi: 10.1016/j.colsurfb.2021.111748. PubMed DOI

Lane M.E. Skin penetration enhancers. Int. J. Pharm. 2013;447:12–21. doi: 10.1016/j.ijpharm.2013.02.040. PubMed DOI

Gera S., Kankuri E., Kogermann K. Antimicrobial peptides—Unleashing their therapeutic potential using nanotechnology. Pharmacol. Ther. 2022;232:107990. doi: 10.1016/j.pharmthera.2021.107990. PubMed DOI

Liu T., Chen M., Fu J., Sun Y., Lu C., Quan G., Pan X., Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm. Sin. B. 2021;11:2326–2343. doi: 10.1016/j.apsb.2021.03.003. PubMed DOI PMC

Wong T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release. 2014;193:257–269. doi: 10.1016/j.jconrel.2014.04.045. PubMed DOI

Fumakia M., Ho E.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm. 2016;13:2318–2331. doi: 10.1021/acs.molpharmaceut.6b00099. PubMed DOI

Gatti J.W., Smithgall M.C., Paranjape S.M., Rolfes R.J., Paranjape M. Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed. Microdevices. 2013;15:887–893. doi: 10.1007/s10544-013-9777-5. PubMed DOI

Patzelt A., Lademann J. The increasing importance of the hair follicle route in dermal and transdermal drug delivery. In: Dragicevic N., Maibach H.I., editors. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects. Springer; Berlin/Heidelberg, Germany: 2015. pp. 43–53. DOI

Schneider-Rauber G., Argenta D.F., Caon T. Emerging technologies to target drug delivery to the skin—The role of crystals and carrier-based systems in the case study of dapsone. Pharm. Res. 2020;37:240. doi: 10.1007/s11095-020-02951-4. PubMed DOI

Fang C.L., Aljuffali I.A., Li Y.C., Fang J.Y. Delivery and targeting of nanoparticles into hair follicles. Ther. Deliv. 2014;5:991–1006. doi: 10.4155/tde.14.61. PubMed DOI

Lademann J., Richter H., Schanzer S., Knorr F., Meinke M., Sterry W., Patzelt A. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur. J. Pharm. Biopharm. 2011;77:465–468. doi: 10.1016/j.ejpb.2010.10.015. PubMed DOI

Pelikh O., Eckert R.W., Pinnapireddy S.R., Keck C.M. Hair follicle targeting with curcumin nanocrystals: Influence of the formulation properties on the penetration efficacy. J. Control. Release. 2021;329:598–613. doi: 10.1016/j.jconrel.2020.09.053. PubMed DOI

Chin J.S., Madden L., Chew S.Y., Becker D.L. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv. Drug Deliv. Rev. 2019;149–150:2–18. doi: 10.1016/j.addr.2019.03.006. PubMed DOI

Kopecki Z. Development of next-generation antimicrobial hydrogel dressing to combat burn wound infection. Biosci. Rep. 2021;41:BSR20203404. doi: 10.1042/BSR20203404. PubMed DOI PMC

Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000;50:27–46. doi: 10.1016/S0939-6411(00)00090-4. PubMed DOI

Al Musaimi O., Lombardi L., Williams D.R., Albericio F. Strategies for improving peptide stability and delivery. Pharmaceuticals. 2022;15:1283. doi: 10.3390/ph15101283. PubMed DOI PMC

Răileanu M., Borlan R., Campu A., Janosi L., Turcu I., Focsan M., Bacalum M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int. J. Pharm. 2023;642:123169. doi: 10.1016/j.ijpharm.2023.123169. PubMed DOI

Rezaei N., Hamidabadi H.G., Khosravimelal S., Zahiri M., Ahovan Z.A., Bojnordi M.N., Eftekhari B.S., Hashemi A., Ganji F., Darabi S., et al. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. Int. J. Biol. Macromol. 2020;164:855–862. doi: 10.1016/j.ijbiomac.2020.07.011. PubMed DOI

Silva J.P., Dhall S., Garcia M., Chan A., Costa C., Gama M., Martins-Green M. Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomater. 2015;26:249–262. doi: 10.1016/j.actbio.2015.07.043. PubMed DOI

Grek C.L., Prasad G.M., Viswanathan V., Armstrong D.G., Gourdie R.G., Ghatnekar G.S. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015;23:203–212. doi: 10.1111/wrr.12275. PubMed DOI PMC

Laverty G., Gorman S.P., Gilmore B.F. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. A. 2012;100A:1803–1814. doi: 10.1002/jbm.a.34132. PubMed DOI

Zhou C., Li P., Qi X., Sharif A.R., Poon Y.F., Cao Y., Chang M.W., Leong S.S., Chan-Park M.B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials. 2011;32:2704–2712. doi: 10.1016/j.biomaterials.2010.12.040. PubMed DOI

Li X., Fan R., Tong A., Yang M., Deng J., Zhou L., Zhang X., Guo G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015;495:560–571. doi: 10.1016/j.ijpharm.2015.09.005. PubMed DOI

Su Y., Wang H., Mishra B., Lakshmaiah Narayana J., Jiang J., Reilly D.A., Hollins R.R., Carlson M.A., Wang G., Xie J. Nanofiber dressings topically delivering molecularly engineered human cathelicidin peptides for the treatment of biofilms in chronic wounds. Mol. Pharm. 2019;16:2011–2020. doi: 10.1021/acs.molpharmaceut.8b01345. PubMed DOI

Yan X., Fang W.W., Xue J., Sun T.C., Dong L., Zha Z., Qian H., Song Y.H., Zhang M., Gong X., et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant Staphylococcus aureus infected wound healing. ACS Nano. 2019;13:10074–10084. doi: 10.1021/acsnano.9b02845. PubMed DOI

Sabzevari R., Roushandeh A.M., Mehdipour A., Alini M., Roudkenar M.H. SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life Sci. 2020;261:118381. doi: 10.1016/j.lfs.2020.118381. PubMed DOI

Patrulea V., Borchard G., Jordan O. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics. 2020;12:840. doi: 10.3390/pharmaceutics12090840. PubMed DOI PMC

Xia X., Song S., Zhang S., Wang W., Zhou J., Fan B., Li L., Dong H., Luo C., Li B., et al. The synergy of thanatin and cathelicidin-BF-15a3 combats Escherichia coli O157:H7. Int. J. Food Microbiol. 2023;386:110018. doi: 10.1016/j.ijfoodmicro.2022.110018. PubMed DOI

Farzi N., Oloomi M., Bahramali G., Siadat S.D., Bouzari S. Antibacterial properties and efficacy of LL-37 fragment GF-17D3 and scolopendin A2 peptides against resistant clinical strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro and in vivo model studies. Probiotics Antimicrob. Proteins. 2024;16:796–814. doi: 10.1007/s12602-023-10070-w. PubMed DOI

Jiang W., Sunkara L.T., Zeng X., Deng Z., Myers S.M., Zhang G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides. 2013;50:129–138. doi: 10.1016/j.peptides.2013.10.008. PubMed DOI

Steinstraesser L., Lam M.C., Jacobsen F., Porporato P.E., Chereddy K.K., Becerikli M., Stricker I., Hancock R.E., Lehnhardt M., Sonveaux P., et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol. Ther. 2014;22:734–742. doi: 10.1038/mt.2013.258. PubMed DOI PMC

Thomas-Virnig C.L., Centanni J.M., Johnston C.E., He L.K., Schlosser S.J., Van Winkle K.F., Chen R., Gibson A.L., Szilagyi A., Li L., et al. Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol. Ther. 2009;17:562–569. doi: 10.1038/mt.2008.289. PubMed DOI PMC

Mahlapuu M., Björn C., Ekblom J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020;40:978–992. doi: 10.1080/07388551.2020.1796576. PubMed DOI

Kumar P., Kizhakkedathu J.N., Straus S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8:4. doi: 10.3390/biom8010004. PubMed DOI PMC

Maturana P., Martinez M., Noguera M.E., Santos N.C., Disalvo E.A., Semorile L., Maffia P.C., Hollmann A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf. B Biointerfaces. 2017;153:152–159. doi: 10.1016/j.colsurfb.2017.02.003. PubMed DOI

Mishra B., Lakshmaiah Narayana J., Lushnikova T., Zhang Y., Golla R.M., Zarena D., Wang G. Sequence permutation generates peptides with different antimicrobial and antibiofilm activities. Pharmaceuticals. 2020;13:271. doi: 10.3390/ph13100271. PubMed DOI PMC

Wang X., Mishra B., Lushnikova T., Narayana J.L., Wang G. Amino acid composition determines peptide activity spectrum and hot-spot-based design of merecidin. Adv. Biosyst. 2018;2:1700259. doi: 10.1002/adbi.201700259. PubMed DOI PMC

Biondi B., de Pascale L., Mardirossian M., Di Stasi A., Favaro M., Scocchi M., Peggion C. Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36. Sci. Rep. 2023;13:15132. doi: 10.1038/s41598-023-41945-1. PubMed DOI PMC

Strömstedt A.A., Pasupuleti M., Schmidtchen A., Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob. Agents Chemother. 2009;53:593–602. doi: 10.1128/AAC.00477-08. PubMed DOI PMC

Jangpromma N., Konkchaiyaphum M., Punpad A., Sosiangdi S., Daduang S., Klaynongsruang S., Tankrathok A. Rational design of RN15m4 cathelin domain-based peptides from siamese crocodile cathelicidin improves antimicrobial activity. Appl. Biochem. Biotechnol. 2023;195:1096–1108. doi: 10.1007/s12010-022-04210-1. PubMed DOI

Gunasekera S., Muhammad T., Strömstedt A.A., Rosengren K.J., Göransson U. Backbone cyclization and dimerization of LL-37-derived peptides enhance antimicrobial activity and proteolytic stability. Front. Microbiol. 2020;11:168. doi: 10.3389/fmicb.2020.00168. PubMed DOI PMC

Dean S.N., Bishop B.M., van Hoek M.L. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011;11:114. doi: 10.1186/1471-2180-11-114. PubMed DOI PMC

McClements D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018;253:1–22. doi: 10.1016/j.cis.2018.02.002. PubMed DOI

Chereddy K.K., Her C.H., Comune M., Moia C., Lopes A., Porporato P.E., Vanacker J., Lam M.C., Steinstraesser L., Sonveaux P., et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release. 2014;194:138–147. doi: 10.1016/j.jconrel.2014.08.016. PubMed DOI

Sun T., Zhan B., Zhang W., Qin D., Xia G., Zhang H., Peng M., Li S.A., Zhang Y., Gao Y., et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int. J. Nanomed. 2018;13:5771–5786. doi: 10.2147/IJN.S156206. PubMed DOI PMC

Lozeau L.D., Grosha J., Kole D., Prifti F., Dominko T., Camesano T.A., Rolle M.W. Collagen tethering of synthetic human antimicrobial peptides cathelicidin LL37 and its effects on antimicrobial activity and cytotoxicity. Acta Biomater. 2017;52:9–20. doi: 10.1016/j.actbio.2016.12.047. PubMed DOI

Boge L., Hallstensson K., Ringstad L., Johansson J., Andersson T., Davoudi M., Larsson P.T., Mahlapuu M., Håkansson J., Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm. 2019;134:60–67. doi: 10.1016/j.ejpb.2018.11.009. PubMed DOI

Gontsarik M., Buhmann M.T., Yaghmur A., Ren Q., Maniura-Weber K., Salentinig S. Antimicrobial peptide-driven colloidal transformations in liquid-crystalline nanocarriers. J. Phys. Chem. Lett. 2016;7:3482–3486. doi: 10.1021/acs.jpclett.6b01622. PubMed DOI

Ricardo F., Pradilla D., Cruz J.C., Alvarez O. Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. Int. J. Mol. Sci. 2021;22:4615. doi: 10.3390/ijms22094615. PubMed DOI PMC

Bouwstra J.A., Honeywell-Nguyen P.L., Gooris G.S., Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003;42:1–36. doi: 10.1016/S0163-7827(02)00028-0. PubMed DOI

Pierre M.B.R., dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011;303:607–621. doi: 10.1007/s00403-011-1166-4. PubMed DOI

Taylor T.M., Gaysinsky S., Davidson P.M., Bruce B.D., Weiss J. Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys. 2007;2:1–9. doi: 10.1007/s11483-007-9023-x. DOI

Bilati U., Allémann E., Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm. 2005;59:375–388. doi: 10.1016/j.ejpb.2004.10.006. PubMed DOI

Pham N.B., Meng W.S. Protein aggregation and immunogenicity of biotherapeutics. Int. J. Pharm. 2020;585:119523. doi: 10.1016/j.ijpharm.2020.119523. PubMed DOI PMC

Elsayed A., Jaber N., Al-Remawi M., Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int. J. Pharm. 2023;645:123360. doi: 10.1016/j.ijpharm.2023.123360. PubMed DOI

Solè I., Pey C.M., Maestro A., González C., Porras M., Solans C., Gutiérrez J.M. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010;344:417–423. doi: 10.1016/j.jcis.2009.11.046. PubMed DOI

Solans C., Solé I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012;17:246–254. doi: 10.1016/j.cocis.2012.07.003. DOI

Solans C., Morales D., Homs M. Spontaneous emulsification. Curr. Opin. Colloid Interface Sci. 2016;22:88–93. doi: 10.1016/j.cocis.2016.03.002. DOI

Cole J.N., Nizet V. Bacterial evasion of host antimicrobial peptide defenses. Microbiol. Spectr. 2016;4:10. doi: 10.1128/microbiolspec.VMBF-0006-2015. PubMed DOI PMC

LaRock C.N., Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim. Biophys. Acta Biomembr. 2015;1848:3047–3054. doi: 10.1016/j.bbamem.2015.02.010. PubMed DOI PMC

Moskowitz S.M., Ernst R.K., Miller S.I. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to Lipid A. J. Bacteriol. 2004;186:575–579. doi: 10.1128/JB.186.2.575-579.2004. PubMed DOI PMC

Lysenko E.S., Gould J., Bals R., Wilson J.M., Weiser J.N. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect. Immun. 2000;68:1664–1671. doi: 10.1128/IAI.68.3.1664-1671.2000. PubMed DOI PMC

Guina T., Yi E.C., Wang H., Hackett M., Miller S.I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol. 2000;182:4077–4086. doi: 10.1128/JB.182.14.4077-4086.2000. PubMed DOI PMC

Lewis L.A., Choudhury B., Balthazar J.T., Martin L.E., Ram S., Rice P.A., Stephens D.S., Carlson R., Shafer W.M. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect. Immun. 2009;77:1112–1120. doi: 10.1128/IAI.01280-08. PubMed DOI PMC

Harper M., Wright A., Michael F.S., Li J., Lucas D.D., Ford M., Adler B., Cox A.D., Boyce J.D. Characterization of two novel lipopolysaccharide phosphoethanolamine transferases in Pasteurella multocida and their role in resistance to cathelicidin-2. Infect. Immun. 2017;85:e00557-17. doi: 10.1128/IAI.00557-17. PubMed DOI PMC

Falord M., Mäder U., Hiron A., Dbarbouillé M., Msadek T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE. 2011;6:e21323. doi: 10.1371/journal.pone.0021323. PubMed DOI PMC

Falord M., Karimova G., Hiron A., Msadeka T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2012;56:1047–1058. doi: 10.1128/AAC.05054-11. PubMed DOI PMC

Golla R.M., Mishra B., Dang X., Lakshmaiah Narayana J., Li A., Xu L., Wang G. Resistome of Staphylococcus aureus in response to human cathelicidin LL-37 and its engineered antimicrobial peptides. ACS Infect. Dis. 2020;6:1866–1881. doi: 10.1021/acsinfecdis.0c00112. PubMed DOI PMC

Nishi H., Komatsuzawa H., Fujiwara T., McCallum N., Sugai M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob. Agents Chemother. 2004;48:4800–4807. doi: 10.1128/AAC.48.12.4800-4807.2004. PubMed DOI PMC

Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 2002;43:1–14. doi: 10.1046/j.1365-2958.2002.02723.x. PubMed DOI

Poyart C., Pellegrini E., Marceau M., Baptista M., Jaubert F., Lamy M.C., Trieu-Cuot P. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol. Microbiol. 2003;49:1615–1625. doi: 10.1046/j.1365-2958.2003.03655.x. PubMed DOI

Cao M., Helmann J.D. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 2004;186:1136–1146. doi: 10.1128/JB.186.4.1136-1146.2004. PubMed DOI PMC

Saar-Dover R., Bitler A., Nezer R., Shmuel-Galia L., Firon A., Shimoni E., Trieu-Cuot P., Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B Streptococcus by increasing the cell wall density. PLoS Pathog. 2012;8:e1002891. doi: 10.1371/annotation/05894f00-6d95-4b7a-aff1-2e008d2a864f. PubMed DOI PMC

Hamilton A., Popham D.L., Carl D.J., Lauth X., Nizet V., Jones A.L. Penicillin-binding protein 1a promotes resistance of group B Streptococcus to antimicrobial peptides. Infect. Immun. 2006;74:6179–6187. doi: 10.1128/IAI.00895-06. PubMed DOI PMC

Meireles D., Pombinho R., Carvalho F., Sousa S., Cabanes D. Listeria monocytogenes wall teichoic acid glycosylation promotes surface anchoring of virulence factors, resistance to antimicrobial peptides, and decreased susceptibility to antibiotics. Pathogens. 2020;9:290. doi: 10.3390/pathogens9040290. PubMed DOI PMC

Schmidtchen A., Frick I.M., Andersson E., Tapper H., Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 2002;46:157–168. doi: 10.1046/j.1365-2958.2002.03146.x. PubMed DOI

Barańska-Rybak W., Sonesson A., Nowicki R., Schmidtchen A. Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J. Antimicrob. Chemother. 2006;57:260–265. doi: 10.1093/jac/dki460. PubMed DOI

Sieprawska-Lupa M., Mydel P., Krawczyk K., Wójcik K., Puklo M., Lupa B., Suder P., Silberring J., Reed M., Pohl J., et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 2004;48:4673–4679. doi: 10.1128/AAC.48.12.4673-4679.2004. PubMed DOI PMC

Shinnar A.E., Butler K.L., Park H.J. Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance. Bioorg. Chem. 2003;31:425–436. doi: 10.1016/S0045-2068(03)00080-4. PubMed DOI

Braff M.H., Jones A.L., Skerrett S.J., Rubens C.E. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J. Infect. Dis. 2007;195:1365–1372. doi: 10.1086/513277. PubMed DOI PMC

Åkessont P., Sjöholm A.G., Björck L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 1996;271:1081–1088. doi: 10.1074/jbc.271.2.1081. PubMed DOI

Frick I.M., Åkesson P., Rasmussen M., Schmidtchen A., Björck L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem. 2003;278:16561–16566. doi: 10.1074/jbc.M301995200. PubMed DOI

Ghosh P. The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. Adv. Exp. Med. Biol. 2011;715:197–211. doi: 10.1007/978-94-007-0940-9_12. PubMed DOI PMC

LaRock C.N., Döhrmann S., Todd J., Corriden R., Olson J., Johannssen T., Lepenies B., Gallo R.L., Ghosh P., Nizet V. Group A streptococcal M1 protein sequesters cathelicidin to evade innate immune killing. Cell Host Microbe. 2015;18:471–477. doi: 10.1016/j.chom.2015.09.004. PubMed DOI PMC

Keo T., Collins J., Kunwar P., Blaser M.J., Iovine N.M. Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence. 2011;2:30–40. doi: 10.4161/viru.2.1.14752. PubMed DOI PMC

Spinosa M.R., Progida C., Talà A., Cogli L., Alifano P., Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect. Immun. 2007;75:3594–3603. doi: 10.1128/IAI.01945-06. PubMed DOI PMC

Cole J.N., Pence M.A., von Köckritz-Blickwede M., Hollands A., Gallo R.L., Walker M.J., Nizet V. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 Group A Streptococcus. mBio. 2010;1:e00191-10. doi: 10.1128/mBio.00191-10. PubMed DOI PMC

Von Köckritz-Blickwede M., Nizet V. Innate immunity turned inside-out: Antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 2009;87:775–783. doi: 10.1007/s00109-009-0481-0. PubMed DOI PMC

Walker M.J., Hollands A., Sanderson-Smith M.L., Cole J.N., Kirk J.K., Henningham A., McArthur J.D., Dinkla K., Aziz R.K., Kansal R.G., et al. DNase Sda1 provides selection pressure for a switch to invasive Group A streptococcal infection. Nat. Med. 2007;13:981–985. doi: 10.1038/nm1612. PubMed DOI

Derré-Bobillot A., Cortes-Perez N.G., Yamamoto Y., Kharrat P., Couvé E., Da Cunha V., Decker P., Boissier M.C., Escartin F., Cesselin B., et al. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol. Microbiol. 2013;89:518–531. doi: 10.1111/mmi.12295. PubMed DOI

Beiter K., Wartha F., Albiger B., Normark S., Zychlinsky A., Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 2006;16:401–407. doi: 10.1016/j.cub.2006.01.056. PubMed DOI

Berends E.T.M., Horswill A.R., Haste N.M., Monestier M., Nizet V., Von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2010;2:576–586. doi: 10.1159/000319909. PubMed DOI PMC

Guilhelmelli F., Vilela N., Albuquerque P., Derengowski L.S., Silva-Pereira I., Kyaw C.M. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol. 2013;4:353. doi: 10.3389/fmicb.2013.00353. PubMed DOI PMC

Handing J.W., Ragland S.A., Bharathan U.V., Criss A.K. The MtrCDE efflux pump contributes to survival of Neisseria gonorrhoeae from human neutrophils and their antimicrobial components. Front. Microbiol. 2018;9:2688. doi: 10.3389/fmicb.2018.02688. PubMed DOI PMC

Tzeng Y.L., Ambrose K.D., Zughaier S., Zhou X., Miller Y.K., Shafer W.M., Stephens D.S. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J. Bacteriol. 2005;187:5387–5396. doi: 10.1128/JB.187.15.5387-5396.2005. PubMed DOI PMC

Warner D.M., Shafer W.M., Jerse A.E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 2008;70:462–478. doi: 10.1111/j.1365-2958.2008.06424.x. PubMed DOI PMC

Rinker S.D., Trombley M.P., Gu X., Fortney K.R., Bauer M.E. Deletion of mtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect. Immun. 2011;79:2324–2334. doi: 10.1128/IAI.01316-10. PubMed DOI PMC

Zähner D., Zhou X., Chancey S.T., Pohl J., Shafer W.M., Stephens D.S. Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2010;54:3516–3519. doi: 10.1128/AAC.01756-09. PubMed DOI PMC

Doshi R., Gutmann D.A.P., Khoo Y.S.K., Fagg L.A., Van Veen H.W. The choreography of multidrug export. Biochem. Soc. Trans. 2011;39:807–811. doi: 10.1042/BST0390807. PubMed DOI

Li M., Cha D.J., Lai Y., Villaruz A.E., Sturdevant D.E., Otto M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol. 2007;66:1136–1147. doi: 10.1111/j.1365-2958.2007.05986.x. PubMed DOI

Sperandio B., Regnault B., Guo J., Zhang Z., Stanley S.L., Sansonetti P.J., Pédron T. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med. 2008;205:1121–1132. doi: 10.1084/jem.20071698. PubMed DOI PMC

Chakraborty K., Ghosh S., Koley H., Mukhopadhyay A.K., Ramamurthy T., Saha D.R., Mukhopadhyay D., Roychowdhury S., Hamabata T., Takeda Y., et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human β-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell. Microbiol. 2008;10:2520–2537. doi: 10.1111/j.1462-5822.2008.01227.x. PubMed DOI

Bader M.W., Sanowar S., Daley M.E., Schneider A.R., Cho U., Xu W., Klevit R.E., Le Moual H., Miller S.I. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122:461–472. doi: 10.1016/j.cell.2005.05.030. PubMed DOI

Shprung T., Wani N.A., Wilmes M., Mangoni M.L., Bitler A., Shimoni E., Sahl H.G., Shai Y. Opposing effects of PhoPQ and PmrAB on the properties of Salmonella enterica serovar Typhimurium: Implications on resistance to antimicrobial peptides. Biochemistry. 2021;60:2943–2955. doi: 10.1021/acs.biochem.1c00287. PubMed DOI PMC

Koprivnjak T., Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 2011;68:2243–2254. doi: 10.1007/s00018-011-0716-4. PubMed DOI PMC

McPhee J.B., Lewenza S., Hancock R.E.W. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 2003;50:205–217. doi: 10.1046/j.1365-2958.2003.03673.x. PubMed DOI

Groisman E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 2001;183:1835–1842. doi: 10.1128/JB.183.6.1835-1842.2001. PubMed DOI PMC

Martynowycz M.W., Rice A., Andreev K., Nobre T.M., Kuzmenko I., Wereszczynski J., Gidalevitz D. Salmonella membrane structural remodeling increases resistance to antimicrobial peptide LL-37. ACS Infect. Dis. 2019;5:1214–1222. doi: 10.1021/acsinfecdis.9b00066. PubMed DOI PMC

Vlieghe P., Lisowski V., Martinez J., Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today. 2010;15:40–56. doi: 10.1016/j.drudis.2009.10.009. PubMed DOI

McGregor D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. 2008;8:616–619. doi: 10.1016/j.coph.2008.06.002. PubMed DOI

Guidance for Industry Chronic Cutaneous Ulcer and Burn Wounds—Developing Products for Treatment. [(accessed on 24 May 2024)]; Available online: https://www.fda.gov/files/drugs/published/Chronic-Cutaneous-Ulcer-and-Burn-Wounds----Developing-Products-for-Treatment.pdf. PubMed

Fry D.E. Antimicrobial Peptides. Surg. Infect. 2018;19:804–811. doi: 10.1089/sur.2018.194. PubMed DOI

Limoli D.H., Rockel A.B., Host K.M., Jha A., Kopp B.T., Hollis T., Wozniak D.J. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014;10:e1004083. doi: 10.1371/journal.ppat.1004083. PubMed DOI PMC

Dilek F., Gultepe B., Ozkaya E., Yazici M., Gedik A.H., Cakir E. Beyond anti-microbial properties: The role of cathelicidin in allergic rhinitis. Allergol. Immunopathol. 2016;44:297–302. doi: 10.1016/j.aller.2015.07.006. PubMed DOI

Guryanova S.V., Ovchinnikova T.V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 2022;23:2499. doi: 10.3390/ijms23052499. PubMed DOI PMC

Piktel E., Niemirowicz K., Wnorowska U., Wątek M., Wollny T., Głuszek K., Góźdź S., Levental I., Bucki R. The role of cathelicidin LL-37 in cancer development. Arch. Immunol. Ther. Exp. 2016;64:33–46. doi: 10.1007/s00005-015-0359-5. PubMed DOI PMC

Kiatsurayanon C., Peng G., Niyonsaba F. Opposing roles of antimicrobial peptides in skin cancers. Curr. Pharm. Des. 2021;28:248–258. doi: 10.2174/1381612827666211021163318. PubMed DOI

van Harten R.M., van Woudenbergh E., van Dijk A., Haagsman H.P. Cathelicidins: Immunomodulatory antimicrobials. Vaccines. 2018;6:63. doi: 10.3390/vaccines6030063. PubMed DOI PMC

Ebbensgaard A., Mordhorst H., Overgaard M.T., Aarestrup F.M., Hansen E.B. Dissection of the antimicrobial and hemolytic activity of Cap18: Generation of Cap18 derivatives with enhanced specificity. PLoS ONE. 2018;13:e0197742. doi: 10.1371/journal.pone.0197742. PubMed DOI PMC

FDA Category 2 of the Bulk Substances Nominated Under Sections 503A or 503B of the Federal Food, Drug, and Cosmetic Act. [(accessed on 15 May 2024)]; Available online: https://www.fda.gov/drugs/human-drug-compounding/safety-risks-associated-certain-bulk-drug-substances-nominated-use-compounding.

FDA Statement from FDA Commissioner Scott Gottlieb, M.D., on FDA’s Efforts to Foster Discovery and Development of New Tools to Fight Antimicrobial-Resistant Infections. [(accessed on 13 May 2024)]; Available online: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-fdas-efforts-foster-discovery-and-development-new-tools.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...