Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants

. 2021 Jul 23 ; 10 (8) : . [epub] 20210723

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34438948

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007323 European Regional Development Fund

Odkazy

PubMed 34438948
PubMed Central PMC8388648
DOI 10.3390/antibiotics10080898
PII: antibiotics10080898
Knihovny.cz E-zdroje

Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.

Zobrazit více v PubMed

Wimley W.C., Hristova K. Antimicrobial Peptides: Successes, Challenges and Unanswered Questions. J. Membr. Biol. 2011;239:27–34. doi: 10.1007/s00232-011-9343-0. PubMed DOI PMC

Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell Infect. Microbiol. 2016;6:194. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC

da Cunha N.B., Cobacho N.B., Viana J.F., Lima L.A., Sampaio K.B., Dohms S.S., Ferreira A.C., de la Fuente-Núñez C., Costa F.F., Franco O.L. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today. 2017;22:234–248. doi: 10.1016/j.drudis.2016.10.017. PubMed DOI PMC

Spohn R., Daruka L., Lázár V., Martins A., Vidovics F., Grézal G., Méhi O., Kintses B., Számel M., Jangir P.K. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12364-6. PubMed DOI PMC

Torres M.D.T., de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem. Commun. 2019;55:15020–15032. doi: 10.1039/C9CC07898C. PubMed DOI

Teixeira M.C., Carbone C., Sousa M.C., Espina M., Garcia M.L., Sanchez-Lopez E., Souto E.B. Nanomedicines for the delivery of antimicrobial peptides (Amps) Nanomaterials. 2020;10:560. doi: 10.3390/nano10030560. PubMed DOI PMC

Li W., Separovic F., O’Brien-Simpson N.M., Wade J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021;50:4932–4973. doi: 10.1039/D0CS01026J. PubMed DOI

Kahlenberg J.M., Kaplan M.J. Little peptide, big effects: The role of LL-37 in inflammation and autoimmune disease. J. Immunol. 2013;191:4895–4901. doi: 10.4049/jimmunol.1302005. PubMed DOI PMC

Fabisiak A., Murawska N., Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol. Rep. 2016;68:802–808. doi: 10.1016/j.pharep.2016.03.015. PubMed DOI

Burton M.F., Steel P.G. The chemistry and biology of LL-37. Nat. Prod. Rep. 2009;26:1572–1584. doi: 10.1039/b912533g. PubMed DOI

Chen X., Zou X., Qi G., Tang Y., Guo Y., Si J., Liang L. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol. Biochem. 2018;47:1060–1073. doi: 10.1159/000490183. PubMed DOI

Pahar B., Madonna S., Das A., Albanesi C., Girolomoni G. Immunomodulatory role of the antimicrobial ll-37 peptide in autoimmune diseases and viral infections. Vaccines. 2020;8:517. doi: 10.3390/vaccines8030517. PubMed DOI PMC

Struyfs C., Cammue B., Thevissen K. Membrane-Interacting Antifungal Peptides. Front. Cell Dev. Biol. 2021;9:706. doi: 10.3389/fcell.2021.649875. PubMed DOI PMC

Promore Pharma P. Ropocamptide–Healing of Chronic Wounds. [(accessed on 22 June 2021)]; Available online: https://www.promorepharma.com/en/ll-37-healing-of-chronic-wounds/

Doran P.M. Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 2000;11:199–204. doi: 10.1016/S0958-1669(00)00086-0. PubMed DOI

Rybicki E.P. Plant-made vaccines and reagents for the One Health initiative. Hum. Vaccin. Immunother. 2017;13:2912–2917. doi: 10.1080/21645515.2017.1356497. PubMed DOI PMC

Fischer R., Buyel J.F. Molecular farming–the slope of enlightenment. Biotechnol. Adv. 2020;40:107519. doi: 10.1016/j.biotechadv.2020.107519. PubMed DOI

Moon J.-Y., Henzler-Wildman K.A., Ramamoorthy A. Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta (BBA) Biomembr. 2006;1758:1351–1358. doi: 10.1016/j.bbamem.2006.02.003. PubMed DOI

Li Y., Li X., Li H., Lockridge O., Wang G. A novel method for purifying recombinant human host defense cathelicidin LL-37 by utilizing its inherent property of aggregation. Protein Expr. Purif. 2007;54:157–165. doi: 10.1016/j.pep.2007.02.003. PubMed DOI

Krahulec J., Hyršová M., Pepeliaev S., Jílková J., Černý Z., Machálková J. High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl. Microbiol. Biotechnol. 2010;88:167–175. doi: 10.1007/s00253-010-2736-7. PubMed DOI

Li Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expr. Purif. 2013;87:72–78. doi: 10.1016/j.pep.2012.10.008. PubMed DOI

Wei X., Wu R., Zhang L., Ahmad B., Si D., Zhang R. Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules. 2018;23:1491. doi: 10.3390/molecules23061491. PubMed DOI PMC

Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003;21:570–578. doi: 10.1016/j.tibtech.2003.10.002. PubMed DOI

Yusibov V., Streatfield S.J., Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals: Vaccines, antibodies and beyond. Hum. Vaccines. 2011;7:313–321. doi: 10.4161/hv.7.3.14207. PubMed DOI

Ritala A., Leelavathi S., Oksman-Caldentey K.-M., Reddy V., Laukkanen M.-L. Recombinant barley-produced antibody for detection and immunoprecipitation of the major bovine milk allergen, β-lactoglobulin. Transgenic Res. 2014;23:477–487. doi: 10.1007/s11248-014-9783-2. PubMed DOI

Mirzaee M., Jalali-Javaran M., Moieni A., Zeinali S., Behdani M. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.) Plant Mol. Biol. 2018;97:103–112. doi: 10.1007/s11103-018-0726-9. PubMed DOI

Magnusdottir A., Vidarsson H., Björnsson J.M., Örvar B.L. Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol. 2013;31:572–580. doi: 10.1016/j.tibtech.2013.06.002. PubMed DOI

Cary J.W., Rajasekaran K., Jaynes J.M., Cleveland T.E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 2000;154:171–181. doi: 10.1016/S0168-9452(00)00189-8. PubMed DOI

Patiño-Rodríguez O., Ortega-Berlanga B., Llamas-González Y.Y., Flores-Valdez M.A., Herrera-Díaz A., Montes-de-Oca-Luna R., Korban S.S., Alpuche-Solís Á.G. Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult. (PCTOC) 2013;115:99–106. doi: 10.1007/s11240-013-0344-9. DOI

Zeitler B., Bernhard A., Meyer H., Sattler M., Koop H.-U., Lindermayr C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Mol. Biol. 2013;81:259–272. doi: 10.1007/s11103-012-9996-9. PubMed DOI

Chahardoli M., Fazeli A., Ghabooli M. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol. Biochem. 2018;123:414–421. doi: 10.1016/j.plaphy.2017.12.037. PubMed DOI

Mirzaee H., Peralta N.L.N., Carvalhais L.C., Dennis P.G., Schenk P.M. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. New Biotechnol. 2021;63:54–61. doi: 10.1016/j.nbt.2021.03.003. PubMed DOI

Almasia N.I., Bazzini A.A., Hopp H.E., Vazquez-Rovere C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol. Plant Pathol. 2008;9:329–338. doi: 10.1111/j.1364-3703.2008.00469.x. PubMed DOI PMC

Rivero M., Furman N., Mencacci N., Picca P., Toum L., Lentz E., Bravo-Almonacid F., Mentaberry A. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol. 2012;157:334–343. doi: 10.1016/j.jbiotec.2011.11.005. PubMed DOI

Goyal R.K., Hancock R.E., Mattoo A.K., Misra S. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS ONE. 2013;8:e77505. doi: 10.1371/journal.pone.0077505. PubMed DOI PMC

Luo X.-M., Xie C.-J., Wang D., Wei Y.-M., Cai J., Cheng S.-S., Yang X.-Y., Sui A.-P. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl. Microbiol. Biotechnol. 2017;101:1073–1084. doi: 10.1007/s00253-016-7768-1. PubMed DOI

Jung Y.-J., Lee S.-Y., Moon Y.-S., Kang K.-K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep. 2012;6:39–46. doi: 10.1007/s11816-011-0193-0. PubMed DOI PMC

Jung Y.-J. Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol. Bioprocess Eng. 2013;18:615–624. doi: 10.1007/s12257-013-0392-3. DOI

Lee I.H., Jung Y.-J., Cho Y.G., Nou I.S., Huq M.A., Nogoy F.M., Kang K.-K. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice. PLoS ONE. 2017;12:e0172936. doi: 10.1371/journal.pone.0172936. PubMed DOI PMC

Holásková E., Galuszka P., Mičúchová A., Šebela M., Öz M.T., Frébort I. Molecular farming in barley: Development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol. J. 2018;13:1700628. doi: 10.1002/biot.201700628. PubMed DOI

Ramessar K., Sabalza M., Capell T., Christou P. Maize plants: An ideal production platform for effective and safe molecular pharming. Plant Sci. 2008;174:409–419. doi: 10.1016/j.plantsci.2008.02.002. DOI

Moustafa K., Makhzoum A., Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit. Rev. Biotechnol. 2016;36:840–850. doi: 10.3109/07388551.2015.1049934. PubMed DOI

Spiegel H., Stöger E., Twyman R.M., Buyel J.F. Current status and perspectives of the molecular farming landscape. In: Kermode A.R., Jiang L., editors. Molecular Pharming: Applications, Challenges and Emerging Areas. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2018. pp. 1–23. DOI

Buyel J.F. Plant molecular farming–Integration and exploitation of side streams to achieve sustainable biomanufacturing. Front. Plant Sci. 2019;9:1893. doi: 10.3389/fpls.2018.01893. PubMed DOI PMC

Martin G.E., Timko M.P., Wilks H.M. Purification and kinetic analysis of pea (Pisum sativum L.) NADPH: Protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli. Biochem. J. 1997;325:139–145. doi: 10.1042/bj3250139. PubMed DOI PMC

Cao H., Dzineku F., Blackshear P.J. Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-α mRNA and serve as a substrate for mitogen-activated protein kinases. Arch. Biochem. Biophys. 2003;412:106–120. doi: 10.1016/S0003-9861(03)00012-2. PubMed DOI PMC

Momin A.A., Hameed U.F.S., Arold S.T. passenger sequences can promote interlaced dimers in a common variant of the maltose-binding protein. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-56718-y. PubMed DOI PMC

Johansson J., Gudmundsson G.H., Rottenberg M.E., Berndt K.D., Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 1998;273:3718–3724. doi: 10.1074/jbc.273.6.3718. PubMed DOI

Oren Z., Lerman J.C., Gudmundsson G.H., Agerberth B., Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 1999;341:501–513. doi: 10.1042/bj3410501. PubMed DOI PMC

Sancho-Vaello E., François P., Bonetti E.-J., Lilie H., Finger S., Gil-Ortiz F., Gil-Carton D., Zeth K. Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species. Sci. Rep. 2017;7:1–11. PubMed PMC

Christou P., Stoger E., Twyman R.M. Monocot expression systems for molecular farming. Mol. Farming. 2004:55–67.

Arcalis E., Ibl V., Peters J., Melnik S., Stoger E. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front. Plant Sci. 2014;5:439. doi: 10.3389/fpls.2014.00439. PubMed DOI PMC

Hensel G. Genetic transformation of Triticeae cereals–Summary of almost three-decade’s development. Biotechnol. Adv. 2020;40:107484. doi: 10.1016/j.biotechadv.2019.107484. PubMed DOI

Ritala A., Wahlström E., Holkeri H., Hafren A., Mäkeläinen K., Baez J., Mäkinen K., Nuutila A.-M. Production of a recombinant industrial protein using barley cell cultures. Protein Expr. Purif. 2008;59:274–281. doi: 10.1016/j.pep.2008.02.013. PubMed DOI

Hensel G., Himmelbach A., Chen W., Douchkov D.K., Kumlehn J. Transgene expression systems in the Triticeae cereals. J. Plant Physiol. 2011;168:30–44. doi: 10.1016/j.jplph.2010.07.007. PubMed DOI

Mrízová K., Holasková E., Öz M.T., Jiskrová E., Frébort I., Galuszka P. Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnol. Adv. 2014;32:137–157. doi: 10.1016/j.biotechadv.2013.09.011. PubMed DOI

Panting M., Holme I.B., Björnsson J.M., Brinch-Pedersen H. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein. Mol. Biotechnol. 2021;63:13–23. doi: 10.1007/s12033-020-00279-3. PubMed DOI

Stahl R., Horvath H., Van Fleet J., Voetz M., von Wettstein D., Wolf N. T-DNA integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. USA. 2002;99:2146–2151. doi: 10.1073/pnas.032645299. PubMed DOI PMC

Tanasienko I., Yemets A., Pirko Y., Korhkovyy V., Abumhadi N., Blume Y.B. Generation of transgenic barley lines producing human lactoferrin using mutant alpha-tubulin gene as the selective marker. Cytol. Genet. 2011;45:1–6. doi: 10.3103/S0095452711010026. PubMed DOI

Kamenarova K., Gecheff K., Stoyanova M., Muhovski Y., Anzai H., Atanassov A. Production of recombinant human lactoferin in transgenic barley. Biotechnol. Biotechnol. Equip. 2007;21:18–27. doi: 10.1080/13102818.2007.10817407. DOI

Eskelin K., Ritala A., Suntio T., Blumer S., Holkeri H., Wahlström E.H., Baez J., Mäkinen K., Maria N.A. Production of a recombinant full-length collagen type I α-1 and of a 45-kDa collagen type I α-1 fragment in barley seeds. Plant Biotechnol. J. 2009;7:657–672. doi: 10.1111/j.1467-7652.2009.00432.x. PubMed DOI

Erlendsson L.S., Muench M.O., Hellman U., Hrafnkelsdóttir S.M., Jonsson A., Balmer Y., Mäntylä E., Örvar B.L. Barley as a green factory for the production of functional Flt3 ligand. Biotechnol. J. 2010;5:163–171. doi: 10.1002/biot.200900111. PubMed DOI PMC

Schünmann P.H., Coia G., Waterhouse P.M. Biopharming the SimpliRED™ HIV diagnostic reagent in barley, potato and tobacco. Mol. Breed. 2002;9:113–121. doi: 10.1023/A:1026752805494. DOI

Hensel G., Floss D.M., Arcalis E., Sack M., Melnik S., Altmann F., Rutten T., Kumlehn J., Stoger E., Conrad U. Transgenic production of an anti HIV antibody in the barley endosperm. PLoS ONE. 2015;10:e0140476. doi: 10.1371/journal.pone.0140476. PubMed DOI PMC

Czubacka A., Sacco E., Olszak-Przybyś H., Doroszewska T. Inheritance and effectiveness of two transgenes determining PVY resistance in progeny from crossing independently transformed tobacco lines. J. Appl. Genet. 2017;58:179–184. doi: 10.1007/s13353-016-0372-3. PubMed DOI

Shahar N., Landman S., Weiner I., Elman T., Dafni E., Feldman Y., Tuller T., Yacoby I. The integration of multiple nuclear-encoded transgenes in the green alga Chlamydomonas reinhardtii results in higher transcription levels. Front. Plant Sci. 2020;10:1784. doi: 10.3389/fpls.2019.01784. PubMed DOI PMC

Choi H.-W., Yu X.-H., Lemaux P.G., Cho M.-J. Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. Plant Cell Rep. 2009;28:1265–1272. doi: 10.1007/s00299-009-0726-y. PubMed DOI PMC

Schulze J. Alien Gene Transfer in Crop Plants. Volume 2. Springer; New York, NY, USA: 2014. Barley; pp. 85–120.

Kihara M., Okada Y., Kuroda H., Saeki K., Yoshigi N., Ito K. Improvement of β-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol. Breed. 2000;6:511–517. doi: 10.1023/A:1026535407570. DOI

Horvath H., Huang J., Wong O., Kohl E., Okita T., Kannangara C.G., von Wettstein D. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. USA. 2000;97:1914–1919. doi: 10.1073/pnas.030527497. PubMed DOI PMC

Horvath H., Jensen L., Wong O., Kohl E., Ullrich S., Cochran J., Kannangara C., Von Wettstein D. Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor. Appl. Genet. 2001;102:1–11. doi: 10.1007/s001220051612. DOI

Cho M.J., Choi H.W., Jiang W., Ha C.D., Lemaux P.G. Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. Physiol. Plant. 2002;115:144–154. doi: 10.1034/j.1399-3054.2002.1150117.x. PubMed DOI

Bregitzer P., Tonks D. Inheritance and expression of transgenes in barley. Crop Sci. 2003;43:4–12. doi: 10.2135/cropsci2003.4000. DOI

Choi H., Yu X., Lemaux P., Cho M. Stability and inheritance of endosperm-specific expression of two transgenes in progeny of crosses of independently transformed barley (Hordeum vulgare L.) plants. Vitr. Cell. Dev. Biol. 2004;40:68A PubMed PMC

Desai P.N., Shrivastava N., Padh H. Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnol. Adv. 2010;28:427–435. doi: 10.1016/j.biotechadv.2010.01.005. PubMed DOI

Saberianfar R., Menassa R. Strategies to increase expression and accumulation of recombinant proteins. Mol. Pharming Appl. Chall. Emerg. Areas. 2018:119–135.

Gao L., Tian Y., Chen M.-C., Wei L., Gao T.-G., Yin H.-J., Zhang J.-L., Kumar T., Liu L.-B., Wang S.-M. Cloning and functional characterization of epidermis-specific promoter MtML1 from Medicago truncatula. J. Biotechnol. 2019;300:32–39. doi: 10.1016/j.jbiotec.2019.05.003. PubMed DOI

Li Y., Yu L., Wang Q., Zhao X., Li X., Qi B. Analysis of the Promoter of Emb5 from Zea mays Identifies a Region of 523 bp Responsible for Its Embryo-Specific Activity. Plant Mol. Biol. Rep. 2020;39:288–300. doi: 10.1007/s11105-020-01251-w. DOI

Takaiwa F., Wakasa Y., Ozawa K., Sekikawa K. Improvement of production yield and extraction efficacy of recombinant protein by high endosperm-specific expression along with simultaneous suppression of major seed storage proteins. Plant Sci. 2021;302:110692. doi: 10.1016/j.plantsci.2020.110692. PubMed DOI

Pallotta M., Graham R., Langridge P., Sparrow D., Barker S. RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet. 2000;101:1100–1108. doi: 10.1007/s001220051585. DOI

Holásková E., Galuszka P., Frébort I., Milek J. A method of preparing barley plants that produce antimicrobial peptide. [(accessed on 21 March 2019)]; WO2019052588. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019052588.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation

. 2024 Dec 24 ; 14 (1) : . [epub] 20241224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...