Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
PCI-05/2012
IPT and the Tunisian Ministry for Higher Education, Scientific Research, and Technology
1207/2011
capes
2013/07467-1
FAPES
PubMed
31455241
PubMed Central
PMC6712667
DOI
10.1186/s12864-019-6042-1
PII: 10.1186/s12864-019-6042-1
Knihovny.cz E-resources
- Keywords
- Hyalomma dromedarii, LC–MS/MS, PIT, Proteome, Salivary glands,
- MeSH
- Ticks genetics metabolism MeSH
- Arthropod Proteins genetics metabolism MeSH
- Proteome metabolism MeSH
- Proteomics MeSH
- Salivary Glands metabolism MeSH
- Saliva metabolism MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Camelus MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arthropod Proteins MeSH
- Proteome MeSH
BACKGROUND: The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. RESULTS: We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. CONCLUSION: This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.
See more in PubMed
Allen JR. Immunology of interactions between ticks and laboratory animals. Exp Appl Acarol. 1989;7:5–13. doi: 10.1007/BF01200448. PubMed DOI
Francischetti IMB, Anderson JM, Manoukis N, Pham VM, Ribeiro JMC. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteome. 2011;74:2892–2908. doi: 10.1016/j.jprot.2011.07.015. PubMed DOI PMC
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3:43. doi: 10.3389/fcimb.2013.00043. PubMed DOI PMC
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Chmelar J, Calvo E, Pedra JHF, Francischetti IMB, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteome. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Nuttall PA, Labuda M. Saliva-assisted transmission of tick-borne pathogens. In: Bowman AS, Nuttall PA, editors. Ticks. Cambridge: Cambridge University Press; 2008. p. 205–19. http://ebooks.cambridge.org/ref/id/CBO9780511551802A017. Accessed 20 Jan 2017.
Assumpção TC, Mizurini DM, Ma D, Monteiro RQ, Ahlstedt S, Reyes M, et al. Ixonnexin from tick saliva promotes fibrinolysis by interacting with plasminogen and tissue-type plasminogen activator, and prevents arterial thrombosis. Sci Rep. 2018;8:4806. doi: 10.1038/s41598-018-22780-1. PubMed DOI PMC
Assumpção TC, Ma D, Mizurini DM, Kini RM, Ribeiro JMC, Kotsyfakis M, et al. In vitro mode of action and anti-thrombotic activity of Boophilin, a multifunctional Kunitz protease inhibitor from the midgut of a tick vector of Babesiosis, Rhipicephalus microplus. PLOS Neglected Tropical Diseases. 2016;10:e0004298. doi: 10.1371/journal.pntd.0004298. PubMed DOI PMC
Díaz-Martín V, Manzano-Román R, Oleaga A, Pérez-Sánchez R. New salivary anti-haemostatics containing protective epitopes from Ornithodoros moubata ticks: assessment of their individual and combined vaccine efficacy. Vet Parasitol. 2015;212:336–349. doi: 10.1016/j.vetpar.2015.08.005. PubMed DOI
Chmelař J, Kotál J, Karim S, Kopacek P, Francischetti IMB, Pedra JHF, et al. Sialomes and Mialomes: a systems-biology view of tick tissues and tick–host interactions. Trends Parasitol. 2016;32:242–254. doi: 10.1016/j.pt.2015.10.002. PubMed DOI PMC
Chmelař J, Kotál J, Kopecký J, JHF P, Kotsyfakis M. All For One and One For All on the Tick-Host Battlefield. Trends in Parasitology. 2016. PubMed PMC
Steen NA, Barker SC, Alewood PF. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 2006;47:1–20. doi: 10.1016/j.toxicon.2005.09.010. PubMed DOI
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, et al. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One. 2014;9:e94831. doi: 10.1371/journal.pone.0094831. PubMed DOI PMC
Tan AWL, Francischetti IMB, Slovak M, Manjunatha KR, JMC R. Sexual differences in the sialomes of the zebra tick, Rhipicephalus pulchellus. J Proteomics. 2015. PubMed PMC
Mans BJ, Andersen JF, Francischetti IMB, Valenzuela JG, Schwan TG, Pham VM, et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol. 2008;38:42–58. doi: 10.1016/j.ibmb.2007.09.003. PubMed DOI PMC
Evans VC, Barker G, Heesom KJ, Fan J, Bessant C, Matthews DA. De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat Meth. 2012;9:1207–1211. doi: 10.1038/nmeth.2227. PubMed DOI PMC
Mudenda L, Pierlé SA, Turse JE, Scoles GA, Purvine SO, Nicora CD, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029–1037. doi: 10.1016/j.ijpara.2014.07.003. PubMed DOI
Collins LJ, Biggs PJ, Voelckel C, Joly S. An approach to transcriptome analysis of non-model organisms using short-read sequences. Genome Inform. 2008;21:3–14. PubMed
Apanaskevich DA, Schuster AL, Horak IG. The genus Hyalomma: VII. Redescription of all parasitic stages of H.(Euhyalomma) dromedarii and H.(E.) schulzei (Acari: Ixodidae) J Med Entomol. 2008;45:817–831. doi: 10.1093/jmedent/45.5.817. PubMed DOI
Estrada-Peña A. Ticks of domestic animals in the Mediterranean region: a guide to identification of species. University of Zaragoza; 2004.
Alanazi AD, Al-Mohammed HI, Alyousif MS, Said AE, Salim B, Abdel-Shafy S, et al. Species diversity and seasonal distribution of hard ticks (Acari: Ixodidae) infesting mammalian hosts in various districts of Riyadh Province. Saudi Arabia J Med Entomol. 2019. PubMed
de Kok JB, d’Oliveira C, Jongejan F. Detection of the protozoan parasite Theileria annulata in Hyalomma ticks by the polymerase chain reaction. Exp Appl Acarol. 1993;17:839–846. doi: 10.1007/BF00225857. PubMed DOI
Abdullah HHAM, El-Molla A, Salib FA, Allam NAT, Ghazy AA, Abdel-Shafy S. Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii (Acari: Ixodidae) vectors of rickettsioses in Egypt. Veterinary World. 2016;9:1087–1101. doi: 10.14202/vetworld.2016.1087-1101. PubMed DOI PMC
Karim S, Budachetri K, Mukherjee N, Williams J, Kausar A, Hassan MJ, et al. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl Trop Dis. 2017;11:e0005681. doi: 10.1371/journal.pntd.0005681. PubMed DOI PMC
Bensaoud Chaima, Abdelkafi-Koubaa Zaineb, Ben Mabrouk Hazem, Morjen Maram, Hmila Issam, Rhim Adel, Ayeb Mohamed El, Marrakchi Naziha, Bouattour Ali, M’ghirbi Youmna. Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects. Journal of Medical Entomology. 2017;54(6):1476–1482. doi: 10.1093/jme/tjx153. PubMed DOI
Ibrahim MA, Masoud HMM. Thrombin inhibitor from the salivary gland of the camel tick Hyalomma dromedarii. Exp Appl Acarol. 2018;74:85–97. doi: 10.1007/s10493-017-0196-9. PubMed DOI
Abdullah HHAM, El-Shanawany EE, Abdel-Shafy S, Abou-Zeina HAA, Abdel-Rahman EH. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet World. 2018;11:1109–1119. doi: 10.14202/vetworld.2018.1109-1119. PubMed DOI PMC
Bensaoud C, Nishiyama MY, Ben Hamda C, Lichtenstein F, Castro de Oliveira U, Faria F, et al. De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit Vectors. 2018;11:314. doi: 10.1186/s13071-018-2874-9. PubMed DOI PMC
Marzouk AS, Darwish ZE. Changes in the salivary glands of female Hyalomma (Hyalomma) dromedarii during and after feeding. J Egypt Soc Parasitol. 1994;24:39–57. PubMed
Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, et al. An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion. Ornithodoros coriaceus J Proteomics. 2008;71:493–512. doi: 10.1016/j.jprot.2008.07.006. PubMed DOI PMC
Díaz-Martín V, Manzano-Román R, Valero L, Oleaga A, Encinas-Grandes A, Pérez-Sánchez R. An insight into the proteome of the saliva of the argasid tick Ornithodoros moubata reveals important differences in saliva protein composition between the sexes. J Proteome. 2013;80:216–235. doi: 10.1016/j.jprot.2013.01.015. PubMed DOI
Oliveira CJ, Anatriello E, de Miranda-Santos IK, Francischetti IM, Sá-Nunes A, Ferreira BR, et al. Proteome of Rhipicephalus sanguineus tick saliva induced by the secretagogues pilocarpine and dopamine. Ticks Tick Borne Dis. 2013;4:469–477. doi: 10.1016/j.ttbdis.2013.05.001. PubMed DOI PMC
Siwiak M, Zielenkiewicz P. Co-regulation of translation in protein complexes. Biol Direct. 2015;10:18. doi: 10.1186/s13062-015-0048-7. PubMed DOI PMC
Nagalakshmi U, Waern K, Snyder M. RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol. 2010;Chapter 4:Unit 4.11.1–13. PubMed
Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin N Am. 2008;22:195–215. doi: 10.1016/j.idc.2007.12.006. PubMed DOI
Bowman AS, Sauer JR. Tick salivary glands: function, physiology and future. Parasitology. 2005;129:S67. doi: 10.1017/S0031182004006468. PubMed DOI
Chinery WA. Studies on the various glands of the tick Haemaphysalis spinigera Neumann 1897. Acta Trop. 1965;22:235–266. PubMed
Furquim KCS, Bechara GH, Camargo Mathias MI. Morpho-histochemical characterization of salivary gland cells of males of the tick Rhipicephalus sanguineus (Acari: Ixodidae) at different feeding stages: description of new cell types. Exp Appl Acarol. 2010;50:59–70. doi: 10.1007/s10493-009-9282-y. PubMed DOI
Feldman-Muhsam B, Borut S, Saliternik-Givant S. Salivary secretion of the male tick during copulation. J Insect Physiol. 1970;16:1945–1949. doi: 10.1016/0022-1910(70)90239-8. PubMed DOI
Anderson JF. The natural history of ticks. Med Clin North Am. 2002;86:205–218. doi: 10.1016/S0025-7125(03)00083-X. PubMed DOI
de Castro MH, de Klerk D, Pienaar R, Latif AA, Rees DJG, Mans BJ. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis. 2016;7:536–548. doi: 10.1016/j.ttbdis.2016.01.014. PubMed DOI
Francischetti Ivo, M.B. The role of saliva in tick feeding. Frontiers in Bioscience. 2009;Volume(14):2051. doi: 10.2741/3363. PubMed DOI PMC
Aguilera L, Ferreira E, Giménez R, Fernández FJ, Taulés M, Aguilar J, et al. Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type III secretion system in enteropathogenic Escherichia coli. Int J Biochem Cell Biol. 2012;44:955–962. doi: 10.1016/j.biocel.2012.03.002. PubMed DOI
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004;17:349–356. doi: 10.1093/protein/gzh037. PubMed DOI
Ibrahim MA, Mohamed MM, Ghazy A-HM, Masoud HMM. Superoxide dismutases from larvae of the camel tick Hyalomma dromedarii. Comp Biochem Physiol B: Biochem Mol Biol. 2013;164:221–228. doi: 10.1016/j.cbpb.2013.01.002. PubMed DOI
Rosa de Lima MF, Sanchez Ferreira CA, Joaquim de Freitas DR, Valenzuela JG, Masuda A. Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) glutathione S-transferase. Insect Biochem Mol Biol. 2002;32:747–754. doi: 10.1016/S0965-1748(01)00157-6. PubMed DOI
da Silva VI, Torino Lermen T, Michelon A, Sanchez Ferreira CA, Joaquim de Freitas DR, Termignoni C, et al. Effect of acaricides on the activity of a Boophilus microplus glutathione S-transferase. Vet Parasitol. 2004;119:237–245. doi: 10.1016/j.vetpar.2003.11.004. PubMed DOI
Ribeiro JMC, Slovák M, Francischetti IMB. An insight into the sialome of Hyalomma excavatum. Ticks Tick Borne Dis. 2016;8:201–207. doi: 10.1016/j.ttbdis.2016.08.011. PubMed DOI PMC
Karim S, Singh P, Ribeiro JMC. A deep insight into the Sialotranscriptome of the Gulf coast tick. Amblyomma maculatum PLoS ONE. 2011;6:e28525. doi: 10.1371/journal.pone.0028525. PubMed DOI PMC
Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, Pham VM, et al. An insight into the sialome of the soft tick. Ornithodorus parkeri Insect Biochem Mol Biol. 2008;38:1–21. doi: 10.1016/j.ibmb.2007.09.009. PubMed DOI PMC
Ali A, Khan S, Ali I, Karim S, da Silva VI, Termignoni C. Probing the functional role of tick metalloproteases. Physiol Entomol. 2015;40:177–188. doi: 10.1111/phen.12104. DOI
Macours N, Hens K. Zinc-metalloproteases in insects: ACE and ECE. Insect Biochem Mol Biol. 2004;34:501–510. doi: 10.1016/j.ibmb.2004.03.007. PubMed DOI
Giebeler Nives, Zigrino Paola. A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins. 2016;8(4):122. doi: 10.3390/toxins8040122. PubMed DOI PMC
Tasoulis T, Isbister GK. A Review and Database of Snake Venom Proteomes. Toxins (Basel). 2017;9. PubMed PMC
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, et al. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. Experimental & Applied Acarology. 2014;63:559–578. PubMed
Ali A, Fernando Parizi L, Garcia Guizzo M, Tirloni L, Seixas A, da Silva Vaz Jr I, et al. Immunoprotective potential of a Rhipicephalus (Boophilus) microplus metalloprotease. Vet Parasitol. 2015;207:107–114. doi: 10.1016/j.vetpar.2014.11.007. PubMed DOI
Francischetti IMB, Mather TN, Ribeiro JMC. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin (ogen) lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun. 2003;305:869–875. doi: 10.1016/S0006-291X(03)00857-X. PubMed DOI PMC
Díaz-Martín V, Manzano-Román R, Oleaga A, Encinas-Grandes A, Pérez-Sánchez R. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol. 2013;191:301–314. doi: 10.1016/j.vetpar.2012.09.019. PubMed DOI
Xu X-L, Cheng T-Y, Yang H. Enolase, a plasminogen receptor isolated from salivary gland transcriptome of the ixodid tick Haemaphysalis flava. Parasitol Res. 2016;115:1955–1964. doi: 10.1007/s00436-016-4938-0. PubMed DOI
Meekins DA, Kanost MR, Michel K. Serpins in arthropod biology. Semin Cell Dev Biol. 2016;62:105–119. doi: 10.1016/j.semcdb.2016.09.001. PubMed DOI PMC
Páleníková J, Lieskovská J, Langhansová H, Kotsyfakis M, Chmelař J, Kopecký J. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect Immun. 2015;83:1949–1956. doi: 10.1128/IAI.03065-14. PubMed DOI PMC
Toyomane K, Konnai S, Niwa A, Githaka N, Isezaki M, Yamada S, et al. Identification and the preliminary in vitro characterization of IRIS homologue from salivary glands of Ixodes persulcatus Schulze. Ticks Tick Borne Dis. 2016;7:119–125. doi: 10.1016/j.ttbdis.2015.09.006. PubMed DOI
Walker MJ, Rylett CM, Keen JN, Audsley N, Sajid M, Shirras AD, et al. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Sci. 2006;4:9. doi: 10.1186/1477-5956-4-9. PubMed DOI PMC
Karr TL, Southern H, Rosenow MA, Gossmann TI, Snook RR. The old and the new: discovery proteomics identifies putative novel seminal fluid proteins in Drosophila. Mol Cell Proteomics. 2019;18(Suppl 1):S23–S33. doi: 10.1074/mcp.RA118.001098. PubMed DOI PMC
Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318(Pt 1):1–14. doi: 10.1042/bj3180001. PubMed DOI PMC
Ganfornina MD, Gutiérrez G, Bastiani M, Sánchez D. A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol. 2000;17:114–126. doi: 10.1093/oxfordjournals.molbev.a026224. PubMed DOI
Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell. 1999;3:661–671. doi: 10.1016/S1097-2765(00)80359-7. PubMed DOI
Rodriguez-Valle M, Moolhuijzen P, Piper EK, Weiss O, Vance M, Bellgard M, et al. Rhipicephalus microplus lipocalins (LRMs): genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol. 2013;43:739–752. doi: 10.1016/j.ijpara.2013.04.005. PubMed DOI
Beaufays J, Adam B, Decrem Y, Prévôt P-P, Santini S, Brasseur R, et al. Ixodes ricinus tick Lipocalins: identification, cloning, Phylogenetic Analysis and Biochemical Characterization. PLoS ONE. 2008;3:e3941. doi: 10.1371/journal.pone.0003941. PubMed DOI PMC
Beaufays J, Adam B, Menten-Dedoyart C, Fievez L, Grosjean A, Decrem Y, et al. Ir-LBP, an Ixodes ricinus tick salivary LTB4-binding Lipocalin, Interferes with Host Neutrophil Function. PLoS ONE. 2008;3:e3987. doi: 10.1371/journal.pone.0003987. PubMed DOI PMC
Leal BF, Alzugaray MF, Seixas A, Da Silva Vaz I, Ferreira CAS. Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology. 2018;145:927–938. doi: 10.1017/S0031182017001998. PubMed DOI
Bishop R, Lambson B, Wells C, Pandit P, Osaso J, Nkonge C, et al. A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. Int J Parasitol. 2002;32:833–842. doi: 10.1016/S0020-7519(02)00027-9. PubMed DOI
Maruyama SR, Anatriello E, Anderson JM, Ribeiro JM, Brandão LG, Valenzuela JG, et al. The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense. BMC genomics. 2010;11:363. doi: 10.1186/1471-2164-11-363. PubMed DOI PMC
De Souza EM, Meuser-Batista M, Batista DG, Duarte BB, Araújo-Jorge TC, Soeiro MNC. Trypanosoma cruzi: Alpha-2-macroglobulin regulates host cell apoptosis induced by the parasite infection in vitro. Exp Parasitol. 2008;118:331–337. doi: 10.1016/j.exppara.2007.09.004. PubMed DOI
Cvirn G, Gallistl S, Koestenberger M, Kutschera J, Leschnik B, Muntean W. Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thromb Res. 2002;105:433–439. doi: 10.1016/S0049-3848(02)00042-7. PubMed DOI
Meijers JC, Tijburg PN, Bouma BN. Inhibition of human blood coagulation factor Xa by alpha 2-macroglobulin. Biochemistry. 1987;26:5932–5937. doi: 10.1021/bi00392a053. PubMed DOI
Harpel P. C. HUMAN PLASMA ALPHA 2-MACROGLOBULIN: AN INHIBITOR OF PLASMA KALLIKREIN. Journal of Experimental Medicine. 1970;132(2):329–352. doi: 10.1084/jem.132.2.329. PubMed DOI PMC
Banks RE, Evans SW, Van Leuven F, Alexander D, McMahon MJ, Whicher JT. Measurement of the “fast” or complexed form of alpha 2 macroglobulin in biological fluids using a sandwich enzyme immunoassay. J Immunol Methods. 1990;126:13–20. PubMed
Bonacci GR, Cáceres LC, Sánchez MC, Chiabrando GA. Activated alpha(2)-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. Arch Biochem Biophys. 2007;460:100–6. PubMed
Bouattour A. Cle dichotomique et identification des tiques (Acari: Ixodidae) parasites du betail au Maghreb. Arch Inst Pasteur Tunis. 2002;79:43–50. PubMed
Brown RE, Jarvis KL, Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem. 1989;180:136–139. doi: 10.1016/0003-2697(89)90101-2. PubMed DOI
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996;93:14440–14445. doi: 10.1073/pnas.93.25.14440. PubMed DOI PMC