Chelation is the rational treatment modality in metal overload conditions, but chelators are often non-selective and can, hence, cause an imbalance in the homeostasis of physiological metals including calcium and magnesium. The aim of this study was to develop an affordable, rapid but sensitive and precise method for determining the degree of chelation of calcium and magnesium ions and to employ this method for comparison on a panel of known metal chelators. Spectrophotometric method using o-cresolphthalein complexone (o-CC) was developed and its biological relevance was confirmed in human platelets by impedance aggregometry. The lowest detectable concentration of calcium and magnesium ions by o-CC was 2.5 μM and 2 μM, respectively. The indicator was stable for at least 110 days. Four and seven out of twenty-one chelators strongly chelated calcium and magnesium ions, respectively. Importantly, the chelation effect of clinically used chelators was not negligible. Structure-activity relationships for eight quinolin-8-ols showed improvements in chelation particularly in the cases of dihalogen substitution, and a negative linear relationship between pKa and magnesium chelation was observed. Calcium chelation led to inhibition of platelet aggregation in concentrations corresponding to the complex formation. A novel method for screening of efficacy and safety of calcium and magnesium ion chelation was developed and validated.
- MeSH
- agregace trombocytů účinky léků MeSH
- chelátory * chemie MeSH
- hořčík * chemie MeSH
- lidé MeSH
- preklinické hodnocení léčiv metody MeSH
- trombocyty účinky léků metabolismus MeSH
- vápník * analýza metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- MeSH
- agregace trombocytů účinky léků MeSH
- antiflogistika nesteroidní MeSH
- Aspirin aplikace a dávkování farmakologie terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- lékové interakce * MeSH
- lékové postižení jater MeSH
- lidé MeSH
- metamizol * aplikace a dávkování farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
BACKGROUND AND AIMS: It is well known that elevated cholesterol is associated with enhanced platelet aggregation and patients suffering from familial hypercholesterolemia (FH) have a high risk of thrombotic cardiovascular events. Although decreasing cholesterol level is associated with attenuation of platelet hyperactivity, there are currently no data on the effect of convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9ab) on platelet reactivity in FH. The aim of the study was to analyse the impact of different therapies including PCSK9ab on platelet aggregation in FH. METHODS: This study enrolled all 15 patients treated in the University Hospital Hradec Králové for FH. PCSK9ab have been administered in 12 of 15 patients while 8 patients were also undergoing lipid apheresis. Blood samples from all patients including pre- and post-apheresis period were tested for platelet aggregation triggered by 7 inducers, and the effect of 3 clinically used drugs (acetylsalicylic acid, ticagrelor and vorapaxar) was compared as well. RESULTS: Although apheresis decreased the reactivity of platelets in general, platelet responses were not different between non-apheresis patients treated with PCSK9ab and apheresis patients (post-apheresis values) with the exception of ristocetin. However, when compared to age-matched healthy population, FH patients had significantly lower platelet aggregation responses to 4 out of 7 used inducers and higher profit from 2 out of 3 used antiplatelet drugs even after exclusion of FH patients regularly receiving conventional antiplatelet treatment. CONCLUSION: This study showed for the first time the suitability of PCSK9ab treatment for reduction of platelet reactivity in FH patients.
- MeSH
- agregace trombocytů * účinky léků MeSH
- dospělí MeSH
- hyperlipoproteinemie typ II * krev terapie farmakoterapie MeSH
- inhibitory agregace trombocytů * terapeutické užití farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- monoklonální protilátky terapeutické užití farmakologie MeSH
- PCSK9 inhibitory * MeSH
- proproteinkonvertasa subtilisin/kexin typu 9 * imunologie MeSH
- senioři MeSH
- separace krevních složek * MeSH
- trombocyty účinky léků metabolismus imunologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Platelet aggregation is a complicated process mediated by different signaling pathways. As the process is highly complex and apparently redundant, the relationships between these pathways are not yet fully known. The aim of this project was to study the interconnections among seven different aggregation pathways in a group of 53 generally healthy volunteers aged 20 to 66 years. Platelet aggregation was induced with thrombin receptor activating peptide 6 (TRAP), arachidonic acid (AA), platelet activating factor 16 (PAF), ADP, collagen, thromboxane A2 analogue U46619 or ristocetin (platelet agglutination) ex vivo in fasting blood samples according to standardized timetable protocol. Additionally, some samples were pre-treated with known clinically used antiplatelet drugs (vorapaxar, ticagrelor or acetylsalicylic acid (ASA)). Significant correlations among all used inducers were detected (Pearson correlation coefficients (rP): 0.3 to 0.85). Of all the triggers, AA showed to be the best predictor of the response to other inducers with rP ranging from 0.66 to 0.85. Interestingly, the antiplatelet response to ticagrelor strongly predicted the response to unrelated drug vorapaxar (rP = 0.71). Our results indicate that a response to one inducer can predict the response for other triggers or even to an antiplatelet drug. These data are useful for future testing but should be also confirmed in patients.
The process of platelet aggregation is often influenced by several factors including sex and age. A literature review confirmed the existence of sex-related differences in platelet aggregation. Although 68 out of 78 papers found such differences, there are still some controversies regarding these differences, which can be due to multiple factors (age, trigger, concomitant disease, sample handling, etc.). These outcomes are discussed in line with novel results obtained from a local study, in which blood samples from a total of 53 overall healthy women and men with ages ranging from 20 to 66 years were collected. Aggregation was induced with seven different triggers (ristocetin, thrombin receptor activating peptide 6 [TRAP-6], arachidonic acid [AA], platelet-activating factor 16 [PAF-16], ADP, collagen, or thromboxane A2 analog U-46619) ex vivo. In addition, three FDA-approved antiplatelet drugs (vorapaxar, ticagrelor, or acetylsalicylic acid [ASA]) were also tested. In general, women had higher aggregation responses to some agonists (ADP, TRAP), as well as lower benefit from inhibitors (ASA, vorapaxar). The aggregatory responses to AA and TRAP decreased with age in both sexes, while responses to ADP, U-46619, and PAF were affected by age only in women. In conclusion, more studies are needed to decipher the biological importance of sex-related differences in platelet aggregation in part to enable personalized antiplatelet treatment.
- MeSH
- adenosindifosfát farmakologie MeSH
- agregace trombocytů * MeSH
- Aspirin terapeutické užití MeSH
- inhibitory agregace trombocytů * terapeutické užití MeSH
- kyselina 15-hydroxy-11 alfa,9 alfa-(epoxymethano)prosta-5,13-dienová farmakologie MeSH
- kyselina arachidonová farmakologie MeSH
- laktony farmakologie MeSH
- lidé MeSH
- trombocyty MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE: The incidence of acute myocardial infarctions (AMI) shows circadian variation typically peaking during morning hours with a decline at night. However, this variation does not occur in patients with diabetes mellitus (DM). The night's decline of AMI may be partially explained by melatonin-related platelet inhibition. Whether this effect is absent in diabetic patients is unknown. The aim was to study the effect of melatonin on in-vitro platelet aggregation in healthy individuals and patients with type 2 DM. METHODS: Platelet aggregation was measured in blood samples from healthy individuals (n = 15) and type 2 DM patients (n = 15) using multiple electrode aggregometry. Adenosine diphosphate (ADP), arachidonic acid (ASPI) and thrombin (TRAP) were used as agonists. Aggregability for each subject was tested after adding melatonin in two concentrations. RESULTS: In healthy individuals, melatonin inhibited platelet aggregation in both higher (10-5 M) and lower concentrations (10-9 M) induced by ADP, ASPI, and TRAP (p < 0.001, p = 0.002, p = 0.029, respectively). In DM patients, melatonin did not affect platelet aggregation in both concentrations induced by ADP, ASPI, and TRAP. Melatonin decreased platelet aggregation induced by ADP, ASPI, and TRAP significantly more in healthy individuals compared to patients with DM. (p = 0.005, p = 0.045 and p = 0.048, respectively). CONCLUSION: Platelet aggregation was inhibited by melatonin in healthy individuals. In-vitro antiplatelet effect of melatonin in type 2 DM patients is significantly attenuated.
- MeSH
- adenosindifosfát farmakologie MeSH
- agregace trombocytů fyziologie MeSH
- diabetes mellitus 2. typu * farmakoterapie MeSH
- infarkt myokardu * MeSH
- inhibitory agregace trombocytů farmakologie terapeutické užití MeSH
- lidé MeSH
- melatonin * farmakologie terapeutické užití MeSH
- trombocyty fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Both pyridine and pyrano derivatives have been previously shown to possess biologically relevant activity. In this study, we report the incorporation of these two scaffolds into one molecule. METHODS: The designed 3,3-dimethyl-6-oxopyrano[3,4-c]pyridines were synthesized by the acylation of enamine under Stork conditions followed by condensation of formed β-diketones with 2-cyanoacetamide. The structures of these compounds were confirmed by using a wide spectrum of physico-chemical methods. Their antiplatelet, anticoagulant and vasodilatory activity together with toxicity were evaluated. KEY FINDINGS: A series of 6-oxopyrano[3,4-c]pyridines 3a-j was obtained. Four of these compounds were reported for the first time. None of the tested compounds demonstrated anticoagulant effect but 8-methyl derivative (3a) was a potent antiplatelet compound with IC50 numerically twice as low as the clinically used acetylsalicylic acid. A series of further mechanistic tests showed that 3a interferes with calcium signaling. The compound is also not toxic and in addition possesses vasodilatory activity as well. CONCLUSIONS: Compound 3a is a promising inhibitor of platelet aggregation, whose mechanism of action should be studied in detail.
BACKGROUND: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1. CONCLUSION: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.
- MeSH
- agregace trombocytů MeSH
- Aspirin farmakologie MeSH
- heterocyklické sloučeniny * farmakologie MeSH
- inhibitory agregace trombocytů * farmakologie MeSH
- lidé MeSH
- trombocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Isoquinoline alkaloids have multiple biological activities, which might be associated with positive pharmacological effects as well as negative adverse reactions. As bleeding was suggested to be a side effect of the isoquinoline alkaloid berberine, we decided to ascertain if different isoquinoline alkaloids could influence hemocoagulation through the inhibition of either platelet aggregation or blood coagulation. Initially, a total of 14 compounds were screened for antiplatelet activity in whole human blood by impedance aggregometry. Eight of them demonstrated an antiplatelet effect against arachidonic acid-induced aggregation. Papaverine and bulbocapnine were the most potent compounds with biologically relevant IC50 values of 26.9 ± 12.2 μM and 30.7 ± 5.4 μM, respectively. Further testing with the same approach confirmed their antiplatelet effects by employing the most physiologically relevant inducer of platelet aggregation, collagen, and demonstrated that bulbocapnine acted at the level of thromboxane receptors. None of the alkaloids tested had an effect on blood coagulation measured by a mechanical coagulometer. In conclusion, the observed antiplatelet effects of isoquinoline alkaloids were found mostly at quite high concentrations, which means that their clinical impact is most likely low. Bulbocapnine was an exception. It proved to be a promising antiplatelet molecule, which may have biologically relevant effects.
Exposure to high altitudes and exercise alters body's physiology and may cause acute cardiovascular events. Platelet activation is one of the key players in these events. Therefore, we investigated the effect of vigorous exercise at higher altitude (2650 m) on platelet aggregation and serum markers of platelet activation. 14 healthy subjects performed a step incremental ergometer test until exhaustion at the Environmental Research Station (UFS, 2650 m) at Zugspitze. Platelet aggregation and serum levels of endothelin-1, soluble p-selectin, platelet factor 4 and Chromogranin A were measured. Platelet activation was significantly enhanced after exercise at high altitude compared to measures immediately prior exercise. We detected significantly enhanced serum levels of endothelin-1 and soluble p-selectin whereas chromogranin A and platelet factor 4 remained unchanged. This effect might be due to increased endothelin-1 levels causing pulmonary vasoconstriction, rheological changes and direct platelet activation. This might be of clinical relevance, especially in patients with pre-existing diseases.
- MeSH
- agregace trombocytů MeSH
- aktivace trombocytů fyziologie MeSH
- cvičení fyziologie MeSH
- lidé MeSH
- nadmořská výška * MeSH
- P-selektin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH