Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O₂₋. and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst

. 2013 May 17 ; 288 (20) : 14341-14361. [epub] 20130405

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23564450

Grantová podpora
ZIA AI000810 Intramural NIH HHS - United States
ZIA AI000810-16 NIAID NIH HHS - United States

Odkazy

PubMed 23564450
PubMed Central PMC3656290
DOI 10.1074/jbc.m113.466995
PII: S0021-9258(19)54515-X
Knihovny.cz E-zdroje

The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2[Symbol: see text] generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2[Symbol: see text] generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu(2+), which provides redox potential for catalytic removal of O2[Symbol: see text]. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ~100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu(2+) and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu(2+)-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism.

Zobrazit více v PubMed

Ribeiro J. M., Francischetti I. M. (2003) Role of arthropod saliva in blood feeding. Sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, 73–88 PubMed

Francischetti I. M. (2010) Platelet aggregation inhibitors from hematophagous animals. Toxicon 56, 1130–1144 PubMed PMC

Mans B. J., Francischetti I. M. (2010) Sialomic perspectives on the evolution of blood-feeding behavior in arthropods. Future therapeutics by natural design. Toxins and Hemostasis: From bench to Bedside (Kini R. M., Clemetson K. J., Markland F. S., McLane M. A., Morita T., eds) pp. 21–44, Springer, New York

Ma D., Xu X., An S., Liu H., Yang X., Andersen J. F., Wang Y., Tokumasu F., Ribeiro J. M., Francischetti I. M., Lai R. (2011) A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis. Thromb. Haemost. 105, 1032–1045 PubMed PMC

Xu X., Francischetti I. M., Lai R., Ribeiro J. M., Andersen J. F. (2012) Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in a single domain. J. Biol. Chem. 287, 10967–10976 PubMed PMC

Assumpcão T. C., Charneau S., Santiago P. B., Francischetti I. M., Meng Z., Araújo C. N., Pham V. M., Queiroz R. M., de Castro C. N., Ricart C. A., Santana J. M., Ribeiro J. M. (2011) Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J. Proteome Res. 10, 669–679 PubMed PMC

Assumpção T. C., Francischetti I. M., Andersen J. F., Schwarz A., Santana J. M., Ribeiro J. M. (2008) An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem. Mol. Biol. 38, 213–232 PubMed PMC

Krötz F., Sohn H. Y., Pohl U. (2004) Reactive oxygen species. Players in the platelet game. Arterioscler. Thromb. Vasc. Biol. 24, 1988–1996 PubMed

Arthur J. F., Gardiner E. E., Kenny D., Andrews R. K., Berndt M. C. (2008) Platelet receptor redox regulation. Platelets 19, 1–8 PubMed

Krötz F., Sohn H. Y., Gloe T., Zahler S., Riexinger T., Schiele T. M., Becker B. F., Theisen K., Klauss V., Pohl U. (2002) NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 100, 917–924 PubMed

Caccese D., Praticò D., Ghiselli A., Natoli S., Pignatelli P., Sanguigni V., Iuliano L., Violi F. (2000) Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation. Role of arachidonic acid metabolism. Thromb. Haemost. 83, 485–490 PubMed

Tang W. H., Stitham J., Gleim S., Di Febbo C., Porreca E., Fava C., Tacconelli S., Capone M., Evangelista V., Levantesi G., Wen L., Martin K., Minuz P., Rade J., Patrignani P., Hwa J. (2011) Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J. Clin. Invest. 121, 4462–4476 PubMed PMC

Leo R., Praticò D., Iuliano L., Pulcinelli F. M., Ghiselli A., Pignatelli P., Colavita A. R., FitzGerald G. A., Violi F. (1997) Platelet activation by superoxide anion and hydroxyl radicals intrinsically generated by platelets that had undergone anoxia and then reoxygenated. Circulation 95, 885–891 PubMed

Salvemini D., de Nucci G., Sneddon J. M., Vane J. R. (1989) Superoxide anions enhance platelet adhesion and aggregation. Br. J. Pharmacol. 97, 1145–1150 PubMed PMC

Yao S. K., Ober J. C., Gonenne A., Clubb F. J., Jr., Krishnaswami A., Ferguson J. J., Anderson H. V., Gorecki M., Buja L. M., Willerson J. T. (1993) Active oxygen species play a role in mediating platelet aggregation and cyclic flow variations in severely stenosed and endothelium-injured coronary arteries. Circ. Res. 73, 952–967 PubMed

Pignatelli P., Pulcinelli F. M., Lenti L., Gazzaniga P. P., Violi F. (1998) Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 91, 484–490 PubMed

Iuliano L., Colavita A. R., Leo R., Praticò D., Violi F. (1997) Oxygen free radicals and platelet activation. Free Radic. Biol. Med. 22, 999–1006 PubMed

Praticò D., Iuliano L., Alessandri C., Camastra C., Violi F. (1993) Polymorphonuclear leukocyte-derived O2-reactive species activate primed platelets in human whole blood. Am. J. Physiol. 264, H1582–H1587 PubMed

Pratico D., Iuliano L., Pulcinelli F. M., Bonavita M. S., Gazzaniga P. P., Violi F. (1992) Hydrogen peroxide triggers activation of human platelets selectively exposed to nonaggregating concentrations of arachidonic acid and collagen. J. Lab. Clin. Med. 119, 364–370 PubMed

Chlopicki S., Olszanecki R., Janiszewski M., Laurindo F. R., Panz T., Miedzobrodzki J. (2004) Functional role of NADPH oxidase in activation of platelets. Antioxid. Redox Signal. 6, 691–698 PubMed

Clemetson K. J., Clemetson J. M. (2007) Collagen receptors as potential targets for novel anti-platelet agents. Curr. Pharm. Des. 13, 2673–2683 PubMed

Begonja A. J., Teichmann L., Geiger J., Gambaryan S., Walter U. (2006) Platelet regulation by NO/cGMP signaling and NAD(P)H oxidase-generated ROS. Blood Cells Mol. Dis. 36, 166–170 PubMed

Watson S. P. (2009) Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr. Pharm. Des. 15, 1358–1372 PubMed

Arthur J. F., Qiao J., Shen Y., Davis A. K., Dunne E., Berndt M. C., Gardiner E. E., Andrews R. K. (2012) ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J. Thromb. Haemost. 10, 1133–1141 PubMed

Hubbard G. P., Wolffram S., Lovegrove J. A., Gibbins J. M. (2004) Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost. 2, 2138–2145 PubMed

Gibbs G. M., Roelants K., O'Bryan M. K. (2008) The CAP superfamily. Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins. Roles in reproduction, cancer, and immune defense. Endocr. Rev. 29, 865–897 PubMed

Francischetti I. M., Saliou B., Leduc M., Carlini C. R., Hatmi M., Randon J., Faili A., Bon C. (1997) Convulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. Toxicon 35, 1217–1228 PubMed

Jandrot-Perrus M., Busfield S., Lagrue A. H., Xiong X., Debili N., Chickering T., Le Couedic J. P., Goodearl A., Dussault B., Fraser C., Vainchenker W., Villeval J. L. (2000) Cloning, characterization, and functional studies of human and mouse glycoprotein VI. A platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 96, 1798–1807 PubMed

Francischetti I. M., Assumpcao T. C., Ma D., Li Y., Vicente E. C., Uieda W., Ribeiro J. M. (2013) The “Vampirome”: transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J. Proteomics 82, 288–319 PubMed PMC

Assumpção T. C., Alvarenga P. H., Ribeiro J. M., Andersen J. F., Francischetti I. M. (2010) Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2α, and 15(S)-HETE. J. Biol. Chem. 285, 39001–39012 PubMed PMC

Whitmore L., Wallace B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 PubMed PMC

Whitmore L., Wallace B. A. (2008) Protein secondary structure analyses from circular dichroism spectroscopy. Methods and reference databases. Biopolymers 89, 392–400 PubMed

Krishna M. C., Russo A., Mitchell J. B., Goldstein S., Dafni H., Samuni A. (1996) Do nitroxide antioxidants act as scavengers of O2⨪ or as SOD mimics? J. Biol. Chem. 271, 26026–26031 PubMed

Krishna M. C., Samuni A., Taira J., Goldstein S., Mitchell J. B., Russo A. (1996) Stimulation by nitroxides of catalase-like activity of hemeproteins. Kinetics and mechanism. J. Biol. Chem. 271, 26018–26025 PubMed

Schultz M. K., Biegalski S. R., Inn K. G., Yu L., Burnett W. C., Thomas J. L., Smith G. E. (1999) Optimizing the removal of carbon phases in soils and sediments for sequential chemical extractions by coulometry. J. Environ. Monit. 1, 183–190 PubMed

Collin N., Assumpção T. C., Mizurini D. M., Gilmore D. C., Dutra-Oliveira A., Kotsyfakis M., Sá-Nunes A., Teixeira C., Ribeiro J. M., Monteiro R. Q., Valenzuela J. G., Francischetti I. M. (2012) Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly Lutzomyia longipalpis blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo. Arterioscler. Thromb. Vasc. Biol. 32, 2185–2198 PubMed PMC

Watson S. P., Auger J. M., McCarty O. J., Pearce A. C. (2005) GPVI and integrin αIIb β3 signaling in platelets. J. Thromb. Haemost. 3, 1752–1762 PubMed

Begonja A. J., Gambaryan S., Geiger J., Aktas B., Pozgajova M., Nieswandt B., Walter U. (2005) Platelet NAD(P)H-oxidase-generated ROS production regulates αIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood 106, 2757–2760 PubMed

Fridovich I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 PubMed

Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. (1996) Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 15036–15040 PubMed PMC

Cox A. G., Winterbourn C. C., Hampton M. B. (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313–325 PubMed

Goto J. J., Zhu H., Sanchez R. J., Nersissian A., Gralla E. B., Valentine J. S., Cabelli D. E. (2000) Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 275, 1007–1014 PubMed

Kosman D. J. (2010) Multicopper oxidases. A workshop on copper coordination chemistry, electron transfer, and metallophysiology. J. Biol. Inorg. Chem. 15, 15–28 PubMed

Sakurai T., Kataoka K. (2007) Structure and function of type I copper in multicopper oxidases. Cell Mol. Life Sci. 64, 2642–2656 PubMed PMC

Goldstein S., Fridovich I., Czapski G. (2006) Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content. Order restored. Free Radic. Biol. Med. 41, 937–941 PubMed

Butler J., Koppenol W. H., Margoliash E. (1982) Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. J. Biol. Chem. 257, 10747–10750 PubMed

Klug D., Rabani J., Fridovich I. (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J. Biol. Chem. 247, 4839–4842 PubMed

McCord J. M., Fridovich I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 PubMed

Sandström J., Carlsson L., Marklund S. L., Edlund T. (1992) The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity. J. Biol. Chem. 267, 18205–18209 PubMed

Asojo O. A. (2011) Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus. Acta Crystallogr. D Biol. Crystallogr. 67, 455–462 PubMed PMC

Wang Y. L., Kuo J. H., Lee S. C., Liu J. S., Hsieh Y. C., Shih Y. T., Chen C. J., Chiu J. J., Wu W. G. (2010) Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. J. Biol. Chem. 285, 37872–37883 PubMed PMC

Kubota S., Yang J. T. (1984) Bis[cyclo(histidylhistidine)]copper(II) complex that mimics the active center of superoxide dismutase has its catalytic activity. Proc. Natl. Acad. Sci. U.S.A. 81, 3283–3286 PubMed PMC

Weser U., Schubotz L. M. (1981) Catalytic reaction of copper complexes with superoxide. Agents Actions Suppl. 8, 103–120 PubMed

Brigelius R., Spöttl R., Bors W., Lengfelder E., Saran M., Weser U. (1974) Superoxide dismutase activity of low molecular weight Cu2 plus-chelates studied by pulse radiolysis. FEBS Lett. 47, 72–75 PubMed

Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. (1974) Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem. J. 139, 49–60 PubMed PMC

Goldstein I. M., Kaplan H. B., Edelson H. S., Weissmann G. (1979) Ceruloplasmin. A scavenger of superoxide anion radicals. J. Biol. Chem. 254, 4040–4045 PubMed

Davies P., Brown D. R. (2008) The chemistry of copper binding to PrP. Is there sufficient evidence to elucidate a role for copper in protein function? Biochem. J. 410, 237–244 PubMed

Hung I. H., Casareno R. L., Labesse G., Mathews F. S., Gitlin J. D. (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J. Biol. Chem. 273, 1749–1754 PubMed

Barnese K., Gralla E. B., Cabelli D. E., Valentine J. S. (2008) Manganous phosphate acts as a superoxide dismutase. J. Am. Chem. Soc. 130, 4604–4606 PubMed

Spasojević I., Batinić-Haberle I., Stevens R. D., Hambright P., Thorpe A. N., Grodkowski J., Neta P., Fridovich I. (2001) Manganese(III) biliverdin IX dimethyl ester. A powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple. Inorg. Chem. 40, 726–739 PubMed

Huang X., Atwood C. S., Hartshorn M. A., Multhaup G., Goldstein L. E., Scarpa R. C., Cuajungco M. P., Gray D. N., Lim J., Moir R. D., Tanzi R. E., Bush A. I. (1999) The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 PubMed

Davies P., Wang X., Sarell C. J., Drewett A., Marken F., Viles J. H., Brown D. R. (2011) The synucleins are a family of redox-active copper binding proteins. Biochemistry 50, 37–47 PubMed

Li Y., Kuppusamy P., Zweier J. L., Trush M. A. (1995) ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone. Role in DNA damage. Chem. Biol. Interact. 94, 101–120 PubMed

Bento I., Silva C. S., Chen Z., Martins L. O., Lindley P. F., Soares C. M. (2010) Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC Struct. Biol. 10, 28. PubMed PMC

Gardner R., Salvador A., Moradas-Ferreira P. (2002) Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation. Free Radic. Biol. Med. 32, 1351–1357 PubMed

Frieden E., Osaki S., Kobayashi H. (1965) Copper proteins and oxygen. Correlations between structure and function of the copper oxidases. J. Gen. Physiol. 49, (suppl.) 213–252 PubMed PMC

Marklund S. L. (1986) Ceruloplasmin, extracellular-superoxide dismutase, and scavenging of superoxide anion radicals. J. Free Radic. Biol. Med. 2, 255–260 PubMed

Vara D., Campanella M., Pula G. (2013) The novel NOX inhibitor 2-acetylphenothiazine impairs collagen-dependent thrombus formation in a GPVI-dependent manner. Br. J. Pharmacol. 168, 212–224 PubMed PMC

Bakdash N., Williams M. S. (2008) Spatially distinct production of reactive oxygen species regulates platelet activation. Free Radic. Biol. Med. 45, 158–166 PubMed

Faili A., Randon J., Francischetti I. M., Vargaftig B. B., Hatmi M. (1994) Convulxin-induced platelet aggregation is accompanied by a powerful activation of the phospholipase C pathway. Biochem. J. 298, 87–91 PubMed PMC

Francischetti I. M., Ghazaleh F. A., Reis R. A., Carlini C. R., Guimarães J. A. (1998) Convulxin induces platelet activation by a tyrosine-kinase-dependent pathway and stimulates tyrosine phosphorylation of platelet proteins, including PLCγ2, independently of integrin αIIb β3. Arch. Biochem. Biophys. 353, 239–250 PubMed

Vargaftig B. B., Prado-Franceschi J., Chignard M., Lefort J., Marlas G. (1980) Activation of guinea-pig platelets induced by convulxin, a substance extracted from the venom of Crotalus durissus cascavella. Eur. J. Pharmacol. 68, 451–464 PubMed

Clutton P., Miermont A., Freedman J. E. (2004) Regulation of endogenous reactive oxygen species in platelets can reverse aggregation. Arterioscler. Thromb. Vasc. Biol. 24, 187–192 PubMed

Widlansky M. E., Gutterman D. D. (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid. Redox. Signal. 15, 1517–1530 PubMed PMC

Murphy E., Steenbergen C. (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581–609 PubMed PMC

Leonarduzzi G., Sottero B., Testa G., Biasi F., Poli G. (2011) New insights into redox-modulated cell signaling. Curr. Pharm. Des. 17, 3994–4006 PubMed

Thomas S. R., Witting P. K., Drummond G. R. (2008) Redox control of endothelial function and dysfunction. Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 10, 1713–1765 PubMed

Yasui K., Baba A. (2006) Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res. 55, 359–363 PubMed

Ueda J., Starr M. E., Takahashi H., Du J., Chang L. Y., Crapo J. D., Evers B. M., Saito H. (2008) Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radic. Biol. Med. 45, 897–904 PubMed PMC

Hassett P., Curley G. F., Contreras M., Masterson C., Higgins B. D., O'Brien T., Devaney J., O'Toole D., Laffey J. G. (2011) Overexpression of pulmonary extracellular superoxide dismutase attenuates endotoxin-induced acute lung injury. Intensive Care Med. 37, 1680–1687 PubMed PMC

Gao F., Koenitzer J. R., Tobolewski J. M., Jiang D., Liang J., Noble P. W., Oury T. D. (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J. Biol. Chem. 283, 6058–6066 PubMed PMC

Bowler R. P., Nicks M., Tran K., Tanner G., Chang L. Y., Young S. K., Worthen G. S. (2004) Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am. J. Respir. Cell Mol. Biol. 31, 432–439 PubMed

Lee Y. S., Cheon I. S., Kim B. H., Kwon M. J., Lee H. W., Kim T. Y. (2013) Loss of extracellular superoxide dismutase induces severe IL-23-mediated skin inflammation in mice. J. Invest. Dermatol. 133, 732–741 PubMed

Grommes J., Soehnlein O. (2011) Contribution of neutrophils to acute lung injury. Mol. Med. 17, 293–307 PubMed PMC

Segel G. B., Halterman M. W., Lichtman M. A. (2011) The paradox of the neutrophil's role in tissue injury. J. Leukoc. Biol. 89, 359–372 PubMed PMC

Faraci F. M., Didion S. P. (2004) Vascular protection. Superoxide dismutase isoforms in the vessel wall. Arterioscler. Thromb. Vasc. Biol. 24, 1367–1373 PubMed

Batinić-Haberle I., Rebouças J. S., Spasojević I. (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal. 13, 877–918 PubMed PMC

Jiang F., Zhang Y., Dusting G. J. (2011) NADPH oxidase-mediated redox signaling. Roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev. 63, 218–242 PubMed

Phillipson M., Kubes P. (2011) The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 PubMed PMC

Bedard K., Krause K. H. (2007) The NOX family of ROS-generating NADPH oxidases. Physiology and pathophysiology. Physiol. Rev. 87, 245–313 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...