A Deep Insight Into the Sialotranscriptome of the Chagas Disease Vector, Panstrongylus megistus (Hemiptera: Heteroptera)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Z01 AI000810
Intramural NIH HHS - United States
Z01 AI000810-16
NIAID NIH HHS - United States
PubMed
26334808
PubMed Central
PMC4581482
DOI
10.1093/jme/tjv023
PII: tjv023
Knihovny.cz E-zdroje
- Klíčová slova
- Chagas disease, medical entomology, salivary gland, transcriptome, vector biology,
- MeSH
- fylogeneze MeSH
- hmyzí proteiny genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- nymfa genetika růst a vývoj metabolismus MeSH
- Panstrongylus genetika růst a vývoj metabolismus MeSH
- proteomika MeSH
- sialoglykoproteiny genetika metabolismus MeSH
- slinné proteiny a peptidy genetika metabolismus MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hmyzí proteiny MeSH
- sialoglykoproteiny MeSH
- slinné proteiny a peptidy MeSH
Saliva of blood-sucking arthropods contains a complex cocktail of pharmacologically active compounds that assists feeding by counteracting their hosts' hemostatic and inflammatory reactions. Panstrongylus megistus (Burmeister) is an important vector of Chagas disease in South America, but despite its importance there is only one salivary protein sequence publicly deposited in GenBank. In the present work, we used Illumina technology to disclose and publicly deposit 3,703 coding sequences obtained from the assembly of >70 million reads. These sequences should assist proteomic experiments aimed at identifying pharmacologically active proteins and immunological markers of vector exposure. A supplemental file of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/P_megistus/Pmeg-web.xlsx.
Zobrazit více v PubMed
Afonso C. L., Tulman E. R., Lu Z., Oma E., Kutish G. F., Rock D. L. 1999. The genome of Melanoplus sanguinipes entomopoxvirus. J. Virol. 73: 533–552. PubMed PMC
Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. PubMed PMC
Arca B., Struchiner C. J., Pham V. M., Sferra G., Lombardo F., Pombi M., Ribeiro J. M. 2014. Positive selection drives accelerated evolution of mosquito salivary genes associated with blood-feeding. Insect Mol. Biol. 23: 122–131. PubMed PMC
Assumpcao T. C., Francischetti I. M., Andersen J. F., Schwarz A., Santana J. M., Ribeiro J. M. 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem. Mol. Biol. 38: 213–232. PubMed PMC
Assumpcao T. C., Eaton D. P., Pham V. M., Francischetti I. M., Aoki V., Hans-Filho G., Rivitti E. A., Valenzuela J. G., Diaz L. A., Ribeiro J. M. 2012. An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America. Am. J. Trop. Med. Hyg. 86: 1005–1014. PubMed PMC
Assumpcao T. C., Ma D., Schwarz A., Reiter K., Santana J. M., Andersen J. F., Ribeiro J. M., Nardone G., Yu L. L., Francischetti I. M. 2013. Salivary Antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O2− and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. J. Biol. Chem. 288: 14341–14361. PubMed PMC
Assumpcao T. C., Charneau S., Santiago P. B., Francischetti I. M., Meng Z., Araujo C. N., Pham V. M., Queiroz R. M., de Castro C. N., Ricart C. A., et al. 2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J. Proteome Res. 10: 669–679. PubMed PMC
Beaty B. J., Marquartd W. C. 1996. Biology of disease vectors. University Press of Colorado, CO.
Birol I., Jackman S. D., Nielsen C. B., Qian J. Q., Varhol R., Stazyk G., Morin R. D., Zhao Y., Hirst M., Schein J. E., et al. 2009. De novo transcriptome assembly with ABySS. Bioinformatics 25: 2872–2877. PubMed
Bussacos A. C., Nakayasu E. S., Hecht M. M., Assumpcao T. C., Parente J. A., Soares C. M., Santana J. M., Almeida I. C., Teixeira A. R. 2011. Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals. J. Proteomics 74: 1693–1700. PubMed
Campos I. T., Tanaka-Azevedo A. M., Tanaka A. S. 2004. Identification and characterization of a novel factor XIIa inhibitor in the hematophagous insect, Triatoma infestans (Hemiptera: Reduviidae). FEBS Lett. 577: 512–516. PubMed
Campos I. T., Amino R., Sampaio C. A., Auerswald E. A., Friedrich T., Lemaire H. G., Schenkman S., Tanaka A. S. 2002. Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: Gene cloning, expression and characterization of the inhibitor. Insect Biochem. Mol. Biol. 32: 991–997. PubMed
Cavassin F. B., Kuehn C. C., Kopp R. L., Thomaz-Soccol V., Da Rosa J. A., Luz E., Mas-Coma S., Bargues M. D. 2014. Genetic variability and geographical diversity of the main Chagas' disease vector Panstrongylus megistus (Hemiptera: Triatominae) in Brazil based on ribosomal DNA intergenic sequences. J. Med. Entomol. 51: 616–628. PubMed
Chagas A. C., Calvo E., Rios-Velasquez C. M., Pessoa F. A., Medeiros J. F., Ribeiro J. M. 2013. A deep insight into the sialotranscriptome of the mosquito, Psorophora albipes. BMC Genomics 14: 875. PubMed PMC
Champagne D. E. 2005. Antihemostatic molecules from saliva of blood-feeding arthropods. Pathophysiol. Haemost. Thromb. 34: 221–227. PubMed
Champagne D. E., Smartt C. T., Ribeiro J. M., James A. A. 1995. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family. Proc. Natl. Acad. Sci. USA 92: 694–698. PubMed PMC
Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. 2012. Tick salivary secretion as a source of antihemostatics. J. Proteomics 75: 3842–3854. PubMed PMC
Dickinson R. G., O'Hagan J. E., Shotz M., Binnington K. C., Hegarty M. P. 1976. Prostaglandin in the saliva of the cattle tick Boophilus microplus. Aust. J. Exp. Biol. Med. Sci. 54: 475–486. PubMed
Duckert P., Brunak S., Blom N. 2004. Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17: 107–112. PubMed
Faudry E., Lozzi S. P., Santana J. M., D'Souza-Ault M., Kieffer S., Felix C. R., Ricart C. A., Sousa M. V., Vernet T., Teixeira A. R. 2004. Triatoma infestans apyrases belong to the 5'-nucleotidase family. J. Biol. Chem. 279: 19607–19613. PubMed
Francischetti I. M. 2010. Platelet aggregation inhibitors from hematophagous animals. Toxicon 56: 1130–1144. PubMed PMC
Francischetti I. M., Mather T. N., Ribeiro J. M. 2003. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem. Biophys. Res. Commun. 305: 869–875. PubMed PMC
Ghosh R. C., Ball B. V., Willcocks M. M., Carter M. J. 1999. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J. Gen. Virol. 80: 1541–1549. PubMed
Gomes R., Teixeira C., Teixeira M. J., Oliveira F., Menezes M. J., Silva C., de Oliveira C. I., Miranda J. C., Elnaiem D. E., Kamhawi S., et al. 2008. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc. Natl. Acad. Sci. USA 105: 7845–7850. PubMed PMC
Higgs G. A., Vane J. R., Hart R. J., Porter C., Wilson R. G. 1976. Prostaglandins in the saliva of the cattle tick, Boophilus microplus(Canestrini) (Acarina, Ixodidae). Bull. Entomol. Res. 66: 665–670.
Julenius K., Molgaard A., Gupta R., Brunak S. 2005. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153–164. PubMed
Karim S., Singh P., Ribeiro J. M. 2011. A deep insight into the sialotranscriptome of the Gulf Coast tick, Amblyomma maculatum. PLOS ONE 6: e28525. PubMed PMC
Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163. PubMed
Li H., Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., and S. Genome Project Data Processing. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Lovato D. V., Nicolau de Campos I. T., Amino R., Tanaka A. S. 2006. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673–681. PubMed
Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., et al. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1: 18. PubMed PMC
Marcilla A., Bargues M. D., Abad-Franch F., Panzera F., Carcavallo R. U., Noireau F., Galvao C., Jurberg J., Miles M. A., Dujardin J. P., et al. 2002. Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi. Infect. Genet. Evol. 1: 225–235. PubMed
Meiser C. K., Piechura H., Meyer H. E., Warscheid B., Schaub G. A., Balczun C. 2010. A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: Sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol. Biol. 19: 409–421. PubMed
Miller J. R., Koren S., Sutton G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95: 315–327. PubMed PMC
Nielsen H., Brunak S., von Heijne G. 1999. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12: 3–9. PubMed
Ribeiro J. M., Francischetti I. M. 2003. Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Ann. Rev. Entomol. 48: 73–88. PubMed
Ribeiro J. M., Mans B. J., Arca B. 2010. An insight into the sialome of blood-feeding Nematocera. Insect Biochem. Mol. Biol. 40: 767–784. PubMed PMC
Ribeiro J. M., Assumpcao T. C., Pham V. M., Francischetti I. M., Reisenman C. E. 2012a. An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). J. Med. Entomol. 49: 563–572. PubMed PMC
Ribeiro J. M., Chagas A. C., Pham V. M., Lounibos L. P., Calvo E. 2013. An insight into the sialome of the frog biting fly, Corethrella appendiculata. Insect Biochem. Mol. Biol. 1748: 191–194. PubMed PMC
Ribeiro J. M., Andersen J., Silva-Neto M. A., Pham V. M., Garfield M. K., Valenzuela J. G. 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem. Mol. Biol. 34: 61–79. PubMed
Ribeiro J.M.C., Arca B. 2009. From sialomes to the sialoverse: An insight into the salivary potion of blood feeding insects. Adv. Insect Physiol. 37: 59–118.
Ribeiro J.M.C., Assumpcao T.C.F., Francischetti I. M. B. 2012b. An insight into the sialomes of bloodsucking Heteroptera. Psyche 2012: 16 p.
Santos A., Ribeiro J. M., Lehane M. J., Gontijo N. F., Veloso A. B., Sant' Anna M. R., Nascimento Araujo R., Grisard E. C., Pereira M. H. 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem. Mol. Biol. 37: 702–712. PubMed PMC
Schofield C. J., Galvao C. 2009. Classification, evolution, and species groups within the Triatominae. Acta Trop. 110: 88–100. PubMed
Schwarz A., von Reumont B. M., Erhart J., Chagas A. C., Ribeiro J. M., Kotsyfakis M. 2013. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 27: 4745–4756. PubMed PMC
Schwarz A., Medrano-Mercado N., Schaub G. A., Struchiner C. J., Bargues M. D., Levy M. Z., Ribeiro J. M. 2014. An updated insight into the sialotranscriptome of Triatoma infestans: Developmental stage and geographic variations. PLoS Negl. Trop. Dis. 8: e3372. PubMed PMC
Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I. 2009. ABySS: A parallel assembler for short read sequence data. Genome Res. 19:1117–1123. PubMed PMC
Sonnhammer E. L., von Heijne G., Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6: 175–182. PubMed
Tai H. H., Cho H., Tong M., Ding Y. 2006. NAD+-linked 15-hydroxyprostaglandin dehydrogenase: Structure and biological functions. Current pharmaceutical design 12: 955–962. PubMed
Takac P., Nunn M. A., Meszaros J., Pechanova O., Vrbjar N., Vlasakova P., Kozanek M., Kazimirova M., Hart G., Nuttall P. A., et al. 2006. Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands. J. Exp. Biol. 209: 343–352. PubMed
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882. PubMed PMC
Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. R., Pimentel H., Salzberg S. L., Rinn J. L., Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Prot. 7: 562–578. PubMed PMC
Valenzuela J. G. 2002. High-throughput approaches to study salivary proteins and genes from vectors of diseaseInsect Biochem. Mol. Biol. 32: 1199–1209. PubMed
Valenzuela J. G., Charlab R., Galperin M. Y., Ribeiro J. M. 1998. Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J. Biol. Chem. 273: 30583–30590. PubMed
Valenzuela J. G., Belkaid Y., Rowton E., Ribeiro J. M. 2001a. The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. J. Exp. Biol. 204: 229–237. PubMed
Valenzuela J. G., Belkaid Y., Garfield M. K., Mendez S., Kamhawi S., Rowton E. D., Sacks D. L., Ribeiro J. M. 2001b. Toward a defined anti-Leishmania vaccine targeting vector antigens: Characterization of a protective salivary protein. J. Exp. Med. 194: 331–342. PubMed PMC
Xu X., Oliveira F., Chang B. W., Collin N., Gomes R., Teixeira C., Reynoso D., My Pham V., Elnaiem D. E., Kamhawi S., et al. 2011. Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J. Biol. Chem. 286: 32383–32393. PubMed PMC
Zeddam J. L., Gordon K. H., Lauber C., Alves C. A., Luke B. T., Hanzlik T. N., Ward V. K., Gorbalenya A. E. 2010. Euprosterna elaeasa virus genome sequence and evolution of the Tetraviridae family: Emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology 397: 145–154. PubMed
Zhao Q. Y., Wang Y., Kong Y. M., Luo D., Li X., Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: A comparative study. BMC Bioinform. 12: S2. PubMed PMC