Serpins in Tick Physiology and Tick-Host Interaction
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35711658
PubMed Central
PMC9195624
DOI
10.3389/fcimb.2022.892770
Knihovny.cz E-zdroje
- Klíčová slova
- anti-tick vaccine, immunomodulation, serpins, therapeutic effects, tick host interaction, tick saliva,
- MeSH
- inhibitory serinových proteinas fyziologie MeSH
- klíšťata * metabolismus MeSH
- serpiny * metabolismus MeSH
- slinné žlázy metabolismus MeSH
- sliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- inhibitory serinových proteinas MeSH
- serpiny * MeSH
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Zobrazit více v PubMed
Alvarez-Alfageme F., Maharramov J., Carrillo L., Vandenabeele S., Vercammen D., Van Breusegem F., et al. . (2011). Potential Use of a Serpin From Arabidopsis for Pest Control. PLoS One 6 (5), e20278. doi: 10.1371/annotation/099db8aa-be3a-4635-b464-dc94ba0fb069 PubMed DOI PMC
Andreotti R., Malavazi-Piza K. C., Sasaki S. D., Torquato R. J., Gomes A., Tanaka A. S. (2001). Serine Proteinase Inhibitors From Eggs and Larvae of Tick Boophilus Microplus: Purification and Biochemical Characterization. J. Protein Chem. 20 (5), 337–343. doi: 10.1023/A:1012242817869 PubMed DOI
Aounallah H., Bensaoud C., MGhirbi Y., Faria F., Chmelar J. I., Kotsyfakis M. (2020). Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front. Immunol. 11, 583845. doi: 10.3389/fimmu.2020.583845 PubMed DOI PMC
Bakshi M., Kim T. K., Mulenga A. (2018). A. Disruption of Blood Meal-Responsive Serpins Prevents Ixodes Scapularis From Feeding to Repletion. Ticks Tick Borne Dis. 9 (3), 506–518. doi: 10.1016/j.ttbdis.2018.01.001 PubMed DOI PMC
Bakshi M., Kim T. K., Porter L., Mwangi W., Mulenga A. (2019). Amblyomma Americanum Ticks Utilizes Countervailing Pro and Anti-Inflammatory Proteins to Evade Host Defense. PLoS Pathog. 15 (11), e1008128. doi: 10.1371/journal.ppat.1008128 PubMed DOI PMC
Bao J., Pan G., Poncz M., Wei J., Ran M., Zhou Z. (2018). Serpin Functions in Host-Pathogen Interactions. PeerJ 6, e4557. doi: 10.7717/peerj.4557 PubMed DOI PMC
Berber I., Erkurt M. A., Yararbas K., Koroglu M., Nizam I., Berktas B., et al. . (2014). As a Rare Disease Bernard¨CSoulier Syndrome in Differential Diagnosis of Immune Thrombocytopenic Purpura: A Case Report. Am. J. Med. Case Rep. 2 (5), 102–106. doi: 10.12691/ajmcr-2-5-3 DOI
Blisnick A. A., Foulon T., Bonnet S. I. (2017). Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front. Cell Infect. Microbiol. 7, 199. doi: 10.3389/fcimb.2017.00199 PubMed DOI PMC
Borensztajn K., Peppelenbosch M. P., Spek C. A. (2008). Factor Xa: At the Crossroads Between Coagulation and Signaling in Physiology and Disease. Trends Mol. Med. 14 (10), 429–440. doi: 10.1016/j.molmed.2008.08.001 PubMed DOI
Bos I. G. A., Hack C. E., Abrahams J. (2002). Structural and Functional Aspects of C1-Inhibitor. Immunobiology 205 (4), 518–533. doi: 10.1078/0171-2985-00151 PubMed DOI
Cagliani R., Forni D., Filippi G., Mozzi A., De Gioia L., Pontremoli C., et al. . (2016). The Mammalian Complement System as an Epitome of Host-Pathogen Genetic Conflicts. Mol. Ecol. 25 (6), 1324–1339. doi: 10.1111/mec.13558 PubMed DOI
Chalaire K. C., Kim T. K., Garcia-Rodriguez H., Mulenga A. (2011). Amblyomma Americanum (L.) (Acari: Ixodidae) Tick Salivary Gland Serine Protease Inhibitor (Serpin) 6 is Secreted Into Tick Saliva During Tick Feeding. J. Exp. Biol. 214 (Pt 4), 665–673. doi: 10.1242/jeb.052076 PubMed DOI PMC
Chan W. L., Zhou A., Read R. J. (2014). Towards Engineering Hormone-Binding Globulins as Drug Delivery Agents. PLoS One 9 (11), e113402. doi: 10.1371/journal.pone.0113402 PubMed DOI PMC
Chapin J. C., Hajjar K. A. (2015). Fibrinolysis and the Control of Blood Coagulation. Blood Rev. 29 (1), 17–24. doi: 10.1016/j.blre.2014.09.003 PubMed DOI PMC
Charkoudian N. (2010). Mechanisms and Modifiers of Reflex Induced Cutaneous Vasodilation and Vasoconstriction in Humans. J. Appl. Physiol. (Bethesda Md. 1985) 109 (4), 1221–1228. doi: 10.1152/japplphysiol.00298.2010 PubMed DOI PMC
Chatterjea D., Wetzel A., Mack M., Engblom C., Allen J., Mora-Solano C., et al. . (2012). Mast Cell Degranulation Mediates Compound 48/80-Induced Hyperalgesia in Mice. Biochem. Biophys. Res. Commun. 425 (2), 237–243. doi: 10.1016/j.bbrc.2012.07.074 PubMed DOI PMC
Chlastáková A., Kotál J., Beránková Z., Kaščáková B., Martins L. A., Langhansová H., et al. . (2021). Iripin-3, a New Salivary Protein Isolated From Ixodes Ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro . Front. Immunol. 12, 626200. doi: 10.3389/fimmu.2021.626200 PubMed DOI PMC
Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick Salivary Secretion as a Source of Antihemostatics. J. Proteomics 75 (13), 3842–3854. doi: 10.1016/j.jprot.2012.04.026 PubMed DOI PMC
Chmelař J., Kotál J., Karim S., Kopacek P., Francischetti I. M. B., Pedra J. H. F., et al. . (2016). Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. 32 (3), 242–254. doi: 10.1016/j.pt.2015.10.002 PubMed DOI PMC
Chmelar J., Kotal J., Kopecky J., Pedra J. H. F., Kotsyfakis M. (2016). All For One and One For All on the Tick-Host Battlefield. Trends Parasitol. 32 (5), 368–377. doi: 10.1016/j.pt.2016.01.004 PubMed DOI PMC
Chmelař J., Kotál J., Kovaříková A., Kotsyfakis M. (2019). The Use of Tick Salivary Proteins as Novel Therapeutics. Front. Physiol. 10,812. doi: 10.3389/fphys.2019.00812 PubMed DOI PMC
Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. (2017). Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-Host-Pathogen Interaction. Front. Cell Infect. Microbiol. 7, 216. doi: 10.3389/fcimb.2017.00216 PubMed DOI PMC
Chmelar J., Oliveira C. J., Rezacova P., Francischetti I. M., Kovarova Z., Pejler G., et al. . (2011). A Tick Salivary Protein Targets Cathepsin G and Chymase and Inhibits Host Inflammation and Platelet Aggregation. Blood 117 (2), 736–744. doi: 10.1182/blood-2010-06-293241 PubMed DOI PMC
Clemente M., Corigliano M. G., Pariani S. A., Sanchez-Lopez E. F., Sander V. A., Ramos-Duarte V. A. (2019). Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 20 (6), 1345. doi: 10.3390/ijms20061345 PubMed DOI PMC
Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., et al. . (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339 (6121), 819–823. doi: 10.1126/science.1231143 PubMed DOI PMC
Coutinho M. L., Bizzarro B., Tirloni L., Berger M., Freire Oliveira C. J., Sá-Nunes A., et al. . (2020). Rhipicephalus Microplus Serpins Interfere With Host Immune Responses by Specifically Modulating Mast Cells and Lymphocytes. Ticks Tick-borne Dis. 11 (4), 101425. doi: 10.1016/j.ttbdis.2020.101425 PubMed DOI PMC
Dantas-Torres F., Chomel B. B., Otranto D. (2012). Ticks and Tick-Borne Diseases: A One Health Perspective. Trends Parasitol. 28 (10), 437–446. doi: 10.1016/j.pt.2012.07.003 PubMed DOI
Duan L., Rao X., Sigdel K. R. (2019). Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019, 7403796. doi: 10.1155/2019/7403796 PubMed DOI PMC
Eappen A. G., Smith R. C., Jacobs-Lorena M. (2013). Enterobacter-Activated Mosquito Immune Responses to Plasmodium Involve Activation of SRPN6 in Anopheles Stephensi. PLoS One 8 (5), e62937. doi: 10.1371/journal.pone.0062937 PubMed DOI PMC
Fogaça A. C., Almeida I. C., Eberlin M. N., Tanaka A. S., Bulet P., Daffre S. (2006). Ixodidin, a Novel Antimicrobial Peptide From the Hemocytes of the Cattle Tick Boophilus Microplus With Inhibitory Activity Against Serine Proteinases. Peptides 27 (4), 667–674. doi: 10.1016/j.peptides.2005.07.013 PubMed DOI
Fogaça A. C., Sousa G., Pavanelo D. B., Esteves E., Martins L. A., Urbanová V., et al. . (2021). Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front. Immunol. 12, 628054. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC
Francischetti I. M., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The Role of Saliva in Tick Feeding. Front. Biosci. (Landmark Ed) 14 (6), 2051–2088. doi: 10.2741/3363 PubMed DOI PMC
Fredslund F., Laursen N. S., Roversi P., Jenner L., Oliveira C. L., Pedersen J. S., et al. . (2008). Structure of and Influence of a Tick Complement Inhibitor on Human Complement Component 5. Nat. Immunol. 9 (7), 753–760. doi: 10.1038/ni.1625 PubMed DOI
Fu Z., Akula S., Olsson A. K., Kervinen J., Hellman L. (2021). Mast Cells and Basophils in the Defense Against Ectoparasites: Efficient Degradation of Parasite Anticoagulants by the Connective Tissue Mast Cell Chymases. Int. J. Mol. Sci. 22 (23), 12627. doi: 10.3390/ijms222312627 PubMed DOI PMC
Furie B., Furie B. C. (2005). Thrombus Formation In Vivo . J. Clin. Invest. 115 (12), 3355–3362. doi: 10.1172/JCI26987 PubMed DOI PMC
Gettins P. G. (2002). Serpin Structure, Mechanism, and Function. Chem. Rev. 102 (12), 4751–4804. doi: 10.1021/cr010170+ PubMed DOI
Goulas T., Ksiazek M., Garcia-Ferrer I., Sochaj-Gregorczyk A. M., Waligorska I., Wasylewski M., et al. . (2017). A Structure-Derived Snap-Trap Mechanism of a Multispecific Serpin From the Dysbiotic Human Oral Microbiome. J. Biol. Chem. 292 (26), 10883–10898. doi: 10.1074/jbc.M117.786533 PubMed DOI PMC
Gulley M. M., Zhang X., Michel K. (2013). The Roles of Serpins in Mosquito Immunology and Physiology. J. Insect Physiol. 59 (2), 138–147. doi: 10.1016/j.jinsphys.2012.08.015 PubMed DOI PMC
Hajdušek O., Síma R., Ayllón N., Jalovecká M., Perner J., de la Fuente J., et al. . (2013). Interaction of the Tick Immune System With Transmitted Pathogens. Front. Cell Infect. Microbiol. 3, 26. doi: 10.3389/fcimb.2013.00026 PubMed DOI PMC
Hepburn N. J., Williams A. S., Nunn M. A., Chamberlain-Banoub J. C., Hamer J., Morgan B. P., et al. . (2007). In Vivo Characterization and Therapeutic Efficacy of a C5-Specific Inhibitor From the Soft Tick Ornithodoros Moubata. J. Biol. Chem. 282 (11), 8292–8299. doi: 10.1074/jbc.M609858200 PubMed DOI
Hirahara K., Nakayama T. (2016). CD4+ T-Cell Subsets in Inflammatory Diseases: Beyond the Th1/Th2 Paradigm. Int. Immunol. 28 (4), 163–171. doi: 10.1093/intimm/dxw006 PubMed DOI PMC
Hovius J. W. R., Levi M., Fikrig E. (2008). Salivating for Knowledge: Potential Pharmacological Agents in Tick Saliva. PLoS Med. 5 (2), e43–e43. doi: 10.1371/journal.pmed.0050043 PubMed DOI PMC
Hunt L. T., Dayhoff M. O. (1980). A Surprising New Protein Superfamily Containing Ovalbumin, Antithrombin-III, and Alpha1-Proteinase Inhibitor. Biochem. Biophys. Res. Commun. 95 (2), 864–871. doi: 10.1016/0006-291X(80)90867-0 PubMed DOI
Huntington J. A. (2003). Mechanisms of Glycosaminoglycan Activation of the Serpins in Hemostasis. J. Thromb. Haemost. 1 (7), 1535–1549. doi: 10.1046/j.1538-7836.2003.00305.x PubMed DOI
Huntington J. A. (2011). Serpin Structure, Function and Dysfunction. J. Thromb. Haemost. 9 (Suppl 1), 26–34. doi: 10.1111/j.1538-7836.2011.04360.x PubMed DOI
Huntington J. A., Read R. J., Carrell R. W. (2000). Structure of a Serpin-Protease Complex Shows Inhibition by Deformation. Nature 407 (6806), 923–926. doi: 10.1038/35038119 PubMed DOI
Ibelli A. M. G., Kim T. K., Hill C. C., Lewis L. A., Bakshi M., Miller S., et al. . (2014). A Blood Meal-Induced Ixodes Scapularis Tick Saliva Serpin Inhibits Trypsin and Thrombin, and Interferes With Platelet Aggregation and Blood Clotting. Int. J. Parasitol. 44 (6), 369–379. doi: 10.1016/j.ijpara.2014.01.010 PubMed DOI PMC
Imamura S., da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. (2005). A Serine Protease Inhibitor (Serpin) From Haemaphysalis Longicornis as an Anti-Tick Vaccine. Vaccine 23 (10), 1301–1311. doi: 10.1016/j.vaccine.2004.08.041 PubMed DOI
Imamura S., Konnai S., Vaz Ida S., Yamada S., Nakajima C., Ito Y., et al. . (2008). Effects of Anti-Tick Cocktail Vaccine Against Rhipicephalus Appendiculatus. Jpn J. Vet. Res. 56 (2), 85–98. doi: 10.14943/jjvr.56.2.85 PubMed DOI
Imamura S., Namangala B., Tajima T., Tembo M. E., Yasuda J., Ohashi K., et al. . (2006). Two Serine Protease Inhibitors (Serpins) That Induce a Bovine Protective Immune Response Against Rhipicephalus Appendiculatus Ticks. Vaccine 24 (13), 2230–2237. doi: 10.1016/j.vaccine.2005.10.055 PubMed DOI
Irving J. A., Steenbakkers P. J., Lesk A. M., Op den Camp H. J., Pike R. N., Whisstock J. C. (2002). Serpins in Prokaryotes. Mol. Biol. Evol. 19 (11), 1881–1890. doi: 10.1093/oxfordjournals.molbev.a004012 PubMed DOI
Jackson S. P. (2007). The Growing Complexity of Platelet Aggregation. Blood 109 (12), 5087–5095. doi: 10.1182/blood-2006-12-027698 PubMed DOI
Jackson S. P., Schoenwaelder S. M. (2003). Antiplatelet Therapy: In Search of the Magic Bullet. Nat. Rev. Drug Discov. 2 (10), 775–789. doi: 10.1038/nrd1198 PubMed DOI
Jagadeeswaran P., Gregory M., Day K., Cykowski M., Thattaliyath B. (2005). Zebrafish: A Genetic Model for Hemostasis and Thrombosis. J. Thromb. Haemost. 3 (1), 46–53. doi: 10.1111/j.1538-7836.2004.00999.x PubMed DOI
Jandrot-Perrus M., Busfield S., Lagrue A. H., Xiong X., Debili N., Chickering T., et al. . (2000). Cloning, Characterization, and Functional Studies of Human and Mouse Glycoprotein VI: A Platelet-Specific Collagen Receptor From the Immunoglobulin Superfamily. Blood 96 (5), 1798–1807. doi: 10.1182/blood.V96.5.1798 PubMed DOI
Jmel M. A., Aounallah H., Bensaoud C., Mekki I., Chmelař J., Faria F., et al. . (2021). Insights Into the Role of Tick Salivary Protease Inhibitors During Ectoparasite-Host Crosstalk. Int. J. Mol. Sci. 22 (2), 892. doi: 10.3390/ijms22020892 PubMed DOI PMC
Kascakova B., Kotal J., Martins L. A., Berankova Z., Langhansova H., Calvo E., et al. . (2021). Structural and Biochemical Characterization of the Novel Serpin Iripin-5 From Ixodes Ricinus. Acta Crystallogr. D Struct. Biol. 77 (Pt 9), 1183–1196. doi: 10.1107/S2059798321007920 PubMed DOI PMC
Kausar S., Abbas M. N., Qian C., Zhu B., Gao J., Sun Y., et al. . (2018). Role of Antheraea Pernyi Serpin 12 in Prophenoloxidase Activation and Immune Responses. Arch. Insect Biochem. Physiol. 97 (2), e21435. doi: 10.1002/arch.21435 PubMed DOI
Kausar S., Abbas M. N., Qian C., Zhu B., Sun Y., Sun Y., et al. . (2017). Serpin-14 Negatively Regulates Prophenoloxidase Activation and Expression of Antimicrobial Peptides in Chinese Oak Silkworm Antheraea Pernyi. Dev. Comp. Immunol. 76, 45–55. doi: 10.1016/j.dci.2017.05.017 PubMed DOI
Kazimírová M., Štibrániová I. (2013). Tick Salivary Compounds: Their Role in Modulation of Host Defences and Pathogen Transmission. Front. Cell Infect. Microbiol. 3, 43. doi: 10.3389/fcimb.2013.00043 PubMed DOI PMC
Kazimírová M., Thangamani S., Bartíková P., Hermance M. E., Holíková V., Štibrániová I., et al. . (2017). Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front. Cell. Infection Microbiol. 7. doi: 10.3389/fcimb.2017.00339 PubMed DOI PMC
Kim S., Carrillo M., Kulkarni V., Jagadeeswaran P. (2009). Evolution of Primary Hemostasis in Early Vertebrates. PLoS One 4 (12), e8403. doi: 10.1371/journal.pone.0008403 PubMed DOI PMC
Kim T. K., Radulovic Z., Mulenga A. (2016). Target Validation of Highly Conserved Amblyomma Americanum Tick Saliva Serine Protease Inhibitor 19. Ticks Tick Borne Dis. 7 (3), 405–414. doi: 10.1016/j.ttbdis.2015.12.017 PubMed DOI PMC
Kim T. K., Tirloni L., Berger M., Diedrich J. K., Yates J. R., 3rd, Termignoni C., et al. . (2020). Amblyomma Americanum Serpin 41 (AAS41) Inhibits Inflammation by Targeting Chymase and Chymotrypsin. Int. J. Biol. Macromol 156, 1007–1021. doi: 10.1016/j.ijbiomac.2020.04.088 PubMed DOI PMC
Kim T. K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., et al. . (2015). Conserved Amblyomma Americanum Tick Serpin19, an Inhibitor of Blood Clotting Factors Xa and XIa, Trypsin and Plasmin, has Anti-Haemostatic Functions. Int. J. Parasitol. 45 (9-10), 613–627. doi: 10.1016/j.ijpara.2015.03.009 PubMed DOI PMC
Kimura A., Sakaguchi E., Nonaka M. (2009). Multi-Component Complement System of Cnidaria: C3, Bf, and MASP Genes Expressed in the Endodermal Tissues of a Sea Anemone, Nematostella Vectensis. Immunobiology 214 (3), 165–178. doi: 10.1016/j.imbio.2009.01.003 PubMed DOI
Komiyama T., Ray C. A., Pickup D. J., Howard A. D., Thornberry N. A., Peterson E. P., et al. . (1994). Inhibition of Interleukin-1 Beta Converting Enzyme by the Cowpox Virus Serpin CrmA. An Example of Cross-Class Inhibition. J. Biol. Chem. 269 (30), 19331–19337. doi: 10.1016/S0021-9258(17)32171-3 PubMed DOI
Kopacek P., Hajdusek O., Buresova V. (2012). Tick as a Model for the Study of a Primitive Complement System. Adv. Exp. Med. Biol. 710, 83–93. doi: 10.1007/978-1-4419-5638-5_9 PubMed DOI
Kotál J., Langhansová H., Lieskovská J., Andersen J. F., Francischetti I. M. B., Chavakis T., et al. . (2015). Modulation of Host Immunity by Tick Saliva. J. Proteomics 128, 58–68. doi: 10.1016/j.jprot.2015.07.005 PubMed DOI PMC
Kotál J., Polderdijk S. G. I., Langhansová H., Ederová M., Martins L. A., Beránková Z., et al. . (2021). Ixodes Ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement. Int. J. Mol. Sci. 22 (17), 9480. doi: 10.3390/ijms22179480 PubMed DOI PMC
Kotsyfakis M., Kopacek P., Franta Z., Pedra J. H., Ribeiro J. M. (2015). Deep Sequencing Analysis of the Ixodes Ricinus Haemocytome. PLoS Negl. Trop. Dis. 9 (5), e0003754. doi: 10.1371/journal.pntd.0003754 PubMed DOI PMC
Krem M. M., Di Cera E. (2003). Conserved Ser Residues, the Shutter Region, and Speciation in Serpin Evolution*. J. Biol. Chem. 278 (39), 37810–37814. doi: 10.1074/jbc.M305088200 PubMed DOI
Krystel-Whittemore M., Dileepan K. N., Wood J. G. (2016). Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 6, 620. doi: 10.3389/fimmu.2015.00620 PubMed DOI PMC
Ksiazek M., Mizgalska D., Enghild J. J., Scavenius C., Thogersen I. B., Potempa J. (2015). Miropin, a Novel Bacterial Serpin From the Periodontopathogen Tannerella Forsythia, Inhibits a Broad Range of Proteases by Using Different Peptide Bonds Within the Reactive Center Loop. J. Biol. Chem. 290 (1), 658–670. doi: 10.1074/jbc.M114.601716 PubMed DOI PMC
LaPelusa A., Dave H. D. (2022). Physiology, Hemostasis (Treasure Island (FL: StatPearls; ). PubMed
Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., et al. . (2002. a). Characterization of a Novel Salivary Immunosuppressive Protein From Ixodes Ricinus Ticks. J. Biol. Chem. 277 (12), 10083–10089. doi: 10.1074/jbc.M111391200 PubMed DOI
Leboulle G., Rochez C., Louahed J., Ruti B., Brossard M., Bollen A., et al. . (2002. b). Isolation of Ixodes Ricinus Salivary Gland mRNA Encoding Factors Induced During Blood Feeding. Am. J. Trop. Med. hygiene 66 (3), 225–233. doi: 10.4269/ajtmh.2002.66.225 PubMed DOI
Levashina Elena A., Langley E., Green C., Gubb D., Ashburner M., Hoffmann Jules A., et al. . (1999). Constitutive Activation of Toll-Mediated Antifungal Defense in Serpin-Deficient Drosophila. Science 285 (5435), 1917–1919. doi: 10.1126/science.285.5435.1917 PubMed DOI
Ligoxygakis P., Roth S., Reichhart J.-M. (2003). A Serpin Regulates Dorsal-Ventral Axis Formation in the Drosophila Embryo. Curr. Biol. 13 (23), 2097–2102. doi: 10.1016/j.cub.2003.10.062 PubMed DOI
Lisman T., Weeterings C., de Groot P. G. (2005). Platelet Aggregation: Involvement of Thrombin and Fibrin(Ogen). Front. Biosci. 10, 2504–2517. doi: 10.2741/1715 PubMed DOI
Li B., Xu X., Wang X., Yu H., Li X., Tao W., et al. . (2012). A Systems Biology Approach to Understanding the Mechanisms of Action of Chinese Herbs for Treatment of Cardiovascular Disease. Int. J. Mol. Sci. 13 (10), 13501–13520. doi: 10.3390/ijms131013501 PubMed DOI PMC
Logsdon J. M., Stoltzfus A., Doolittle W. F. (1998). Molecular Evolution: Recent Cases of Spliceosomal Intron Gain? Curr. Biol. 8 (16), R560–R563. doi: 10.1016/S0960-9822(07)00361-2 PubMed DOI
Mahon B. P., McKenna R. (2018). Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. Methods Mol. Biol. (Clifton N.J.), 1826 9–39. doi: 10.1007/978-1-4939-8645-3_2 PubMed DOI
Mangan M. S., Kaiserman D., Bird P. I. (2008). The Role of Serpins in Vertebrate Immunity. Tissue Antigens 72 (1), 1–10. doi: 10.1111/j.1399-0039.2008.01059.x PubMed DOI
Mans B. J. (2019). Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front. Physiol. 10, 530. doi: 10.3389/fphys.2019.00530 PubMed DOI PMC
Martins L. A., Kotál J., Bensaoud C., Chmelař J., Kotsyfakis M. (2020). Small Protease Inhibitors in Tick Saliva and Salivary Glands and Their Role in Tick-Host-Pathogen Interactions. Biochim. Biophys. Acta (BBA) - Proteins Proteomics 1868 (2), 140336. doi: 10.1016/j.bbapap.2019.140336 PubMed DOI
Matias J., Kurokawa C., Sajid A., Narasimhan S., Arora G., Diktas H., et al. . (2021). Tick Immunity Using mRNA, DNA and Protein-Based Salp14 Delivery Strategies. Vaccine 39 (52), 7661–7668. doi: 10.1016/j.vaccine.2021.11.003 PubMed DOI PMC
Meekins D. A., Kanost M. R., Michel K. (2017). Serpins in Arthropod Biology. Semin. Cell Dev. Biol. 62, 105–119. doi: 10.1016/j.semcdb.2016.09.001 PubMed DOI PMC
Miller J. C., Tan S., Qiao G., Barlow K. A., Wang J., Xia D. F., et al. . (2011). A TALE Nuclease Architecture for Efficient Genome Editing. Nat. Biotechnol. 29 (2), 143–148. doi: 10.1038/nbt.1755 PubMed DOI
Moon T. C., Befus A. D., Kulka M. (2014). Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Front. Immunol. 5, 569. doi: 10.3389/fimmu.2014.00569 PubMed DOI PMC
Moro-García M. A., Mayo J. C., Sainz R. M., Alonso-Arias R. (2018). Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front. Immunol. 9. doi: 10.3389/fimmu.2018.00339 PubMed DOI PMC
Mulenga A., Khumthong R., Blandon M. A. (2007). Molecular and Expression Analysis of a Family of the Amblyomma Americanum Tick Lospins. J. Exp. Biol. 210 (Pt 18), 3188–3198. doi: 10.1242/jeb.006494 PubMed DOI
Mulenga A., Khumthong R., Chalaire K. C. (2009). Ixodes Scapularis Tick Serine Proteinase Inhibitor (Serpin) Gene Family; Annotation and Transcriptional Analysis. BMC Genomics 10, 217. doi: 10.1186/1471-2164-10-217 PubMed DOI PMC
Mulenga A., Kim T., Ibelli A. M. (2013). Amblyomma Americanum Tick Saliva Serine Protease Inhibitor 6 is a Cross-Class Inhibitor of Serine Proteases and Papain-Like Cysteine Proteases That Delays Plasma Clotting and Inhibits Platelet Aggregation. Insect Mol. Biol. 22 (3), 306–319. doi: 10.1111/imb.12024 PubMed DOI PMC
Mulenga A., Sugimoto C., Ingram G., Ohashi K., Misao O. (2001). Characterization of Two cDNAs Encoding Serine Proteinases From the Hard Tick Haemaphysalis Longicornis. Insect Biochem. Mol. Biol. 31 (8), 817–825. doi: 10.1016/S0965-1748(00)00187-9 PubMed DOI
Mulenga A., Tsuda A., Onuma M., Sugimoto C. (2003). Four Serine Proteinase Inhibitors (Serpin) From the Brown Ear Tick, Rhiphicephalus Appendiculatus; cDNA Cloning and Preliminary Characterization. Insect Biochem. Mol. Biol. 33 (2), 267–276. doi: 10.1016/S0965-1748(02)00240-0 PubMed DOI
Muller V., de Boer R. J., Bonhoeffer S., Szathmary E. (2018). An Evolutionary Perspective on the Systems of Adaptive Immunity. Biol. Rev. Camb Philos. Soc. 93 (1), 505–528. doi: 10.1111/brv.12355 PubMed DOI
Narasimhan S., Kurokawa C., DeBlasio M., Matias J., Sajid A., Pal U., et al. . (2021). Acquired Tick Resistance: The Trail is Hot. Parasite Immunol. 43 (5), e12808. doi: 10.1111/pim.12808 PubMed DOI PMC
Ng Y. Q., Gupte T. P., Krause P. J. (2021). Tick Hypersensitivity and Human Tick-Borne Diseases. Parasite Immunol. 43 (5), e12819. doi: 10.1111/pim.12819 PubMed DOI
Nwanade C. F., Wang M., Wang T., Yu Z., Liu J. (2020). Botanical Acaricides and Repellents in Tick Control: Current Status and Future Directions. Exp. Appl. Acarol 81 (1), 1–35. doi: 10.1007/s10493-020-00489-z PubMed DOI
Pak S. C., Kumar V., Tsu C., Luke C. J., Askew Y. S., Askew D. J., et al. . (2004). SRP-2 is a Cross-Class Inhibitor That Participates in Postembryonic Development of the Nematode Caenorhabditis Elegans: Initial Characterization of the Clade L Serpins. J. Biol. Chem. 279 (15), 15448–15459. doi: 10.1074/jbc.M400261200 PubMed DOI
Páleníková J., Lieskovská J., Langhansová H., Kotsyfakis M., Chmelař J., Kopecký J. (2015). Ixodes Ricinus Salivary Serpin IRS-2 Affects Th17 Differentiation via Inhibition of the Interleukin-6/STAT-3 Signaling Pathway. Infection Immun. 83 (5), 1949–1956. doi: 10.1128/IAI.03065-14 PubMed DOI PMC
Pejler G., Rönnberg E., Waern I., Wernersson S. (2010). Mast Cell Proteases: Multifaceted Regulators of Inflammatory Disease. Blood 115 (24), 4981–4990. doi: 10.1182/blood-2010-01-257287 PubMed DOI
Pekáriková D., Rajská P., Kazimírová M., Pecháňová O., Takáč P., Nuttall P. A. (2015). Vasoconstriction Induced by Salivary Gland Extracts From Ixodid Ticks. Int. J. Parasitol 45 (14), 879–883. doi: 10.1016/j.ijpara.2015.08.006 PubMed DOI
Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., et al. . (2021). UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 30 (1), 70–82. doi: 10.1002/pro.3943 PubMed DOI PMC
Polderdijk S. G., Adams T. E., Ivanciu L., Camire R. M., Baglin T. P., Huntington J. A. (2017). Design and Characterization of an APC-Specific Serpin for the Treatment of Hemophilia. Blood 129 (1), 105–113. doi: 10.1182/blood-2016-05-718635 PubMed DOI PMC
Pongprayoon P., Niramitranon J., Kaewhom P., Kaewmongkol S., Suwan E., Stich R. W., et al. (2020). Dynamic and Structural Insights Into Tick Serpin From Ixodes Ricinus. J. Biomol. Struct. Dyn. 38 (8), 2296–2303. doi: 10.1080/07391102.2019.1630003 PubMed DOI
Pongprayoon P., Kaewhom P., Kaewmongkol S., Suwan E., Stich R., Wiriya B., et al. . (2021). Structural Dynamics of Rhipicephalus Microplus Serpin-3. Mol. Simulation 47, 1–8. doi: 10.1080/08927022.2021.1962011 DOI
Porter L., Radulović Ž., Kim T., Braz G. R. C., Da Silva Vaz I., Jr., Mulenga A. (2015). Bioinformatic Analyses of Male and Female Amblyomma Americanum Tick Expressed Serine Protease Inhibitors (Serpins). Ticks Tick-Borne Dis. 6 (1), 16–30. doi: 10.1016/j.ttbdis.2014.08.002 PubMed DOI PMC
Prevot P.-P., Adam B., Boudjeltia K. Z., Brossard M., Lins L., Cauchie P., et al. . (2006). Anti-Hemostatic Effects of a Serpin From the Saliva of the Tick Ixodes Ricinus*. J. Biol. Chem. 281 (36), 26361–26369. doi: 10.1074/jbc.M604197200 PubMed DOI
Prevot P. P., Beschin A., Lins L., Beaufays J., Grosjean A., Bruys L., et al. . (2009). Exosites Mediate the Anti-Inflammatory Effects of a Multifunctional Serpin From the Saliva of the Tick Ixodes Ricinus. FEBS J. 276 (12), 3235–3246. doi: 10.1111/j.1742-4658.2009.07038.x PubMed DOI
Prevot P. P., Couvreur B., Denis V., Brossard M., Vanhamme L., Godfroid E. (2007). Protective Immunity Against Ixodes Ricinus Induced by a Salivary Serpin. Vaccine 25 (17), 3284–3292. doi: 10.1016/j.vaccine.2007.01.008 PubMed DOI
Radulović Ž.M., Mulenga A. (2017). Heparan Sulfate/Heparin Glycosaminoglycan Binding Alters Inhibitory Profile and Enhances Anticoagulant Function of Conserved Amblyomma Americanum Tick Saliva Serpin 19. Insect Biochem. Mol. Biol. 80, 1–10. doi: 10.1016/j.ibmb.2016.11.002 PubMed DOI PMC
Raphael I., Nalawade S., Eagar T. N., Forsthuber T. G. (2015). T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine 74 (1), 5–17. doi: 10.1016/j.cyto.2014.09.011 PubMed DOI PMC
Rau J. C., Beaulieu L. M., Huntington J. A., Church F. C. (2007). Serpins in Thrombosis, Hemostasis and Fibrinolysis. J. Thromb. Haemost. 5 (Suppl 1), 102–115. doi: 10.1111/j.1538-7836.2007.02516.x PubMed DOI PMC
Ribeiro J. M., Labruna M. B., Mans B. J., Maruyama S. R., Francischetti I. M., Barizon G. C., et al. . (2012). The Sialotranscriptome of Antricola Delacruzi Female Ticks is Compatible With non-Hematophagous Behavior and an Alternative Source of Food. Insect Biochem. Mol. Biol. 42 (5), 332–342. doi: 10.1016/j.ibmb.2012.01.003 PubMed DOI PMC
Ribeiro J. M. C., Mans B. J. (2020). TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front. Cell Infect. Microbiol. 10, 374. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC
Rodriguez-Valle M., Vance M., Moolhuijzen P. M., Tao X., Lew-Tabor A. E. (2012). Differential Recognition by Tick-Resistant Cattle of the Recombinantly Expressed Rhipicephalus Microplus Serine Protease Inhibitor-3 (RMS-3). Ticks Tick Borne Dis. 3 (3), 159–169. doi: 10.1016/j.ttbdis.2012.03.002 PubMed DOI
Rodriguez-Valle M., Xu T., Kurscheid S., Lew-Tabor A. E. (2015). Rhipicephalus Microplus Serine Protease Inhibitor Family: Annotation, Expression and Functional Characterisation Assessment. Parasit. Vectors 8, 7. doi: 10.1186/s13071-014-0605-4 PubMed DOI PMC
Sajid A., Matias J., Arora G., Kurokawa C., DePonte K., Tang X., et al. . (2021). mRNA Vaccination Induces Tick Resistance and Prevents Transmission of the Lyme Disease Agent. Sci. Transl. Med. 13 (620), eabj9827. doi: 10.1126/scitranslmed.abj9827 PubMed DOI
Sambrano G. R., Huang W., Faruqi T., Mahrus S., Craik C., Coughlin S. R. (2000). Cathepsin G Activates Protease-Activated Receptor-4 in Human Platelets. J. Biol. Chem. 275 (10), 6819–6823. doi: 10.1074/jbc.275.10.6819 PubMed DOI
Sa-Nunes A., Oliveira C. J. F. (2021). Dendritic Cells as a Disputed Fortress on the Tick-Host Battlefield. Trends Parasitol. 37 (4), 340–354. doi: 10.1016/j.pt.2020.11.004 PubMed DOI
Sasaki S. D., Azzolini S. S., Hirata I. Y., Andreotti R., Tanaka A. S. (2004). Boophilus Microplus Tick Larvae, a Rich Source of Kunitz Type Serine Proteinase Inhibitors. Biochimie 86 (9-10), 643–649. doi: 10.1016/j.biochi.2004.09.010 PubMed DOI
Schaller J., Gerber S. S. (2011). The Plasmin-Antiplasmin System: Structural and Functional Aspects. Cell Mol. Life Sci. 68 (5), 785–801. doi: 10.1007/s00018-010-0566-5 PubMed DOI PMC
Schick C., Pemberton P. A., Shi G.-P., Kamachi Y., Çataltepe S., Bartuski A. J., et al. . (1998). Cross-Class Inhibition of the Cysteine Proteinases Cathepsins K, L, and S by the Serpin Squamous Cell Carcinoma Antigen 1: A Kinetic Analysis. Biochemistry 37 (15), 5258–5266. doi: 10.1021/bi972521d PubMed DOI
Schroeder H., Daix V., Gillet L., Renauld J.-C., Vanderplasschen A. (2007). The Paralogous Salivary Anti-Complement Proteins IRAC I and IRAC II Encoded by Ixodes Ricinus Ticks Have Broad and Complementary Inhibitory Activities Against the Complement of Different Host Species. Microbes Infection 9 (2), 247–250. doi: 10.1016/j.micinf.2006.10.020 PubMed DOI
Schroeder H., Skelly P. J., Zipfel P. F., Losson B., Vanderplasschen A. (2009). Subversion of Complement by Hematophagous Parasites. Dev. Comp. Immunol. 33 (1), 5–13. doi: 10.1016/j.dci.2008.07.010 PubMed DOI PMC
Silverman G. A., Bird P. I., Carrell R. W., Church F. C., Coughlin P. B., Gettins P. G. W., et al. . (2001). The Serpins Are an Expanding Superfamily of Structurally Similar But Functionally Diverse Proteins. J. Biol. Chem. 276 (36), 33293–33296. doi: 10.1074/jbc.R100016200 PubMed DOI
Silverman G. A., Whisstock J. C., Bottomley S. P., Huntington J. A., Kaiserman D., Luke C. J., et al. . (2010). Serpins Flex Their Muscle: I. Putting the Clamps on Proteolysis in Diverse Biological Systems. J. Biol. Chem. 285 (32), 24299–24305. doi: 10.1074/jbc.R110.112771 PubMed DOI PMC
Šimo L., Kazimirova M., Richardson J., Bonnet S. I. (2017). The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. infection Microbiol. 7, 281. doi: 10.3389/fcimb.2017.00281 PubMed DOI PMC
Sochaj-Gregorczyk A., Ksiazek M., Waligorska I., Straczek A., Benedyk M., Mizgalska D., et al. . (2020). Plasmin Inhibition by Bacterial Serpin: Implications in Gum Disease. FASEB J. 34 (1), 619–630. doi: 10.1096/fj.201901490RR PubMed DOI PMC
Sojka D., Franta Z., Horn M., Caffrey C. R., Mares M., Kopacek P. (2013). New Insights Into the Machinery of Blood Digestion by Ticks. Trends Parasitol. 29 (6), 276–285. doi: 10.1016/j.pt.2013.04.002 PubMed DOI
Spence M. A., Mortimer M. D., Buckle A. M., Minh B. Q., Jackson C. J. (2021). A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Mol. Biol. Evol. 38 (7), 2915–2929. doi: 10.1093/molbev/msab081 PubMed DOI PMC
Sugino M., Imamura S., Mulenga A., Nakajima M., Tsuda A., Ohashi K., et al. . (2003). A Serine Proteinase Inhibitor (Serpin) From Ixodid Tick Haemaphysalis Longicornis; Cloning and Preliminary Assessment of its Suitability as a Candidate for a Tick Vaccine. Vaccine 21 (21-22), 2844–2851. doi: 10.1016/S0264-410X(03)00167-1 PubMed DOI
Syrovets T., Lunov O., Simmet T. (2012). Plasmin as a Proinflammatory Cell Activator. J. leukocyte Biol. 92 (3), 509–519. doi: 10.1189/jlb.0212056 PubMed DOI
Tirloni L., Kim T. K., Berger M., Termignoni C., da Silva Vaz I., Jr., Mulenga A. (2019). Amblyomma Americanum Serpin 27 (AAS27) is a Tick Salivary Anti-Inflammatory Protein Secreted Into the Host During Feeding. PLoS Negl. Trop. Dis. 13 (8), e0007660. doi: 10.1371/journal.pntd.0007660 PubMed DOI PMC
Tirloni L., Kim T. K., Coutinho M. L., Ali A., Seixas A., Termignoni C., et al. . (2016). The Putative Role of Rhipicephalus Microplus Salivary Serpins in the Tick-Host Relationship. Insect Biochem. Mol. Biol. 71, 12–28. doi: 10.1016/j.ibmb.2016.01.004 PubMed DOI PMC
Tirloni L., Seixas A., Mulenga A., Vaz Ida S., Jr., Termignoni C. (2014). A Family of Serine Protease Inhibitors (Serpins) in the Cattle Tick Rhipicephalus (Boophilus) Microplus. Exp. Parasitol 137, 25–34. doi: 10.1016/j.exppara.2013.12.001 PubMed DOI
Toyomane K., Konnai S., Niwa A., Githaka N., Isezaki M., Yamada S., et al. . (2016). Identification and the Preliminary In Vitro Characterization of IRIS Homologue From Salivary Glands of Ixodes Persulcatus Schulze. Ticks Tick-borne Dis. 7 (1), 119–125. doi: 10.1016/j.ttbdis.2015.09.006 PubMed DOI
Tufail M., Takeda M. (2009). Insect Vitellogenin/Lipophorin Receptors: Molecular Structures, Role in Oogenesis, and Regulatory Mechanisms. J. Insect Physiol. 55 (2), 87–103. doi: 10.1016/j.jinsphys.2008.11.007 PubMed DOI
Tyson K., Elkins C., Patterson H., Fikrig E., de Silva A. (2007). Biochemical and Functional Characterization of Salp20, an Ixodes Scapularis Tick Salivary Protein That Inhibits the Complement Pathway. Insect Mol. Biol. 16 (4), 469–479. doi: 10.1111/j.1365-2583.2007.00742.x PubMed DOI
Valenzuela J. G., Charlab R., Mather T. N., Ribeiro J. M. (2000). Purification, Cloning, and Expression of a Novel Salivary Anticomplement Protein From the Tick, Ixodes Scapularis. J. Biol. Chem. 275 (25), 18717–18723. doi: 10.1074/jbc.M001486200 PubMed DOI
Wang X.-R., Cull B. (2022). Apoptosis and Autophagy: Current Understanding in Tick-Pathogen Interactions. Front. Cell. infection Microbiol. 12, 784430. doi: 10.3389/fcimb.2022.784430 PubMed DOI PMC
Wang F., Song Z., Chen J., Wu Q., Zhou X., Ni X., et al. . (2020). The Immunosuppressive Functions of Two Novel Tick Serpins, HlSerpin-A and HlSerpin-B, From Haemaphysalis Longicornis. Immunology 159 (1), 109–120. doi: 10.1111/imm.13130 PubMed DOI PMC
Watson S. P., Auger J. M., McCarty O. J., Pearce A. C. (2005). GPVI and Integrin alphaIIb Beta3 Signaling in Platelets. J. Thromb. Haemost. 3 (8), 1752–1762. doi: 10.1111/j.1538-7836.2005.01429.x PubMed DOI
Wen S., Wang F., Ji Z., Pan Y., Jian M., Bi Y., et al. . (2019). Salp15, a Multifunctional Protein From Tick Saliva With Potential Pharmaceutical Effects. Front. Immunol. 10, 3067. doi: 10.3389/fimmu.2019.03067 PubMed DOI PMC
Whisstock J. C., Silverman G. A., Bird P. I., Bottomley S. P., Kaiserman D., Luke C. J., et al. . (2010). Serpins Flex Their Muscle: II. STRUCTURAL INSIGHTS INTO TARGET PEPTIDASE RECOGNITION, POLYMERIZATION, AND TRANSPORT FUNCTIONS. J. Biol. Chem. 285 (32), 24307–24312. doi: 10.1074/jbc.R110.141408 PubMed DOI PMC
Wikel S. (2013). Ticks and Tick-Borne Pathogens at the Cutaneous Interface: Host Defenses, Tick Countermeasures, and a Suitable Environment for Pathogen Establishment. Front. Microbiol. 4, 337. doi: 10.3389/fmicb.2013.00337 PubMed DOI PMC
Wikel S. (2021). Immunobiology of Tick-Host-Pathogen Interactions. Parasite Immunol. 43 (5), e12818. doi: 10.1111/pim.12818 PubMed DOI
Xu T., Lew-Tabor A., Rodriguez-Valle M. (2016). Effective Inhibition of Thrombin by Rhipicephalus Microplus Serpin-15 (RmS-15) Obtained in the Yeast Pichia Pastoris. Ticks tick-borne Dis. 7 (1), 180–187. doi: 10.1016/j.ttbdis.2015.09.007 PubMed DOI
Xu Z., Lin Z., Wei N., Di Q., Cao J., Zhou Y., et al. . (2019). Immunomodulatory Effects of Rhipicephalus Haemaphysaloides Serpin RHS2 on Host Immune Responses. Parasit. Vectors 12 (1), 341. doi: 10.1186/s13071-019-3607-4 PubMed DOI PMC
Xu Z., Yan Y., Zhang H., Cao J., Zhou Y., Xu Q., et al. . (2020). A Serpin From the Tick Rhipicephalus Haemaphysaloides: Involvement in Vitellogenesis. Veterinary Parasitol. 279, 109064. doi: 10.1016/j.vetpar.2020.109064 PubMed DOI
Yaron J. R., Zhang L., Guo Q., Haydel S. E., Lucas A. R. (2021). Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front. Cardiovasc. Med. 8, 648947. doi: 10.3389/fcvm.2021.648947 PubMed DOI PMC
Yu Y., Cao J., Zhou Y., Zhang H., Zhou J. (2013). Isolation and Characterization of Two Novel Serpins From the Tick Rhipicephalus Haemaphysaloides. Ticks Tick-borne Dis. 4 (4), 297–303. doi: 10.1016/j.ttbdis.2013.02.001 PubMed DOI
Zarbock A., Polanowska-Grabowska R. K., Ley K. (2007). Platelet-Neutrophil-Interactions: Linking Hemostasis and Inflammation. Blood Rev. 21 (2), 99–111. doi: 10.1016/j.blre.2006.06.001 PubMed DOI
Zhang X., Zink F., Hezel F., Vogt J., Wachter U., Wepler M., et al. . (2020). Metabolic Substrate Utilization in Stress-Induced Immune Cells. Intensive Care Med. Exp. 8 (Suppl 1), 28. doi: 10.1186/s40635-020-00316-0 PubMed DOI PMC
Zhou J., Liao M., Hatta T., Tanaka M., Xuan X., Fujisaki K. (2006. b). Identification of a Follistatin-Related Protein From the Tick Haemaphysalis Longicornis and its Effect on Tick Oviposition. Gene 372, 191–198. doi: 10.1016/j.gene.2005.12.020 PubMed DOI
Zhou A., Wei Z., Read R. J., Carrell R. W. (2006. a). Structural Mechanism for the Carriage and Release of Thyroxine in the Blood. Proc. Natl. Acad. Sci. U.S.A. 103 (36), 13321–13326. doi: 10.1073/pnas.0604080103 PubMed DOI PMC
Zhou A., Wei Z., Stanley P. L., Read R. J., Stein P. E., Carrell R. W. (2008). The S-To-R Transition of Corticosteroid-Binding Globulin and the Mechanism of Hormone Release. J. Mol. Biol. 380 (1), 244–251. doi: 10.1016/j.jmb.2008.05.012 PubMed DOI
Genome sequences of four Ixodes species expands understanding of tick evolution
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development