Serpins in Tick Physiology and Tick-Host Interaction

. 2022 ; 12 () : 892770. [epub] 20220519

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35711658

Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.

Zobrazit více v PubMed

Alvarez-Alfageme F., Maharramov J., Carrillo L., Vandenabeele S., Vercammen D., Van Breusegem F., et al. . (2011). Potential Use of a Serpin From Arabidopsis for Pest Control. PLoS One 6 (5), e20278. doi: 10.1371/annotation/099db8aa-be3a-4635-b464-dc94ba0fb069 PubMed DOI PMC

Andreotti R., Malavazi-Piza K. C., Sasaki S. D., Torquato R. J., Gomes A., Tanaka A. S. (2001). Serine Proteinase Inhibitors From Eggs and Larvae of Tick Boophilus Microplus: Purification and Biochemical Characterization. J. Protein Chem. 20 (5), 337–343. doi: 10.1023/A:1012242817869 PubMed DOI

Aounallah H., Bensaoud C., MGhirbi Y., Faria F., Chmelar J. I., Kotsyfakis M. (2020). Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front. Immunol. 11, 583845. doi: 10.3389/fimmu.2020.583845 PubMed DOI PMC

Bakshi M., Kim T. K., Mulenga A. (2018). A. Disruption of Blood Meal-Responsive Serpins Prevents Ixodes Scapularis From Feeding to Repletion. Ticks Tick Borne Dis. 9 (3), 506–518. doi: 10.1016/j.ttbdis.2018.01.001 PubMed DOI PMC

Bakshi M., Kim T. K., Porter L., Mwangi W., Mulenga A. (2019). Amblyomma Americanum Ticks Utilizes Countervailing Pro and Anti-Inflammatory Proteins to Evade Host Defense. PLoS Pathog. 15 (11), e1008128. doi: 10.1371/journal.ppat.1008128 PubMed DOI PMC

Bao J., Pan G., Poncz M., Wei J., Ran M., Zhou Z. (2018). Serpin Functions in Host-Pathogen Interactions. PeerJ 6, e4557. doi: 10.7717/peerj.4557 PubMed DOI PMC

Berber I., Erkurt M. A., Yararbas K., Koroglu M., Nizam I., Berktas B., et al. . (2014). As a Rare Disease Bernard¨CSoulier Syndrome in Differential Diagnosis of Immune Thrombocytopenic Purpura: A Case Report. Am. J. Med. Case Rep. 2 (5), 102–106. doi: 10.12691/ajmcr-2-5-3 DOI

Blisnick A. A., Foulon T., Bonnet S. I. (2017). Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front. Cell Infect. Microbiol. 7, 199. doi: 10.3389/fcimb.2017.00199 PubMed DOI PMC

Borensztajn K., Peppelenbosch M. P., Spek C. A. (2008). Factor Xa: At the Crossroads Between Coagulation and Signaling in Physiology and Disease. Trends Mol. Med. 14 (10), 429–440. doi: 10.1016/j.molmed.2008.08.001 PubMed DOI

Bos I. G. A., Hack C. E., Abrahams J. (2002). Structural and Functional Aspects of C1-Inhibitor. Immunobiology 205 (4), 518–533. doi: 10.1078/0171-2985-00151 PubMed DOI

Cagliani R., Forni D., Filippi G., Mozzi A., De Gioia L., Pontremoli C., et al. . (2016). The Mammalian Complement System as an Epitome of Host-Pathogen Genetic Conflicts. Mol. Ecol. 25 (6), 1324–1339. doi: 10.1111/mec.13558 PubMed DOI

Chalaire K. C., Kim T. K., Garcia-Rodriguez H., Mulenga A. (2011). Amblyomma Americanum (L.) (Acari: Ixodidae) Tick Salivary Gland Serine Protease Inhibitor (Serpin) 6 is Secreted Into Tick Saliva During Tick Feeding. J. Exp. Biol. 214 (Pt 4), 665–673. doi: 10.1242/jeb.052076 PubMed DOI PMC

Chan W. L., Zhou A., Read R. J. (2014). Towards Engineering Hormone-Binding Globulins as Drug Delivery Agents. PLoS One 9 (11), e113402. doi: 10.1371/journal.pone.0113402 PubMed DOI PMC

Chapin J. C., Hajjar K. A. (2015). Fibrinolysis and the Control of Blood Coagulation. Blood Rev. 29 (1), 17–24. doi: 10.1016/j.blre.2014.09.003 PubMed DOI PMC

Charkoudian N. (2010). Mechanisms and Modifiers of Reflex Induced Cutaneous Vasodilation and Vasoconstriction in Humans. J. Appl. Physiol. (Bethesda Md. 1985) 109 (4), 1221–1228. doi: 10.1152/japplphysiol.00298.2010 PubMed DOI PMC

Chatterjea D., Wetzel A., Mack M., Engblom C., Allen J., Mora-Solano C., et al. . (2012). Mast Cell Degranulation Mediates Compound 48/80-Induced Hyperalgesia in Mice. Biochem. Biophys. Res. Commun. 425 (2), 237–243. doi: 10.1016/j.bbrc.2012.07.074 PubMed DOI PMC

Chlastáková A., Kotál J., Beránková Z., Kaščáková B., Martins L. A., Langhansová H., et al. . (2021). Iripin-3, a New Salivary Protein Isolated From Ixodes Ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro . Front. Immunol. 12, 626200. doi: 10.3389/fimmu.2021.626200 PubMed DOI PMC

Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick Salivary Secretion as a Source of Antihemostatics. J. Proteomics 75 (13), 3842–3854. doi: 10.1016/j.jprot.2012.04.026 PubMed DOI PMC

Chmelař J., Kotál J., Karim S., Kopacek P., Francischetti I. M. B., Pedra J. H. F., et al. . (2016). Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. 32 (3), 242–254. doi: 10.1016/j.pt.2015.10.002 PubMed DOI PMC

Chmelar J., Kotal J., Kopecky J., Pedra J. H. F., Kotsyfakis M. (2016). All For One and One For All on the Tick-Host Battlefield. Trends Parasitol. 32 (5), 368–377. doi: 10.1016/j.pt.2016.01.004 PubMed DOI PMC

Chmelař J., Kotál J., Kovaříková A., Kotsyfakis M. (2019). The Use of Tick Salivary Proteins as Novel Therapeutics. Front. Physiol. 10,812. doi: 10.3389/fphys.2019.00812 PubMed DOI PMC

Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. (2017). Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-Host-Pathogen Interaction. Front. Cell Infect. Microbiol. 7, 216. doi: 10.3389/fcimb.2017.00216 PubMed DOI PMC

Chmelar J., Oliveira C. J., Rezacova P., Francischetti I. M., Kovarova Z., Pejler G., et al. . (2011). A Tick Salivary Protein Targets Cathepsin G and Chymase and Inhibits Host Inflammation and Platelet Aggregation. Blood 117 (2), 736–744. doi: 10.1182/blood-2010-06-293241 PubMed DOI PMC

Clemente M., Corigliano M. G., Pariani S. A., Sanchez-Lopez E. F., Sander V. A., Ramos-Duarte V. A. (2019). Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 20 (6), 1345. doi: 10.3390/ijms20061345 PubMed DOI PMC

Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., et al. . (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339 (6121), 819–823. doi: 10.1126/science.1231143 PubMed DOI PMC

Coutinho M. L., Bizzarro B., Tirloni L., Berger M., Freire Oliveira C. J., Sá-Nunes A., et al. . (2020). Rhipicephalus Microplus Serpins Interfere With Host Immune Responses by Specifically Modulating Mast Cells and Lymphocytes. Ticks Tick-borne Dis. 11 (4), 101425. doi: 10.1016/j.ttbdis.2020.101425 PubMed DOI PMC

Dantas-Torres F., Chomel B. B., Otranto D. (2012). Ticks and Tick-Borne Diseases: A One Health Perspective. Trends Parasitol. 28 (10), 437–446. doi: 10.1016/j.pt.2012.07.003 PubMed DOI

Duan L., Rao X., Sigdel K. R. (2019). Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019, 7403796. doi: 10.1155/2019/7403796 PubMed DOI PMC

Eappen A. G., Smith R. C., Jacobs-Lorena M. (2013). Enterobacter-Activated Mosquito Immune Responses to Plasmodium Involve Activation of SRPN6 in Anopheles Stephensi. PLoS One 8 (5), e62937. doi: 10.1371/journal.pone.0062937 PubMed DOI PMC

Fogaça A. C., Almeida I. C., Eberlin M. N., Tanaka A. S., Bulet P., Daffre S. (2006). Ixodidin, a Novel Antimicrobial Peptide From the Hemocytes of the Cattle Tick Boophilus Microplus With Inhibitory Activity Against Serine Proteinases. Peptides 27 (4), 667–674. doi: 10.1016/j.peptides.2005.07.013 PubMed DOI

Fogaça A. C., Sousa G., Pavanelo D. B., Esteves E., Martins L. A., Urbanová V., et al. . (2021). Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front. Immunol. 12, 628054. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC

Francischetti I. M., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The Role of Saliva in Tick Feeding. Front. Biosci. (Landmark Ed) 14 (6), 2051–2088. doi: 10.2741/3363 PubMed DOI PMC

Fredslund F., Laursen N. S., Roversi P., Jenner L., Oliveira C. L., Pedersen J. S., et al. . (2008). Structure of and Influence of a Tick Complement Inhibitor on Human Complement Component 5. Nat. Immunol. 9 (7), 753–760. doi: 10.1038/ni.1625 PubMed DOI

Fu Z., Akula S., Olsson A. K., Kervinen J., Hellman L. (2021). Mast Cells and Basophils in the Defense Against Ectoparasites: Efficient Degradation of Parasite Anticoagulants by the Connective Tissue Mast Cell Chymases. Int. J. Mol. Sci. 22 (23), 12627. doi: 10.3390/ijms222312627 PubMed DOI PMC

Furie B., Furie B. C. (2005). Thrombus Formation In Vivo . J. Clin. Invest. 115 (12), 3355–3362. doi: 10.1172/JCI26987 PubMed DOI PMC

Gettins P. G. (2002). Serpin Structure, Mechanism, and Function. Chem. Rev. 102 (12), 4751–4804. doi: 10.1021/cr010170+ PubMed DOI

Goulas T., Ksiazek M., Garcia-Ferrer I., Sochaj-Gregorczyk A. M., Waligorska I., Wasylewski M., et al. . (2017). A Structure-Derived Snap-Trap Mechanism of a Multispecific Serpin From the Dysbiotic Human Oral Microbiome. J. Biol. Chem. 292 (26), 10883–10898. doi: 10.1074/jbc.M117.786533 PubMed DOI PMC

Gulley M. M., Zhang X., Michel K. (2013). The Roles of Serpins in Mosquito Immunology and Physiology. J. Insect Physiol. 59 (2), 138–147. doi: 10.1016/j.jinsphys.2012.08.015 PubMed DOI PMC

Hajdušek O., Síma R., Ayllón N., Jalovecká M., Perner J., de la Fuente J., et al. . (2013). Interaction of the Tick Immune System With Transmitted Pathogens. Front. Cell Infect. Microbiol. 3, 26. doi: 10.3389/fcimb.2013.00026 PubMed DOI PMC

Hepburn N. J., Williams A. S., Nunn M. A., Chamberlain-Banoub J. C., Hamer J., Morgan B. P., et al. . (2007). In Vivo Characterization and Therapeutic Efficacy of a C5-Specific Inhibitor From the Soft Tick Ornithodoros Moubata. J. Biol. Chem. 282 (11), 8292–8299. doi: 10.1074/jbc.M609858200 PubMed DOI

Hirahara K., Nakayama T. (2016). CD4+ T-Cell Subsets in Inflammatory Diseases: Beyond the Th1/Th2 Paradigm. Int. Immunol. 28 (4), 163–171. doi: 10.1093/intimm/dxw006 PubMed DOI PMC

Hovius J. W. R., Levi M., Fikrig E. (2008). Salivating for Knowledge: Potential Pharmacological Agents in Tick Saliva. PLoS Med. 5 (2), e43–e43. doi: 10.1371/journal.pmed.0050043 PubMed DOI PMC

Hunt L. T., Dayhoff M. O. (1980). A Surprising New Protein Superfamily Containing Ovalbumin, Antithrombin-III, and Alpha1-Proteinase Inhibitor. Biochem. Biophys. Res. Commun. 95 (2), 864–871. doi: 10.1016/0006-291X(80)90867-0 PubMed DOI

Huntington J. A. (2003). Mechanisms of Glycosaminoglycan Activation of the Serpins in Hemostasis. J. Thromb. Haemost. 1 (7), 1535–1549. doi: 10.1046/j.1538-7836.2003.00305.x PubMed DOI

Huntington J. A. (2011). Serpin Structure, Function and Dysfunction. J. Thromb. Haemost. 9 (Suppl 1), 26–34. doi: 10.1111/j.1538-7836.2011.04360.x PubMed DOI

Huntington J. A., Read R. J., Carrell R. W. (2000). Structure of a Serpin-Protease Complex Shows Inhibition by Deformation. Nature 407 (6806), 923–926. doi: 10.1038/35038119 PubMed DOI

Ibelli A. M. G., Kim T. K., Hill C. C., Lewis L. A., Bakshi M., Miller S., et al. . (2014). A Blood Meal-Induced Ixodes Scapularis Tick Saliva Serpin Inhibits Trypsin and Thrombin, and Interferes With Platelet Aggregation and Blood Clotting. Int. J. Parasitol. 44 (6), 369–379. doi: 10.1016/j.ijpara.2014.01.010 PubMed DOI PMC

Imamura S., da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. (2005). A Serine Protease Inhibitor (Serpin) From Haemaphysalis Longicornis as an Anti-Tick Vaccine. Vaccine 23 (10), 1301–1311. doi: 10.1016/j.vaccine.2004.08.041 PubMed DOI

Imamura S., Konnai S., Vaz Ida S., Yamada S., Nakajima C., Ito Y., et al. . (2008). Effects of Anti-Tick Cocktail Vaccine Against Rhipicephalus Appendiculatus. Jpn J. Vet. Res. 56 (2), 85–98. doi: 10.14943/jjvr.56.2.85 PubMed DOI

Imamura S., Namangala B., Tajima T., Tembo M. E., Yasuda J., Ohashi K., et al. . (2006). Two Serine Protease Inhibitors (Serpins) That Induce a Bovine Protective Immune Response Against Rhipicephalus Appendiculatus Ticks. Vaccine 24 (13), 2230–2237. doi: 10.1016/j.vaccine.2005.10.055 PubMed DOI

Irving J. A., Steenbakkers P. J., Lesk A. M., Op den Camp H. J., Pike R. N., Whisstock J. C. (2002). Serpins in Prokaryotes. Mol. Biol. Evol. 19 (11), 1881–1890. doi: 10.1093/oxfordjournals.molbev.a004012 PubMed DOI

Jackson S. P. (2007). The Growing Complexity of Platelet Aggregation. Blood 109 (12), 5087–5095. doi: 10.1182/blood-2006-12-027698 PubMed DOI

Jackson S. P., Schoenwaelder S. M. (2003). Antiplatelet Therapy: In Search of the Magic Bullet. Nat. Rev. Drug Discov. 2 (10), 775–789. doi: 10.1038/nrd1198 PubMed DOI

Jagadeeswaran P., Gregory M., Day K., Cykowski M., Thattaliyath B. (2005). Zebrafish: A Genetic Model for Hemostasis and Thrombosis. J. Thromb. Haemost. 3 (1), 46–53. doi: 10.1111/j.1538-7836.2004.00999.x PubMed DOI

Jandrot-Perrus M., Busfield S., Lagrue A. H., Xiong X., Debili N., Chickering T., et al. . (2000). Cloning, Characterization, and Functional Studies of Human and Mouse Glycoprotein VI: A Platelet-Specific Collagen Receptor From the Immunoglobulin Superfamily. Blood 96 (5), 1798–1807. doi: 10.1182/blood.V96.5.1798 PubMed DOI

Jmel M. A., Aounallah H., Bensaoud C., Mekki I., Chmelař J., Faria F., et al. . (2021). Insights Into the Role of Tick Salivary Protease Inhibitors During Ectoparasite-Host Crosstalk. Int. J. Mol. Sci. 22 (2), 892. doi: 10.3390/ijms22020892 PubMed DOI PMC

Kascakova B., Kotal J., Martins L. A., Berankova Z., Langhansova H., Calvo E., et al. . (2021). Structural and Biochemical Characterization of the Novel Serpin Iripin-5 From Ixodes Ricinus. Acta Crystallogr. D Struct. Biol. 77 (Pt 9), 1183–1196. doi: 10.1107/S2059798321007920 PubMed DOI PMC

Kausar S., Abbas M. N., Qian C., Zhu B., Gao J., Sun Y., et al. . (2018). Role of Antheraea Pernyi Serpin 12 in Prophenoloxidase Activation and Immune Responses. Arch. Insect Biochem. Physiol. 97 (2), e21435. doi: 10.1002/arch.21435 PubMed DOI

Kausar S., Abbas M. N., Qian C., Zhu B., Sun Y., Sun Y., et al. . (2017). Serpin-14 Negatively Regulates Prophenoloxidase Activation and Expression of Antimicrobial Peptides in Chinese Oak Silkworm Antheraea Pernyi. Dev. Comp. Immunol. 76, 45–55. doi: 10.1016/j.dci.2017.05.017 PubMed DOI

Kazimírová M., Štibrániová I. (2013). Tick Salivary Compounds: Their Role in Modulation of Host Defences and Pathogen Transmission. Front. Cell Infect. Microbiol. 3, 43. doi: 10.3389/fcimb.2013.00043 PubMed DOI PMC

Kazimírová M., Thangamani S., Bartíková P., Hermance M. E., Holíková V., Štibrániová I., et al. . (2017). Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front. Cell. Infection Microbiol. 7. doi: 10.3389/fcimb.2017.00339 PubMed DOI PMC

Kim S., Carrillo M., Kulkarni V., Jagadeeswaran P. (2009). Evolution of Primary Hemostasis in Early Vertebrates. PLoS One 4 (12), e8403. doi: 10.1371/journal.pone.0008403 PubMed DOI PMC

Kim T. K., Radulovic Z., Mulenga A. (2016). Target Validation of Highly Conserved Amblyomma Americanum Tick Saliva Serine Protease Inhibitor 19. Ticks Tick Borne Dis. 7 (3), 405–414. doi: 10.1016/j.ttbdis.2015.12.017 PubMed DOI PMC

Kim T. K., Tirloni L., Berger M., Diedrich J. K., Yates J. R., 3rd, Termignoni C., et al. . (2020). Amblyomma Americanum Serpin 41 (AAS41) Inhibits Inflammation by Targeting Chymase and Chymotrypsin. Int. J. Biol. Macromol 156, 1007–1021. doi: 10.1016/j.ijbiomac.2020.04.088 PubMed DOI PMC

Kim T. K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., et al. . (2015). Conserved Amblyomma Americanum Tick Serpin19, an Inhibitor of Blood Clotting Factors Xa and XIa, Trypsin and Plasmin, has Anti-Haemostatic Functions. Int. J. Parasitol. 45 (9-10), 613–627. doi: 10.1016/j.ijpara.2015.03.009 PubMed DOI PMC

Kimura A., Sakaguchi E., Nonaka M. (2009). Multi-Component Complement System of Cnidaria: C3, Bf, and MASP Genes Expressed in the Endodermal Tissues of a Sea Anemone, Nematostella Vectensis. Immunobiology 214 (3), 165–178. doi: 10.1016/j.imbio.2009.01.003 PubMed DOI

Komiyama T., Ray C. A., Pickup D. J., Howard A. D., Thornberry N. A., Peterson E. P., et al. . (1994). Inhibition of Interleukin-1 Beta Converting Enzyme by the Cowpox Virus Serpin CrmA. An Example of Cross-Class Inhibition. J. Biol. Chem. 269 (30), 19331–19337. doi: 10.1016/S0021-9258(17)32171-3 PubMed DOI

Kopacek P., Hajdusek O., Buresova V. (2012). Tick as a Model for the Study of a Primitive Complement System. Adv. Exp. Med. Biol. 710, 83–93. doi: 10.1007/978-1-4419-5638-5_9 PubMed DOI

Kotál J., Langhansová H., Lieskovská J., Andersen J. F., Francischetti I. M. B., Chavakis T., et al. . (2015). Modulation of Host Immunity by Tick Saliva. J. Proteomics 128, 58–68. doi: 10.1016/j.jprot.2015.07.005 PubMed DOI PMC

Kotál J., Polderdijk S. G. I., Langhansová H., Ederová M., Martins L. A., Beránková Z., et al. . (2021). Ixodes Ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement. Int. J. Mol. Sci. 22 (17), 9480. doi: 10.3390/ijms22179480 PubMed DOI PMC

Kotsyfakis M., Kopacek P., Franta Z., Pedra J. H., Ribeiro J. M. (2015). Deep Sequencing Analysis of the Ixodes Ricinus Haemocytome. PLoS Negl. Trop. Dis. 9 (5), e0003754. doi: 10.1371/journal.pntd.0003754 PubMed DOI PMC

Krem M. M., Di Cera E. (2003). Conserved Ser Residues, the Shutter Region, and Speciation in Serpin Evolution*. J. Biol. Chem. 278 (39), 37810–37814. doi: 10.1074/jbc.M305088200 PubMed DOI

Krystel-Whittemore M., Dileepan K. N., Wood J. G. (2016). Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 6, 620. doi: 10.3389/fimmu.2015.00620 PubMed DOI PMC

Ksiazek M., Mizgalska D., Enghild J. J., Scavenius C., Thogersen I. B., Potempa J. (2015). Miropin, a Novel Bacterial Serpin From the Periodontopathogen Tannerella Forsythia, Inhibits a Broad Range of Proteases by Using Different Peptide Bonds Within the Reactive Center Loop. J. Biol. Chem. 290 (1), 658–670. doi: 10.1074/jbc.M114.601716 PubMed DOI PMC

LaPelusa A., Dave H. D. (2022). Physiology, Hemostasis (Treasure Island (FL: StatPearls; ). PubMed

Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., et al. . (2002. a). Characterization of a Novel Salivary Immunosuppressive Protein From Ixodes Ricinus Ticks. J. Biol. Chem. 277 (12), 10083–10089. doi: 10.1074/jbc.M111391200 PubMed DOI

Leboulle G., Rochez C., Louahed J., Ruti B., Brossard M., Bollen A., et al. . (2002. b). Isolation of Ixodes Ricinus Salivary Gland mRNA Encoding Factors Induced During Blood Feeding. Am. J. Trop. Med. hygiene 66 (3), 225–233. doi: 10.4269/ajtmh.2002.66.225 PubMed DOI

Levashina Elena A., Langley E., Green C., Gubb D., Ashburner M., Hoffmann Jules A., et al. . (1999). Constitutive Activation of Toll-Mediated Antifungal Defense in Serpin-Deficient Drosophila. Science 285 (5435), 1917–1919. doi: 10.1126/science.285.5435.1917 PubMed DOI

Ligoxygakis P., Roth S., Reichhart J.-M. (2003). A Serpin Regulates Dorsal-Ventral Axis Formation in the Drosophila Embryo. Curr. Biol. 13 (23), 2097–2102. doi: 10.1016/j.cub.2003.10.062 PubMed DOI

Lisman T., Weeterings C., de Groot P. G. (2005). Platelet Aggregation: Involvement of Thrombin and Fibrin(Ogen). Front. Biosci. 10, 2504–2517. doi: 10.2741/1715 PubMed DOI

Li B., Xu X., Wang X., Yu H., Li X., Tao W., et al. . (2012). A Systems Biology Approach to Understanding the Mechanisms of Action of Chinese Herbs for Treatment of Cardiovascular Disease. Int. J. Mol. Sci. 13 (10), 13501–13520. doi: 10.3390/ijms131013501 PubMed DOI PMC

Logsdon J. M., Stoltzfus A., Doolittle W. F. (1998). Molecular Evolution: Recent Cases of Spliceosomal Intron Gain? Curr. Biol. 8 (16), R560–R563. doi: 10.1016/S0960-9822(07)00361-2 PubMed DOI

Mahon B. P., McKenna R. (2018). Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. Methods Mol. Biol. (Clifton N.J.), 1826 9–39. doi: 10.1007/978-1-4939-8645-3_2 PubMed DOI

Mangan M. S., Kaiserman D., Bird P. I. (2008). The Role of Serpins in Vertebrate Immunity. Tissue Antigens 72 (1), 1–10. doi: 10.1111/j.1399-0039.2008.01059.x PubMed DOI

Mans B. J. (2019). Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front. Physiol. 10, 530. doi: 10.3389/fphys.2019.00530 PubMed DOI PMC

Martins L. A., Kotál J., Bensaoud C., Chmelař J., Kotsyfakis M. (2020). Small Protease Inhibitors in Tick Saliva and Salivary Glands and Their Role in Tick-Host-Pathogen Interactions. Biochim. Biophys. Acta (BBA) - Proteins Proteomics 1868 (2), 140336. doi: 10.1016/j.bbapap.2019.140336 PubMed DOI

Matias J., Kurokawa C., Sajid A., Narasimhan S., Arora G., Diktas H., et al. . (2021). Tick Immunity Using mRNA, DNA and Protein-Based Salp14 Delivery Strategies. Vaccine 39 (52), 7661–7668. doi: 10.1016/j.vaccine.2021.11.003 PubMed DOI PMC

Meekins D. A., Kanost M. R., Michel K. (2017). Serpins in Arthropod Biology. Semin. Cell Dev. Biol. 62, 105–119. doi: 10.1016/j.semcdb.2016.09.001 PubMed DOI PMC

Miller J. C., Tan S., Qiao G., Barlow K. A., Wang J., Xia D. F., et al. . (2011). A TALE Nuclease Architecture for Efficient Genome Editing. Nat. Biotechnol. 29 (2), 143–148. doi: 10.1038/nbt.1755 PubMed DOI

Moon T. C., Befus A. D., Kulka M. (2014). Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Front. Immunol. 5, 569. doi: 10.3389/fimmu.2014.00569 PubMed DOI PMC

Moro-García M. A., Mayo J. C., Sainz R. M., Alonso-Arias R. (2018). Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front. Immunol. 9. doi: 10.3389/fimmu.2018.00339 PubMed DOI PMC

Mulenga A., Khumthong R., Blandon M. A. (2007). Molecular and Expression Analysis of a Family of the Amblyomma Americanum Tick Lospins. J. Exp. Biol. 210 (Pt 18), 3188–3198. doi: 10.1242/jeb.006494 PubMed DOI

Mulenga A., Khumthong R., Chalaire K. C. (2009). Ixodes Scapularis Tick Serine Proteinase Inhibitor (Serpin) Gene Family; Annotation and Transcriptional Analysis. BMC Genomics 10, 217. doi: 10.1186/1471-2164-10-217 PubMed DOI PMC

Mulenga A., Kim T., Ibelli A. M. (2013). Amblyomma Americanum Tick Saliva Serine Protease Inhibitor 6 is a Cross-Class Inhibitor of Serine Proteases and Papain-Like Cysteine Proteases That Delays Plasma Clotting and Inhibits Platelet Aggregation. Insect Mol. Biol. 22 (3), 306–319. doi: 10.1111/imb.12024 PubMed DOI PMC

Mulenga A., Sugimoto C., Ingram G., Ohashi K., Misao O. (2001). Characterization of Two cDNAs Encoding Serine Proteinases From the Hard Tick Haemaphysalis Longicornis. Insect Biochem. Mol. Biol. 31 (8), 817–825. doi: 10.1016/S0965-1748(00)00187-9 PubMed DOI

Mulenga A., Tsuda A., Onuma M., Sugimoto C. (2003). Four Serine Proteinase Inhibitors (Serpin) From the Brown Ear Tick, Rhiphicephalus Appendiculatus; cDNA Cloning and Preliminary Characterization. Insect Biochem. Mol. Biol. 33 (2), 267–276. doi: 10.1016/S0965-1748(02)00240-0 PubMed DOI

Muller V., de Boer R. J., Bonhoeffer S., Szathmary E. (2018). An Evolutionary Perspective on the Systems of Adaptive Immunity. Biol. Rev. Camb Philos. Soc. 93 (1), 505–528. doi: 10.1111/brv.12355 PubMed DOI

Narasimhan S., Kurokawa C., DeBlasio M., Matias J., Sajid A., Pal U., et al. . (2021). Acquired Tick Resistance: The Trail is Hot. Parasite Immunol. 43 (5), e12808. doi: 10.1111/pim.12808 PubMed DOI PMC

Ng Y. Q., Gupte T. P., Krause P. J. (2021). Tick Hypersensitivity and Human Tick-Borne Diseases. Parasite Immunol. 43 (5), e12819. doi: 10.1111/pim.12819 PubMed DOI

Nwanade C. F., Wang M., Wang T., Yu Z., Liu J. (2020). Botanical Acaricides and Repellents in Tick Control: Current Status and Future Directions. Exp. Appl. Acarol 81 (1), 1–35. doi: 10.1007/s10493-020-00489-z PubMed DOI

Pak S. C., Kumar V., Tsu C., Luke C. J., Askew Y. S., Askew D. J., et al. . (2004). SRP-2 is a Cross-Class Inhibitor That Participates in Postembryonic Development of the Nematode Caenorhabditis Elegans: Initial Characterization of the Clade L Serpins. J. Biol. Chem. 279 (15), 15448–15459. doi: 10.1074/jbc.M400261200 PubMed DOI

Páleníková J., Lieskovská J., Langhansová H., Kotsyfakis M., Chmelař J., Kopecký J. (2015). Ixodes Ricinus Salivary Serpin IRS-2 Affects Th17 Differentiation via Inhibition of the Interleukin-6/STAT-3 Signaling Pathway. Infection Immun. 83 (5), 1949–1956. doi: 10.1128/IAI.03065-14 PubMed DOI PMC

Pejler G., Rönnberg E., Waern I., Wernersson S. (2010). Mast Cell Proteases: Multifaceted Regulators of Inflammatory Disease. Blood 115 (24), 4981–4990. doi: 10.1182/blood-2010-01-257287 PubMed DOI

Pekáriková D., Rajská P., Kazimírová M., Pecháňová O., Takáč P., Nuttall P. A. (2015). Vasoconstriction Induced by Salivary Gland Extracts From Ixodid Ticks. Int. J. Parasitol 45 (14), 879–883. doi: 10.1016/j.ijpara.2015.08.006 PubMed DOI

Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., et al. . (2021). UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 30 (1), 70–82. doi: 10.1002/pro.3943 PubMed DOI PMC

Polderdijk S. G., Adams T. E., Ivanciu L., Camire R. M., Baglin T. P., Huntington J. A. (2017). Design and Characterization of an APC-Specific Serpin for the Treatment of Hemophilia. Blood 129 (1), 105–113. doi: 10.1182/blood-2016-05-718635 PubMed DOI PMC

Pongprayoon P., Niramitranon J., Kaewhom P., Kaewmongkol S., Suwan E., Stich R. W., et al. (2020). Dynamic and Structural Insights Into Tick Serpin From Ixodes Ricinus. J. Biomol. Struct. Dyn. 38 (8), 2296–2303. doi: 10.1080/07391102.2019.1630003 PubMed DOI

Pongprayoon P., Kaewhom P., Kaewmongkol S., Suwan E., Stich R., Wiriya B., et al. . (2021). Structural Dynamics of Rhipicephalus Microplus Serpin-3. Mol. Simulation 47, 1–8. doi: 10.1080/08927022.2021.1962011 DOI

Porter L., Radulović Ž., Kim T., Braz G. R. C., Da Silva Vaz I., Jr., Mulenga A. (2015). Bioinformatic Analyses of Male and Female Amblyomma Americanum Tick Expressed Serine Protease Inhibitors (Serpins). Ticks Tick-Borne Dis. 6 (1), 16–30. doi: 10.1016/j.ttbdis.2014.08.002 PubMed DOI PMC

Prevot P.-P., Adam B., Boudjeltia K. Z., Brossard M., Lins L., Cauchie P., et al. . (2006). Anti-Hemostatic Effects of a Serpin From the Saliva of the Tick Ixodes Ricinus*. J. Biol. Chem. 281 (36), 26361–26369. doi: 10.1074/jbc.M604197200 PubMed DOI

Prevot P. P., Beschin A., Lins L., Beaufays J., Grosjean A., Bruys L., et al. . (2009). Exosites Mediate the Anti-Inflammatory Effects of a Multifunctional Serpin From the Saliva of the Tick Ixodes Ricinus. FEBS J. 276 (12), 3235–3246. doi: 10.1111/j.1742-4658.2009.07038.x PubMed DOI

Prevot P. P., Couvreur B., Denis V., Brossard M., Vanhamme L., Godfroid E. (2007). Protective Immunity Against Ixodes Ricinus Induced by a Salivary Serpin. Vaccine 25 (17), 3284–3292. doi: 10.1016/j.vaccine.2007.01.008 PubMed DOI

Radulović Ž.M., Mulenga A. (2017). Heparan Sulfate/Heparin Glycosaminoglycan Binding Alters Inhibitory Profile and Enhances Anticoagulant Function of Conserved Amblyomma Americanum Tick Saliva Serpin 19. Insect Biochem. Mol. Biol. 80, 1–10. doi: 10.1016/j.ibmb.2016.11.002 PubMed DOI PMC

Raphael I., Nalawade S., Eagar T. N., Forsthuber T. G. (2015). T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine 74 (1), 5–17. doi: 10.1016/j.cyto.2014.09.011 PubMed DOI PMC

Rau J. C., Beaulieu L. M., Huntington J. A., Church F. C. (2007). Serpins in Thrombosis, Hemostasis and Fibrinolysis. J. Thromb. Haemost. 5 (Suppl 1), 102–115. doi: 10.1111/j.1538-7836.2007.02516.x PubMed DOI PMC

Ribeiro J. M., Labruna M. B., Mans B. J., Maruyama S. R., Francischetti I. M., Barizon G. C., et al. . (2012). The Sialotranscriptome of Antricola Delacruzi Female Ticks is Compatible With non-Hematophagous Behavior and an Alternative Source of Food. Insect Biochem. Mol. Biol. 42 (5), 332–342. doi: 10.1016/j.ibmb.2012.01.003 PubMed DOI PMC

Ribeiro J. M. C., Mans B. J. (2020). TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front. Cell Infect. Microbiol. 10, 374. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC

Rodriguez-Valle M., Vance M., Moolhuijzen P. M., Tao X., Lew-Tabor A. E. (2012). Differential Recognition by Tick-Resistant Cattle of the Recombinantly Expressed Rhipicephalus Microplus Serine Protease Inhibitor-3 (RMS-3). Ticks Tick Borne Dis. 3 (3), 159–169. doi: 10.1016/j.ttbdis.2012.03.002 PubMed DOI

Rodriguez-Valle M., Xu T., Kurscheid S., Lew-Tabor A. E. (2015). Rhipicephalus Microplus Serine Protease Inhibitor Family: Annotation, Expression and Functional Characterisation Assessment. Parasit. Vectors 8, 7. doi: 10.1186/s13071-014-0605-4 PubMed DOI PMC

Sajid A., Matias J., Arora G., Kurokawa C., DePonte K., Tang X., et al. . (2021). mRNA Vaccination Induces Tick Resistance and Prevents Transmission of the Lyme Disease Agent. Sci. Transl. Med. 13 (620), eabj9827. doi: 10.1126/scitranslmed.abj9827 PubMed DOI

Sambrano G. R., Huang W., Faruqi T., Mahrus S., Craik C., Coughlin S. R. (2000). Cathepsin G Activates Protease-Activated Receptor-4 in Human Platelets. J. Biol. Chem. 275 (10), 6819–6823. doi: 10.1074/jbc.275.10.6819 PubMed DOI

Sa-Nunes A., Oliveira C. J. F. (2021). Dendritic Cells as a Disputed Fortress on the Tick-Host Battlefield. Trends Parasitol. 37 (4), 340–354. doi: 10.1016/j.pt.2020.11.004 PubMed DOI

Sasaki S. D., Azzolini S. S., Hirata I. Y., Andreotti R., Tanaka A. S. (2004). Boophilus Microplus Tick Larvae, a Rich Source of Kunitz Type Serine Proteinase Inhibitors. Biochimie 86 (9-10), 643–649. doi: 10.1016/j.biochi.2004.09.010 PubMed DOI

Schaller J., Gerber S. S. (2011). The Plasmin-Antiplasmin System: Structural and Functional Aspects. Cell Mol. Life Sci. 68 (5), 785–801. doi: 10.1007/s00018-010-0566-5 PubMed DOI PMC

Schick C., Pemberton P. A., Shi G.-P., Kamachi Y., Çataltepe S., Bartuski A. J., et al. . (1998). Cross-Class Inhibition of the Cysteine Proteinases Cathepsins K, L, and S by the Serpin Squamous Cell Carcinoma Antigen 1:  A Kinetic Analysis. Biochemistry 37 (15), 5258–5266. doi: 10.1021/bi972521d PubMed DOI

Schroeder H., Daix V., Gillet L., Renauld J.-C., Vanderplasschen A. (2007). The Paralogous Salivary Anti-Complement Proteins IRAC I and IRAC II Encoded by Ixodes Ricinus Ticks Have Broad and Complementary Inhibitory Activities Against the Complement of Different Host Species. Microbes Infection 9 (2), 247–250. doi: 10.1016/j.micinf.2006.10.020 PubMed DOI

Schroeder H., Skelly P. J., Zipfel P. F., Losson B., Vanderplasschen A. (2009). Subversion of Complement by Hematophagous Parasites. Dev. Comp. Immunol. 33 (1), 5–13. doi: 10.1016/j.dci.2008.07.010 PubMed DOI PMC

Silverman G. A., Bird P. I., Carrell R. W., Church F. C., Coughlin P. B., Gettins P. G. W., et al. . (2001). The Serpins Are an Expanding Superfamily of Structurally Similar But Functionally Diverse Proteins. J. Biol. Chem. 276 (36), 33293–33296. doi: 10.1074/jbc.R100016200 PubMed DOI

Silverman G. A., Whisstock J. C., Bottomley S. P., Huntington J. A., Kaiserman D., Luke C. J., et al. . (2010). Serpins Flex Their Muscle: I. Putting the Clamps on Proteolysis in Diverse Biological Systems. J. Biol. Chem. 285 (32), 24299–24305. doi: 10.1074/jbc.R110.112771 PubMed DOI PMC

Šimo L., Kazimirova M., Richardson J., Bonnet S. I. (2017). The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. infection Microbiol. 7, 281. doi: 10.3389/fcimb.2017.00281 PubMed DOI PMC

Sochaj-Gregorczyk A., Ksiazek M., Waligorska I., Straczek A., Benedyk M., Mizgalska D., et al. . (2020). Plasmin Inhibition by Bacterial Serpin: Implications in Gum Disease. FASEB J. 34 (1), 619–630. doi: 10.1096/fj.201901490RR PubMed DOI PMC

Sojka D., Franta Z., Horn M., Caffrey C. R., Mares M., Kopacek P. (2013). New Insights Into the Machinery of Blood Digestion by Ticks. Trends Parasitol. 29 (6), 276–285. doi: 10.1016/j.pt.2013.04.002 PubMed DOI

Spence M. A., Mortimer M. D., Buckle A. M., Minh B. Q., Jackson C. J. (2021). A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Mol. Biol. Evol. 38 (7), 2915–2929. doi: 10.1093/molbev/msab081 PubMed DOI PMC

Sugino M., Imamura S., Mulenga A., Nakajima M., Tsuda A., Ohashi K., et al. . (2003). A Serine Proteinase Inhibitor (Serpin) From Ixodid Tick Haemaphysalis Longicornis; Cloning and Preliminary Assessment of its Suitability as a Candidate for a Tick Vaccine. Vaccine 21 (21-22), 2844–2851. doi: 10.1016/S0264-410X(03)00167-1 PubMed DOI

Syrovets T., Lunov O., Simmet T. (2012). Plasmin as a Proinflammatory Cell Activator. J. leukocyte Biol. 92 (3), 509–519. doi: 10.1189/jlb.0212056 PubMed DOI

Tirloni L., Kim T. K., Berger M., Termignoni C., da Silva Vaz I., Jr., Mulenga A. (2019). Amblyomma Americanum Serpin 27 (AAS27) is a Tick Salivary Anti-Inflammatory Protein Secreted Into the Host During Feeding. PLoS Negl. Trop. Dis. 13 (8), e0007660. doi: 10.1371/journal.pntd.0007660 PubMed DOI PMC

Tirloni L., Kim T. K., Coutinho M. L., Ali A., Seixas A., Termignoni C., et al. . (2016). The Putative Role of Rhipicephalus Microplus Salivary Serpins in the Tick-Host Relationship. Insect Biochem. Mol. Biol. 71, 12–28. doi: 10.1016/j.ibmb.2016.01.004 PubMed DOI PMC

Tirloni L., Seixas A., Mulenga A., Vaz Ida S., Jr., Termignoni C. (2014). A Family of Serine Protease Inhibitors (Serpins) in the Cattle Tick Rhipicephalus (Boophilus) Microplus. Exp. Parasitol 137, 25–34. doi: 10.1016/j.exppara.2013.12.001 PubMed DOI

Toyomane K., Konnai S., Niwa A., Githaka N., Isezaki M., Yamada S., et al. . (2016). Identification and the Preliminary In Vitro Characterization of IRIS Homologue From Salivary Glands of Ixodes Persulcatus Schulze. Ticks Tick-borne Dis. 7 (1), 119–125. doi: 10.1016/j.ttbdis.2015.09.006 PubMed DOI

Tufail M., Takeda M. (2009). Insect Vitellogenin/Lipophorin Receptors: Molecular Structures, Role in Oogenesis, and Regulatory Mechanisms. J. Insect Physiol. 55 (2), 87–103. doi: 10.1016/j.jinsphys.2008.11.007 PubMed DOI

Tyson K., Elkins C., Patterson H., Fikrig E., de Silva A. (2007). Biochemical and Functional Characterization of Salp20, an Ixodes Scapularis Tick Salivary Protein That Inhibits the Complement Pathway. Insect Mol. Biol. 16 (4), 469–479. doi: 10.1111/j.1365-2583.2007.00742.x PubMed DOI

Valenzuela J. G., Charlab R., Mather T. N., Ribeiro J. M. (2000). Purification, Cloning, and Expression of a Novel Salivary Anticomplement Protein From the Tick, Ixodes Scapularis. J. Biol. Chem. 275 (25), 18717–18723. doi: 10.1074/jbc.M001486200 PubMed DOI

Wang X.-R., Cull B. (2022). Apoptosis and Autophagy: Current Understanding in Tick-Pathogen Interactions. Front. Cell. infection Microbiol. 12, 784430. doi: 10.3389/fcimb.2022.784430 PubMed DOI PMC

Wang F., Song Z., Chen J., Wu Q., Zhou X., Ni X., et al. . (2020). The Immunosuppressive Functions of Two Novel Tick Serpins, HlSerpin-A and HlSerpin-B, From Haemaphysalis Longicornis. Immunology 159 (1), 109–120. doi: 10.1111/imm.13130 PubMed DOI PMC

Watson S. P., Auger J. M., McCarty O. J., Pearce A. C. (2005). GPVI and Integrin alphaIIb Beta3 Signaling in Platelets. J. Thromb. Haemost. 3 (8), 1752–1762. doi: 10.1111/j.1538-7836.2005.01429.x PubMed DOI

Wen S., Wang F., Ji Z., Pan Y., Jian M., Bi Y., et al. . (2019). Salp15, a Multifunctional Protein From Tick Saliva With Potential Pharmaceutical Effects. Front. Immunol. 10, 3067. doi: 10.3389/fimmu.2019.03067 PubMed DOI PMC

Whisstock J. C., Silverman G. A., Bird P. I., Bottomley S. P., Kaiserman D., Luke C. J., et al. . (2010). Serpins Flex Their Muscle: II. STRUCTURAL INSIGHTS INTO TARGET PEPTIDASE RECOGNITION, POLYMERIZATION, AND TRANSPORT FUNCTIONS. J. Biol. Chem. 285 (32), 24307–24312. doi: 10.1074/jbc.R110.141408 PubMed DOI PMC

Wikel S. (2013). Ticks and Tick-Borne Pathogens at the Cutaneous Interface: Host Defenses, Tick Countermeasures, and a Suitable Environment for Pathogen Establishment. Front. Microbiol. 4, 337. doi: 10.3389/fmicb.2013.00337 PubMed DOI PMC

Wikel S. (2021). Immunobiology of Tick-Host-Pathogen Interactions. Parasite Immunol. 43 (5), e12818. doi: 10.1111/pim.12818 PubMed DOI

Xu T., Lew-Tabor A., Rodriguez-Valle M. (2016). Effective Inhibition of Thrombin by Rhipicephalus Microplus Serpin-15 (RmS-15) Obtained in the Yeast Pichia Pastoris. Ticks tick-borne Dis. 7 (1), 180–187. doi: 10.1016/j.ttbdis.2015.09.007 PubMed DOI

Xu Z., Lin Z., Wei N., Di Q., Cao J., Zhou Y., et al. . (2019). Immunomodulatory Effects of Rhipicephalus Haemaphysaloides Serpin RHS2 on Host Immune Responses. Parasit. Vectors 12 (1), 341. doi: 10.1186/s13071-019-3607-4 PubMed DOI PMC

Xu Z., Yan Y., Zhang H., Cao J., Zhou Y., Xu Q., et al. . (2020). A Serpin From the Tick Rhipicephalus Haemaphysaloides: Involvement in Vitellogenesis. Veterinary Parasitol. 279, 109064. doi: 10.1016/j.vetpar.2020.109064 PubMed DOI

Yaron J. R., Zhang L., Guo Q., Haydel S. E., Lucas A. R. (2021). Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front. Cardiovasc. Med. 8, 648947. doi: 10.3389/fcvm.2021.648947 PubMed DOI PMC

Yu Y., Cao J., Zhou Y., Zhang H., Zhou J. (2013). Isolation and Characterization of Two Novel Serpins From the Tick Rhipicephalus Haemaphysaloides. Ticks Tick-borne Dis. 4 (4), 297–303. doi: 10.1016/j.ttbdis.2013.02.001 PubMed DOI

Zarbock A., Polanowska-Grabowska R. K., Ley K. (2007). Platelet-Neutrophil-Interactions: Linking Hemostasis and Inflammation. Blood Rev. 21 (2), 99–111. doi: 10.1016/j.blre.2006.06.001 PubMed DOI

Zhang X., Zink F., Hezel F., Vogt J., Wachter U., Wepler M., et al. . (2020). Metabolic Substrate Utilization in Stress-Induced Immune Cells. Intensive Care Med. Exp. 8 (Suppl 1), 28. doi: 10.1186/s40635-020-00316-0 PubMed DOI PMC

Zhou J., Liao M., Hatta T., Tanaka M., Xuan X., Fujisaki K. (2006. b). Identification of a Follistatin-Related Protein From the Tick Haemaphysalis Longicornis and its Effect on Tick Oviposition. Gene 372, 191–198. doi: 10.1016/j.gene.2005.12.020 PubMed DOI

Zhou A., Wei Z., Read R. J., Carrell R. W. (2006. a). Structural Mechanism for the Carriage and Release of Thyroxine in the Blood. Proc. Natl. Acad. Sci. U.S.A. 103 (36), 13321–13326. doi: 10.1073/pnas.0604080103 PubMed DOI PMC

Zhou A., Wei Z., Stanley P. L., Read R. J., Stein P. E., Carrell R. W. (2008). The S-To-R Transition of Corticosteroid-Binding Globulin and the Mechanism of Hormone Release. J. Mol. Biol. 380 (1), 244–251. doi: 10.1016/j.jmb.2008.05.012 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace