Effect of 2-chloro-substitution of adenine moiety in mixed-ligand gold(I) triphenylphosphine complexes on anti-inflammatory activity: the discrepancy between the in vivo and in vitro models

. 2013 ; 8 (11) : e82441. [epub] 20131127

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24312423

A series of gold(I) triphenylphosphine (PPh3) complexes (1-9) involving 2-chloro-N6-(substituted-benzyl)adenine derivatives as N-donor ligands was synthesized and thoroughly characterized by relevant methods, including electrospray-ionization (ESI) mass spectrometry and multinuclear NMR spectroscopy. The anti-inflammatory and antiedematous effects of three representatives 1, 5 and 9 were evaluated by means of in vitro model based on the expression of pro- and anti-inflammatory cytokines and influence of the complexes on selected forms of matrix metalloproteinases secreted by LPS-activated THP-1 monocytes and in vivo model evaluating the antiedematous effect of the complexes in the carrageenan-induced rat hind-paw edema model. In addition to the pharmacological observations, the affected hind paws were post mortem subjected to histological and immunohistochemical evaluations. The results of both in vivo and ex vivo methods revealed low antiedematous and anti-inflammatory effects of the complexes, even though the in vitro model identified them as promising anti-inflammatory acting compounds. The reason for this discrepancy lies probably in low stability of the studied complexes in biological environment, as demonstrated by the solution interaction studies with sulfur-containing biomolecules (cysteine and reduced glutathione) using the ESI mass spectrometry.

Zobrazit více v PubMed

Pradal A, Toullec PY, Michelet V (2011) Recent developments in asymmetric catalysis in the presence of chiral gold complexes. Synthesis 10: 1501–1514.

Cao ZY, Wang XM, Tan C, Zhao XL, Zhou J et al. (2013) Highly stereoselective olefin cyclopropanation of diazooxindoles catalyzed by a C-2-symmetric spiroketal bisphosphine/Au(I) complex. J Am Chem Soc 135: 8197–8200. doi:10.1021/ja4040895. PubMed DOI

Liu B, Li KN, Luo SW, Huang JZ, Pang H et al. (2013) Chiral gold complex-catalyzed hetero-diels-alder reaction of diazenes: highly enantioselective and general for dienes. J Am Chem Soc 135: 3323–3326. doi:10.1021/ja3110472. PubMed: 23421493. PubMed DOI

Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W et al. (2011) Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 15: 1085–1127. doi:10.1089/ars.2010.3663. PubMed: 21275772. PubMed DOI PMC

Ott I, Qian X, Xu Y, Vlecken DHW, Marques IJ et al. (2009) A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J Med Chem 52: 763–770. doi:10.1021/jm8012135. PubMed: 19123857. PubMed DOI

Lima JC, Rodriguez L (2011) Phosphine-gold(I) compounds as anticancer agents: general description and mechanisms of action. Anticancer Agents Med Chem 11: 921–928. doi:10.2174/187152011797927670. PubMed: 21864238. PubMed DOI

Navarro M (2009) Gold complexes as potential anti-parasitic agents. Coord Chem Rev 253: 1619–1626. doi:10.1016/j.ccr.2008.12.003. DOI

Gielen M, Tiekink ERT (2005) Metallotherapeutic drugs and metal-based diagnostic agents. London: Willey.

Ott I (2009) On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 253: 1670–1681. doi:10.1016/j.ccr.2009.02.019. DOI

Trávníček Z, Starha P, Vančo J, Silha T, Hošek J et al. (2012) Anti-inflammatory active gold(I) complexes involving 6-substituted purine derivatives. J Med Chem 55: 4568–4579. doi:10.1021/jm201416p. PubMed: 22541000. PubMed DOI

von Nägeli CW, Schwendener S, Cramer C (1893) Ueber oligodynamische Erscheinungen in lebenden Zellen. Zürich: Druck von Zürcher und Furrer: 51.

Kostova I (2006) Gold coordination complexes as anticancer agents. Anticancer Agents Med Chem 6: 19–32. doi:10.2174/187152006774755500. PubMed: 16475924. PubMed DOI

Buac D, Schmitt S, Ventro G, Kona FR, Dou QP (2012) Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells. Mini Rev Med Chem 12: 1193–1201. doi:10.2174/138955712802762040. PubMed: 22931591. PubMed DOI PMC

Hoke GD, Rush GF, Bossard GF, McArdle JV, Jensen BD et al. (1988) Mechanism of alterations in isolated rat liver mitochondrial function induced by gold complexes of bidentate phosphines. J Biol Chem 263: 11203–11210. PubMed: 2457018. PubMed

Hoke GD, Rush GF, Mirabelli CK (1989) The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. III. Chlorotriethylphosphine gold(I)-induced alterations in isolated rat liver mitochondrial function. Toxicol Appl Pharmacol 99: 50–60. doi:10.1016/0041-008X(89)90110-5. PubMed: 2471292. PubMed DOI

Rackham O, Nichols SJ, Leedman PJ, Berners-Price SJ, Filipovska A (2007) A gold(I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem Pharmacol 74: 992–1002. doi:10.1016/j.bcp.2007.07.022. PubMed: 17697672. PubMed DOI

Hoke GD, McCabe FL, Faucette LF, Bartus JO, Sung CM et al. (1991) In vivo development and in vitro characterization of a subclone of murine P388 leukemia resistant to bis(diphenylphosphine)ethane. Mol Pharmacol 39: 90–97. PubMed: 1898982. PubMed

Smith PF, Hoke GD, Alberts DW, Bugelski PJ, Lupo S et al. (1989) Mechanism of toxicity of an experimental bidentate phosphine gold complexed antineoplastic agent in isolated rat hepatocytes. J Pharmacol Exp Ther 249: 944–950. PubMed: 2732955. PubMed

Gandin V, Fernandes AP, Rigobello MP, Dani B, Sorrentino F et al. (2010) Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem Pharmacol 79: 90–101. doi:10.1016/j.bcp.2009.07.023. PubMed: 19665452. PubMed DOI

Tonissen KF, Di Trapani G (2009) Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 53: 87–103. doi:10.1002/mnfr.200700492. PubMed: 18979503. PubMed DOI

Vergara E, Casini A, Sorrentino F, Zava O, Cerrada E et al. (2010) Anticancer therapeutics that target selenoenzymes: synthesis, characterization, in vitro cytotoxicity, and thioredoxin reductase inhibition of a series of gold(I) complexes containing hydrophilic phosphine ligands. Chemmedchem 5: 96–102. doi:10.1002/cmdc.200900370. PubMed: 19937669. PubMed DOI

Lee MT, Ahmed T, Haddad R, Friedman ME (1989) Inhibition of several enzymes by gold compounds. II. Beta-glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate(I), sodium thiosulfatoaurate(I) and thioglucosoaurate(I). J Enzyme Inhib 3: 35–47 PubMed

Hedström E, Eriksson S, Zawacka-Pankau J, Arnér ES, Selivanova G (2009) p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA. Cell Cycle 8: 3576–3583. PubMed: 19838062. PubMed

Kim NH, Oh MK, Park HJ, Kim IS (2010) Auranofin, a gold(I)-containing antirheumatic compound, activates Keap1/Nrf2 signaling via Rac1/iNOS signal and mitogen-activated protein kinase activation. J Pharmacol Sci 113: 246–254. doi:10.1254/jphs.09330FP. PubMed: 20647686. PubMed DOI

Jeon KI, Byun MS, Jue DM (2003) Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med 35: 61–66. doi:10.1038/emm.2003.9. PubMed: 12754408. PubMed DOI

Kim NH, Lee MY, Park SJ, Choi JS, Oh MK et al. (2007) Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 122: 607–614. doi:10.1111/j.1365-2567.2007.02679.x. PubMed: 17645497. PubMed DOI PMC

Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH (2006) Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 350: 866–871. doi:10.1016/j.bbrc.2006.09.097. PubMed: 17034761. PubMed DOI PMC

Williams HJ, Ward JR, Reading JC, Brooks RH, Clegg DO et al. (1992) Comparison of auranofin, methotreaxate, and the combination of both in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 35: 259–269. doi:10.1002/art.1780350304. PubMed: 1536666. PubMed DOI

Sorenson JRJ (1976) Copper chelates as possible active forms of the antiarthritic agents. J Med Chem 19: 135–148. doi:10.1021/jm00223a024. PubMed: 1246036. PubMed DOI

Lemoine P, Viossata B, Dung NH, Tomas A, Morgant G (2004) Synthesis, crystal structures, and anti-convulsant activities of ternary [Zn II (3,5-diisopropylsalicylate)2], [ZnII(salicylate)2] and [ZnII(aspirinate)2] complexes. J Inorg Biochem 98: 1734–1749 PubMed

Oh CH, Lee SC, Lee KS, Woo ER, Hong CY et al. (1999) Synthesis and biological activities of C-2, N-9 substituted 6-benzylaminopurine derivatives as cyclin-dependent kinase inhibitor. Arch Pharm (Weinheim) 332: 187–190. doi:10.1002/(SICI)1521-4184(19996)332:6. PubMed: 10399486. PubMed DOI

Mann FG, Wells AF, Purdie D (1937) The constitution of complex metallic salts. Part VI. The constitution of the phosphine and arsine derivatives of silver and aurous halides. The configuration of the co-ordinated argentous and aurous complex. J Chem Soc: 1828–1836. doi:10.1039/jr9370001828. DOI

Bruce MI, Nicholson BK, Shawkataly bin O, Shapley JR, Henly T (1989) Synthesis of gold-containing mixed-metal cluster complexes. Inorg Syn 26: 324–328

Schöniger W (1956) Die mikroanalytische schnellbestimmung von halogen und schwefel in organischen verbindungen. Mikrochim Acta 44: 869–876. doi:10.1007/BF01262130. DOI

Pěnčíková K, Kollár P, Müller Závalová V, Táborská E, Urbanová J et al. (2012) Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line. Phytomedicine 19: 890–895. doi:10.1016/j.phymed.2012.04.001. PubMed: 22592163. PubMed DOI

Talhouk RS, Chin JR, Unemori EN, Werb Z, Bissell MJ (1991) Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112: 439–449. PubMed: 1794314. PubMed PMC

Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16: 109–110. doi:10.1016/0304-3959(83)90201-4. PubMed: 6877845. PubMed DOI

Kiernan JA (2008) Histological and histochemical methods: theory and practice. 4th ed. Bloxham, UK: Scion.

Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7: 81–122. doi:10.1016/S0010-8545(00)80009-0. DOI

Pouchert CJ (1981) The Aldrich library of infrared spectra. Aldrich Chemical Company Press, Milwaukee.

Čajan M, Trávníček Z (2011) Structural (X-ray), spectral (FT-IR and Raman) and quantum chemical investigations of a series of 6-benzylaminopurine derivatives. J Mol Struct 994: 350–359. doi:10.1016/j.molstruc.2011.03.049. DOI

Maćkowiak M, Kolasiewicz W, Markowicz-Kula K, Wedzony K (2005) Purvalanol A, inhibitor of cyclin-dependent kinases attenuates proliferation of cells in the dentate gyrus of the adult rat hippocampus. Pharmacol Rep 57: 845–849. PubMed: 16382206. PubMed

Nomiya K, Noguchi R, Ohsawa K, Tsuda K, Oda M (2000) Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole). J Inorg Biochem 78: 363–370. doi:10.1016/S0162-0134(00)00065-9. PubMed: 10857918. PubMed DOI

Bruce MI, Horn E, Humphrey PA, Tiekink ERT (1996) A novel method of introducing the Au2(PR3)2 (R = Ph, OMe) unit into metal clusters X-ray structures of three complexes containing Au2Ru3 cores and of Ru6C(µ-CO)2(CO)14{Au(PPh3)}2 . J Organomet Chem 518: 121–138

Nomiya K, Yamamoto S, Noguchi R, Yokoyama H, Kasuga NC et al. (2003) Ligand-exchangeability of 2-coordinate phosphinegold(I) complexes with AuSP and AuNP cores showing selective antimicrobial activities against Gram-positive bacteria. Crystal structures of [Au(2-Hmpa)(PPh3)] and [Au(6-Hmna)(PPh3)] (2-H2mpa = 2-mercaptopropionic acid, 6-H2mna = 6-mercaptonicotinic acid). J Inorg Biochem 95: 208–220. doi:10.1016/S0162-0134(03)00125-9. PubMed: 12763666. PubMed DOI

Demirovic D, Rattan SI (2013) Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis. Exp Gerontol 48: 94–98. doi:10.1016/j.exger.2012.02.005. PubMed: 22525591. PubMed DOI

Seitz M, Valbracht J, Quach J, Lotz M (2003) Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms. J Clin Immunol 23: 477–484. doi:10.1023/B:JOCI.0000010424.41475.17. PubMed: 15031635. PubMed DOI

Barreiro E, Casas JS, Couce MD, Gato Á, Sánchez A et al. (2008) Synthesis, structural characterization, and antiinflammatory activity of triethylphosphinegold(I) sulfanylpropenoates of the type [(AuPEt3)2xspa] [H2xspa = 3-(aryl)-2-sulfanylpropenoic acid]: An (H2O)6 cluster in the lattice of the complexes [(AuPEt3)2xspa]·3H2O. Inorg Chem 47: 6262–6272. doi:10.1021/ic800314p. PubMed: 18563877. PubMed DOI

Coppi G, Borella F, Gatti MT, Comini A, Dall'Asta L (1989) Synthesis, antiinflammatory and antiarthritic properties of a new tiopronine gold derivative. Boll Chim Farm 128: 22–24. PubMed: 2775517. PubMed

Girard GR, Hill DT, Dimartino MJ (1989) Evaluation of some tetraalkylammonium gold(I) and gold(III) aurate salts for oral antiinflammatory and antiarthrithic activity. Inorg Chim Acta 166: 141–146. doi:10.1016/S0020-1693(00)80799-9. DOI

Shaw CF, Coffer MT, Klingbeil J, Mirabelli CK (1988) Application of phosphorus-31 NMR chemical shift: gold affinity correlation to hemoglobin-gold binding and the first inter-protein gold transfer reaction. J Am Chem Soc 110: 729–734. doi:10.1021/ja00211a011. DOI

Iqbal MS, Taqi SG, Arif M, Wasim M, Sher M (2009) In vitro distribution of gold in serum proteins after incubation of sodium aurothiomalate and auranofin with human blood and its pharmacological significance. Biol Trace Elem Res 130: 204–209. doi:10.1007/s12011-009-8330-0. PubMed: 19194667. PubMed DOI

Saccoccia F, Angelucci F, Boumis G, Brunori M, Miele AE et al. (2012) On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases. J Inorg Biochem 108: 105–111. doi:10.1016/j.jinorgbio.2011.11.005. PubMed: 22166353. PubMed DOI PMC

Lewis D, Capell HA, McNeil CJ, Iqbal MS, Brown DH et al. (1983) Gold levels produced by treatment with auranofin and sodium aurothiomalate. Ann Rheum Dis 42: 566–570. doi:10.1136/ard.42.5.566. PubMed: 6414387. PubMed DOI PMC

Salemi G, Gueli MC, D’Amelio M, Saia V, Mangiapane P et al. (2009) Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol Sci 30: 361–364. doi:10.1007/s10072-009-0090-2. PubMed: 19484186. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace