The Gold(I) Complex with Plant Hormone Kinetin Shows Promising In Vitro Anticancer and PPARγ Properties

. 2023 Jan 24 ; 24 (3) : . [epub] 20230124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36768617

Grantová podpora
21-38204L Ministry of Education Youth and Sports
FWF I 5215 FWF Austrian Science Fund
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministry of Education Youth and Sports

Motivated by the clinical success of gold(I) metallotherapeutic Auranofin in the effective treatment of both inflammatory and cancer diseases, we decided to prepare, characterize, and further study the [Au(kin)(PPh3)] complex (1), where Hkin = kinetin, 6-furfuryladenine, for its in vitro anti-cancer and anti-inflammatory activities. The results revealed that the complex (1) had significant in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, and THP-1), with IC50 ≈ 1-5 μM, which was even significantly better than that for the conventional platinum-based drug Cisplatin while comparable with Auranofin. Although its ability to inhibit transcription factor NF-κB activity did not exceed the comparative drug Auranofin, it has been found that it is able to positively influence peroxisome-proliferator-activated receptor-gamma (PPARγ), and as a consequence of this to have the impact of moderating/reducing inflammation. The cellular effects of the complex (1) in A2780 cancer cells were also investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential, and shotgun proteomic analysis. Proteomic analysis of R2780 cells treated with complex (1) and starting compounds revealed possible different places of the effect of the studied compounds. Moreover, the time-dependent cellular accumulation of copper was studied by means of the mass spectrometry study with the aim of exploring the possible mechanisms responsible for its biological effects.

Zobrazit více v PubMed

Chaffman M., Brogden R.N., Heel R.C., Speight T.M., Avery G.S. Auranofin: A preliminary review of its pharmacological properties and therapeutic use in rheumatoid arthritis. Drugs. 1984;27:378–424. doi: 10.2165/00003495-198427050-00002. PubMed DOI

Gamberi T., Chiappetta G., Fiaschi T., Modesti A., Sorbi F., Magheriniet F. Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Med. Chem. Rev. 2020;42:1111–1146. doi: 10.1002/med.21872. PubMed DOI PMC

Marzo T., Cirri D., Gabbiani C., Gamberi T., Magherini F., Pratesi A., Guerri A., Biver T., Binacchi F., Stefanini M., et al. Auranofin, Et3PAuCl, and Et3PAuI Are Highly Cytotoxic on Colorectal Cancer Cells: A Chemical and Biological Study. ACS Med. Chem. Lett. 2017;8:997–1001. doi: 10.1021/acsmedchemlett.7b00162. PubMed DOI PMC

Abdalbari F.H., Telleria C.M. The gold complex auranofin: New perspectives for cancer therapy. Discov. Oncol. 2021;12:42. doi: 10.1007/s12672-021-00439-0. PubMed DOI PMC

Marzo T., Cirri D., Pollini S., Prato M., Fallani S., Cassetta M.I., Novelli A., Rossolini G.M., Messori L. Auranofin and its Analogues Show Potent Antimicrobial Activity against Multidrug-Resistant Pathogens: Structure–Activity Relationships. ChemMedChem. 2018;13:2448–2454. doi: 10.1002/cmdc.201800498. PubMed DOI

Liu Y., Lu Y., Xu Z., Ma X., Chen X., Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov. Today. 2022;27:1961–1973. doi: 10.1016/j.drudis.2022.02.010. PubMed DOI

Harbut M.B., Vilchèze C., Luo X., Hensler M.E., Guo H., Yang B., Chatterjee A.K., Nizet V., Jacobs W.R., Jr., Schultz P.G., et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. PNAS. 2015;112:4453–4458. doi: 10.1073/pnas.1504022112. PubMed DOI PMC

Capparelli E.V., Bricker-Ford R., Rogers M.J., McKerrow J.H., Reed S.L. Phase I clinical trial results of auranofin, a novel antiparasitic agent. Antimicrob. Agents Chemother. 2016;61:e01947-16. doi: 10.1128/AAC.01947-16. PubMed DOI PMC

Schmidt C., Karge B., Misgeld R., Prokop A., Franke R., Brönstrup M., Ott I. Gold(I) NHC Complexes: Antiproliferative Activity, Cellular Uptake, Inhibition of Mammalian and Bacterial Thioredoxin Reductases, and Gram-Positive Directed Antibacterial Effects. Chem. Eur. J. 2017;23:1869–1880. doi: 10.1002/chem.201604512. PubMed DOI

Büssing R., Karge B., Lippmann P., Jones P.G., Brönstrup M., Ott I. Gold(I) and Gold(III) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. ChemMedChem. 2021;16:3402–3409. doi: 10.1002/cmdc.202100381. PubMed DOI PMC

Wang J., Sun X., Xie Y., Long Y., Chen H., He X., Zou T., Mao Z.W., Xia W. Identification of an Au(I) N-Heterocyclic Carbene Compound as a Bactericidal Agent Against Pseudomonas aeruginosa. Front. Chem. 2022;10:895159. doi: 10.3389/fchem.2022.895159. PubMed DOI PMC

Mora M., Gimeno M.C., Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 2019;48:447–462. doi: 10.1039/C8CS00570B. PubMed DOI

Lu Y., Ma X., Chang X., Liang Z., Lv L., Shan M., Lu Q., Wen Z., Gust R., Liu W. Recent development of gold(i) and gold(iii) complexes as therapeutic agents for cancer diseases. Chem. Soc. Rev. 2022;51:5518–5556. doi: 10.1039/D1CS00933H. PubMed DOI

Zhang J., Li Y., Fang R., Wei W., Wang Y., Jin J., Yang F., Chen J. Organometallic gold(I) and gold(III) complexes for lung cancer treatment. Front. Pharmacol. 2022;13:979951. doi: 10.3389/fphar.2022.979951. PubMed DOI PMC

Yang Z., Jiang G., Xu Z., Zhao S., Liu W. Advances in alkynyl gold complexes for use as potential anticancer agents. Coord. Chem. Rev. 2020;423:213492. doi: 10.1016/j.ccr.2020.213492. DOI

Mirzadeh N., Reddy T.S., Bhargava S.K. Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev. 2019;388:343–359. doi: 10.1016/j.ccr.2019.02.027. DOI

Trávníček Z., Štarha P., Vančo J., Šilha T., Hošek J., Suchý P., Pražanová G. Anti-inflammatory active gold(I) complexes involving 6-substituted-purine derivatives. J. Med. Chem. 2012;55:4568–4579. doi: 10.1021/jm201416p. PubMed DOI

Hošek J., Vančo J., Štarha P., Paráková L., Trávníček Z. Effect of 2-Chloro-Substitution of Adenine Moiety in Mixed-Ligand Gold(I) Triphenylphosphine Complexes on Anti-Inflammatory Activity: The Discrepancy between the In Vivo and In Vitro Models. PLoS ONE. 2013;8:e82441. doi: 10.1371/journal.pone.0082441. PubMed DOI PMC

Křikavová R., Hošek J., Vančo J., Hutyra J., Dvořák J., Trávníček Z. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities. PLoS ONE. 2014;9:e107373. doi: 10.1371/journal.pone.0107373. PubMed DOI PMC

Vančo J., Gáliková J., Hošek J., Dvořák Z., Paráková L., Trávníček Z. Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory Agents. PLoS ONE. 2014;9:e109901. doi: 10.1371/journal.pone.0109901. PubMed DOI PMC

Pouchert C.J. The Aldrich Library of Infrared Spectra. 3rd ed. Aldrich Chemical Company Press; Milwaukee, WI, USA: 1981. pp. 1–1850.

Mehrzad J., Rajabi M. Kinetin (N6-furfuryladenine): Cytotoxicity against MCF-7 breast cancer cell line and interaction with bovine serum albumin. Afr. J. Biotechnol. 2011;10:6304–6309. doi: 10.5897/AJB10.2653. DOI

Abás E., Bellés A., Rodríguez-Diéguez A., Laguna M., Grasa L. Selective cytotoxicity of cyclometalated gold(III) complexes on Caco-2 cells is mediated by G2/M cell cycle arrest. Metallomics. 2021;13:mfab034. doi: 10.1093/mtomcs/mfab034. PubMed DOI

Kim J.H., Reeder E., Parkin S., Awuah S.G. Gold(I/III)-Phosphine Complexes as Potent Antiproliferative Agents. Sci. Rep. 2019;9:12335. doi: 10.1038/s41598-019-48584-5. PubMed DOI PMC

Le H.V., Babak M.V., Ehsan M.A., Altaf M., Reichert L., Gushchin A.L., Ang W.H., Isab A.A. Highly cytotoxic gold(i)-phosphane dithiocarbamate complexes trigger an ER stress-dependent immune response in ovarian cancer cells. Dalton Trans. 2020;49:7355–7363. doi: 10.1039/D0DT01411G. PubMed DOI

Wagner J.M., Karnitz L.M. Cisplatin-Induced DNA Damage Activates Replication Checkpoint Signaling Components that Differentially Affect Tumor Cell Survival. Mol. Pharmacol. 2009;76:208–214. doi: 10.1124/mol.109.055178. PubMed DOI PMC

Basu A., Krishnamurthy S. Cellular Responses to Cisplatin-Induced DNA Damage. J. Nucleic Acids. 2010:201367. doi: 10.4061/2010/201367. PubMed DOI PMC

Lin J.F., Lin Y.C., Tsai T.F., Chen H.E., Chou K.Y., Hwang T.I.S. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des. Dev. Ther. 2017;11:1517–1533. doi: 10.2147/DDDT.S126464. PubMed DOI PMC

Glanz A., Chakravarty S., Fan S., Chawla K., Subramanian G., Rahman T., Walters D., Chakravarti R., Chattopadhyay S. Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities. J. Biol. Chem. 2021;297:101274. doi: 10.1016/j.jbc.2021.101274. PubMed DOI PMC

Barnard P.J., Berners-Price S.J. Targeting the mitochondrial cell death pathway with gold compounds. Coord. Chem. Rev. 2007;251:1889–1902. doi: 10.1016/j.ccr.2007.04.006. DOI

de Maria M.B., Lamarche J., Ronga L., Messori L., Szpunara J., Lobinski R. Selenol (-SeH) as a target for mercury and gold in biological systems: Contributions of mass spectrometry and atomic spectroscopy. Coord. Chem. Rev. 2023;474:214836. doi: 10.1016/j.ccr.2022.214836. DOI

Karsa M., Kosciolek A., Bongers A., Mariana A., Failes T., Gifford A.J., Kees U.R., Cheung L.C., Kotecha R.S., Arndt G.M., et al. Exploiting the reactive oxygen species imbalance in high-risk paediatric acute lymphoblastic leukaemia through auranofin. Br. J. Cancer. 2021;125:55–64. doi: 10.1038/s41416-021-01332-x. PubMed DOI PMC

Berners-Price S.J., Filipovska A. Gold compounds as therapeutic agents for human diseases. Metallomics. 2011;3:863–873. doi: 10.1039/c1mt00062d. PubMed DOI

Khan H.A., Al-Hoshani A., Isab A.A., Alhomida A.S. A Gold(III) Complex with Potential Anticancer Properties. ChemistrySelect. 2022;7:e202202956. doi: 10.1002/slct.202202956. DOI

Kuhnle J.A., Fuller G., Corse J., Mackey B.E. Antisenescent activity of natural cytokinins. Physiol. Plant. 1977;41:14–21. doi: 10.1111/j.1399-3054.1977.tb01514.x. DOI

Mann F.G., Wells A.F., Purdie D. The constitution of complex metallic salts. Part VI. The constitution of the phosphine and arsine derivatives of silver and aurous halides. The configuration of the coordinated argentous and aurous complex. J. Chem. Soc. 1937:1828–1836. doi: 10.1039/jr9370001828. DOI

Bruce M.I., Nicholson B.K., Shawkataly B.O., Shapley J.R., Henly T. Synthesis of gold-containing mixed-metal cluster complexes. Inorg. Syn. 1989;26:324–328.

APEX3 Software Suite. Bruker AXS Inc.; Madison, WI, USA: 2016.

Sheldrick G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Diamond—Crystal and Molecular Structure Visualization, Crystal Impact. Dr. H. Putz & Dr. K. Brandenburg GbR; Bonn, Germany: [(accessed on 28 April 2022)]. Available online: https://www.crystalimpact.de/diamond.

Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Spek A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015;C71:9–18. doi: 10.1107/S2053229614024929. PubMed DOI

Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI

Pisárčik M., Lukáč M., Jampílek J., Pašková Ľ., Bilka F., Bilková A., Devínsky F., Vaľko J., Horáková R., Hošek J., et al. Controlled synthesis of gemini surfactant-capped gold nanoparticles. Gemini structure-nanoparticle properties relationship study. J. Mol. Liq. 2022;365:120210. doi: 10.1016/j.molliq.2022.120210. DOI

Leon I.R., Schwammle V., Jensen O.N., Sprenger R.R. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis. Mol. Cell. Proteom. 2013;12:2992–3005. doi: 10.1074/mcp.M112.025585. PubMed DOI PMC

Masuda T., Tomita T., Ishihama Y. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Chamrád I., Simerský R., Bérešová L., Strnad M., Šebela M., Lenobel R. Proteomic Identification of a Candidate Sequence of Wheat Cytokinin-Binding Protein 1. J. Plant Growth Regul. 2014;33:896–902. doi: 10.1007/s00344-014-9419-z. DOI

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Meier F., Brunner A.D., Koch S., Koch H., Lubeck M., Krause M., Goedecke N., Decker J., Kosinski T., Park M.A., et al. Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteom. 2018;17:2534–2545. doi: 10.1074/mcp.TIR118.000900. PubMed DOI PMC

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50:W216–W221. doi: 10.1093/nar/gkac194. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...