Bioinformatic Analysis of Ixodes ricinus Long Non-Coding RNAs Predicts Their Binding Ability of Host miRNAs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant19-382 07247S
Czech Science Foundation
PubMed
36077158
PubMed Central
PMC9456184
DOI
10.3390/ijms23179761
PII: ijms23179761
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, RNA-sequencing, ectoparasite-host interactions, host immunity, lncRNA,
- MeSH
- klíště * genetika MeSH
- mikro RNA * genetika MeSH
- nemoci přenášené klíšťaty * MeSH
- RNA dlouhá nekódující * genetika MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA * MeSH
- RNA dlouhá nekódující * MeSH
Ixodes ricinus ticks are distributed across Europe and are a vector of tick-borne diseases. Although I. ricinus transcriptome studies have focused exclusively on protein coding genes, the last decade witnessed a strong increase in long non-coding RNA (lncRNA) research and characterization. Here, we report for the first time an exhaustive analysis of these non-coding molecules in I. ricinus based on 131 RNA-seq datasets from three different BioProjects. Using this data, we obtained a consensus set of lncRNAs and showed that lncRNA expression is stable among different studies. While the length distribution of lncRNAs from the individual data sets is biased toward short length values, implying the existence of technical artefacts, the consensus lncRNAs show a more homogeneous distribution emphasizing the importance to incorporate data from different sources to generate a solid reference set of lncRNAs. KEGG enrichment analysis of host miRNAs putatively targeting lncRNAs upregulated upon feeding showed that these miRNAs are involved in several relevant functions for the tick-host interaction. The possibility that at least some tick lncRNAs act as host miRNA sponges was further explored by identifying lncRNAs with many target regions for a given host miRNA or sets of host miRNAs that consistently target lncRNAs together. Overall, our findings suggest that lncRNAs that may act as sponges have diverse biological roles related to the tick-host interaction in different tissues.
Zobrazit více v PubMed
Chmelar J., Calvo E., Pedra J.H.F., Francischetti I.M.B., Kotsyfakis M. Tick Salivary Secretion as a Source of Antihemostatics. J. Proteom. 2012;75:3842. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Abbas M.N., Chlastáková A., Jmel M.A., Iliaki-Giannakoudaki E., Chmelař J., Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front. Cell. Infect. Microbiol. 2022;12:892770. doi: 10.3389/fcimb.2022.892770. PubMed DOI PMC
Kotál J., Langhansová H., Lieskovská J., Andersen J.F., Francischetti I.M.B., Chavakis T., Kopecký J., Pedra J.H.F., Kotsyfakis M., Chmelař J. Modulation of Host Immunity by Tick Saliva. J. Proteom. 2015;128:58. doi: 10.1016/j.jprot.2015.07.005. PubMed DOI PMC
Šimo L., Kazimirova M., Richardson J., Bonnet S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Chmelař J., Kotál J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick–Host Interactions. Trends Parasitol. 2016;32:242–254. doi: 10.1016/j.pt.2015.10.002. PubMed DOI PMC
De La Fuente J., Villar M., Estrada-Peña A., Olivas J.A. High Throughput Discovery and Characterization of Tick and Pathogen Vaccine Protective Antigens Using Vaccinomics with Intelligent Big Data Analytic Techniques. Expert Rev. Vaccines. 2018;17:569–576. doi: 10.1080/14760584.2018.1493928. PubMed DOI
Wang H.L.V., Chekanova J.A. An Overview of Methodologies in Studying LncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol. Biol. 2019;1933:1–30. doi: 10.1007/978-1-4939-9045-0_1. PubMed DOI PMC
Dempsey J.L., Cui J.Y. Long Non-Coding RNAs: A Novel Paradigm for Toxicology. Toxicol. Sci. 2017;155:3–21. doi: 10.1093/toxsci/kfw203. PubMed DOI PMC
Wang K.C., Chang H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell. 2011;43:904–914. doi: 10.1016/j.molcel.2011.08.018. PubMed DOI PMC
Mariner P.D., Walters R.D., Espinoza C.A., Drullinger L.F., Wagner S.D., Kugel J.F., Goodrich J.A. Human Alu RNA Is a Modular Transacting Repressor of MRNA Transcription during Heat Shock. Mol. Cell. 2008;29:499–509. doi: 10.1016/j.molcel.2007.12.013. PubMed DOI
Paraskevopoulou M.D., Hatzigeorgiou A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016;1402:271–286. doi: 10.1007/978-1-4939-3378-5_21. PubMed DOI
Ahmad P., Bensaoud C., Mekki I., Rehman M.U., Kotsyfakis M. Long Non-Coding RNAs and Their Potential Roles in the Vector-Host-Pathogen Triad. Life. 2021;11:56. doi: 10.3390/life11010056. PubMed DOI PMC
Kern C., Wang Y., Chitwood J., Korf I., Delany M., Cheng H., Medrano J.F., van Eenennaam A.L., Ernst C., Ross P., et al. Genome-Wide Identification of Tissue-Specific Long Non-Coding RNA in Three Farm Animal Species 06 Biological Sciences 0604 Genetics. BMC Genom. 2018;19:684. doi: 10.1186/S12864-018-5037-7/FIGURES/4. PubMed DOI PMC
Bayer-Santos E., Marini M.M., da Silveira J.F. Non-Coding RNAs in Host–Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front. Microbiol. 2017;8:474. doi: 10.3389/fmicb.2017.00474. PubMed DOI PMC
Bensaoud C., Hackenberg M., Kotsyfakis M. Noncoding RNAs in Parasite–Vector–Host Interactions. Trends Parasitol. 2019;35:715–724. doi: 10.1016/j.pt.2019.06.012. PubMed DOI
Aparicio-Puerta E., Lebrón R., Rueda A., Gómez-Martín C., Giannoukakos S., Jaspez D., Medina J.M., Zubkovic A., Jurak I., Fromm B., et al. SRNAbench and SRNAtoolbox 2019: Intuitive Fast Small RNA Profiling and Differential Expression. Nucleic Acids Res. 2019;47:W530–W535. doi: 10.1093/nar/gkz415. PubMed DOI PMC
Fromm B., Høye E., Domanska D., Zhong X., Aparicio-Puerta E., Ovchinnikov V., Umu S.U., Chabot P.J., Kang W., Aslanzadeh M., et al. MirGeneDB 2.1: Toward a Complete Sampling of All Major Animal Phyla. Nucleic Acids Res. 2021;50:D204–D210. doi: 10.1093/nar/gkab1101. PubMed DOI PMC
Vlachos I.S., Zagganas K., Paraskevopoulou M.D., Georgakilas G., Karagkouni D., Vergoulis T., Dalamagas T., Hatzigeorgiou A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015;43:W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC
Preusse M., Theis F.J., Mueller N.S. MiTALOS v2: Analyzing Tissue Specific MicroRNA Function. PLoS ONE. 2016;11:e0151771. doi: 10.1371/JOURNAL.PONE.0151771. PubMed DOI PMC
Sonenshine E.D. Biology of Ticks. Oxford University Press; Oxford, NY, USA: 1991.
Sauer J.R., McSwain J.L., Bowman A.S., Essenberg R.C. Tick Salivary Gland Physiology. Annu. Rev. Entomol. 1995;40:245–267. doi: 10.1146/annurev.en.40.010195.001333. PubMed DOI
Narasimhan S., DePonte K., Marcantonio N., Liang X., Royce T.E., Nelson K.F., Booth C.J., Koski B., Anderson J.F., Kantor F., et al. Immunity against Ixodes Scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission. PLoS ONE. 2007;2:e451. doi: 10.1371/journal.pone.0000451. PubMed DOI PMC
Francischetti I.M.B., Mather T.N., Ribeiro J.M.C. Tick Saliva Is a Potent Inhibitor of Endothelial Cell Proliferation and Angiogenesis. Thromb. Haemost. 2005;94:167–174. doi: 10.1160/TH04-09-0566. PubMed DOI PMC
Díaz-Martín V., Manzano-Román R., Oleaga A., Encinas-Grandes A., Pérez-Sánchez R. Cloning and Characterization of a Plasminogen-Binding Enolase from the Saliva of the Argasid Tick Ornithodoros Moubata. Vet. Parasitol. 2013;191:301–314. doi: 10.1016/j.vetpar.2012.09.019. PubMed DOI
Basson M.D., Sanders M.A., Gomez R., Hatfield J., VanderHeide R., Thamilselvan V., Zhang J., Walsh M.F. Focal Adhesion Kinase Protein Levels in Gut Epithelial Motility. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;291:G491–G499. doi: 10.1152/ajpgi.00292.2005. PubMed DOI
Sheng H., Shao J., Townsend C.M., Evers B.M. Phosphatidylinositol 3-Kinase Mediates Proliferative Signals in Intestinal Epithelial Cells. Gut. 2003;52:1472–1478. doi: 10.1136/gut.52.10.1472. PubMed DOI PMC
Chen L., Chi H., Kinashi T. Editorial: Hippo Signaling in the Immune System. Front. Immunol. 2020;11:587514. doi: 10.3389/fimmu.2020.587514. PubMed DOI PMC
Wang Y., Malik A.B., Sun Y., Hu S., Reynolds A.B., Minshall R.D., Hu G. Innate Immune Function of the Adherens Junction Protein P120-Catenin in Endothelial Response to Endotoxin. J. Immunol. 2011;186:3180. doi: 10.4049/jimmunol.1001252. PubMed DOI PMC
Tian E., ten Hagen K.G. Recent Insights into the Biological Roles of Mucin-Type O-Glycosylation. Glycoconj J. 2009;26:325–334. doi: 10.1007/s10719-008-9162-4. PubMed DOI PMC
Gray E., Hogwood J., Mulloy B. The Anticoagulant and Antithrombotic Mechanisms of Heparin. Handb. Exp. Pharm. 2012;207:43–61. doi: 10.1007/978-3-642-23056-1_3. PubMed DOI
Li M.O., Wan Y.Y., Sanjabi S., Robertson A.K.L., Flavell R.A. Transforming Growth Factor-Beta Regulation of Immune Responses. Annu. Rev. Immunol. 2006;24:99–146. doi: 10.1146/annurev.immunol.24.021605.090737. PubMed DOI
Martínez V.G., Hernández-López C., Valencia J., Hidalgo L., Entrena A., Zapata A.G., Vicente A., Sacedón R., Varas A. The Canonical BMP Signaling Pathway Is Involved in Human Monocyte-Derived Dendritic Cell Maturation. Immunol. Cell Biol. 2011;89:610–618. doi: 10.1038/icb.2010.135. PubMed DOI
MacDonald L.A., Cohen A., Baron S., Burchfiel C.M. Respond to “Search for Preventable Causes of Cardiovascular Disease”. Am. J. Epidemiol. 2009;169:1426–1427. doi: 10.1093/aje/kwp080. PubMed DOI
Kim M., Choi S.H., Jin Y.B., Lee H.J., Ji Y.H., Kim J., Lee Y.S., Lee Y.J. The Effect of Oxidized Low-Density Lipoprotein (Ox-LDL) on Radiation-Induced Endothelial-to-Mesenchymal Transition. Int. J. Radiat. Biol. 2013;89:356–363. doi: 10.3109/09553002.2013.763193. PubMed DOI
Etebari K., Asad S., Zhang G., Asgari S. Identification of Aedes Aegypti Long Intergenic Non-Coding RNAs and Their Association with Wolbachia and Dengue Virus Infection. PLoS Negl. Trop. Dis. 2016;10:e0005069. doi: 10.1371/journal.pntd.0005069. PubMed DOI PMC
Azlan A., Obeidat S.M., Das K.T., Yunus M.A., Azzam G. Genome-Wide Identification of Aedes Albopictus Long Noncoding RNAs and Their Association with Dengue and Zika Virus Infection. PLoS Negl. Trop. Dis. 2021;15:e0008351. doi: 10.1371/journal.pntd.0008351. PubMed DOI PMC
Medina J.M., Jmel M.A., Cuveele B., Gómez-Martín C., Aparicio-Puerta E., Mekki I., Kotál J., Martins L.A., Hackenberg M., Bensaoud C., et al. Transcriptomic Analysis of the Tick Midgut and Salivary Gland Responses upon Repeated Blood-Feeding on a Vertebrate Host. Front. Cell. Infect. Microbiol. 2022;12:919786. doi: 10.3389/fcimb.2022.919786. PubMed DOI PMC
Perner J., Kropáčková S., Kopáček P., Ribeiro J.M.C. Sialome Diversity of Ticks Revealed by RNAseq of Single Tick Salivary Glands. PLoS Negl. Trop. Dis. 2018;12:e0006410. doi: 10.1371/journal.pntd.0006410. PubMed DOI PMC
Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., Plantard O., Rispe C. Whole Body Transcriptomes and New Insights into the Biology of the Tick Ixodes Ricinus. Parasites Vectors. 2018;11:364. doi: 10.1186/s13071-018-2932-3. PubMed DOI PMC
Babraham Bioinformatics Babraham Bioinformatics—Trim Galore. [(accessed on 4 July 2018)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Babraham Bioinformatics Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. [(accessed on 4 July 2018)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Trinity: Reconstructing a Full-Length Transcriptome without a Genome from RNA-Seq Data. Nat. Biotechnol. 2011;29:644. doi: 10.1038/nbt.1883. PubMed DOI PMC
Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Boutet E., Lieberherr D., Tognolli M., Schneider M., Bairoch A. UniProtKB/Swiss-Prot. Methods Mol. Biol. 2007;406:89–112. doi: 10.1007/978-1-59745-535-0_4. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Medina J.M., Jmel M.A., Cuveele B., Mekki I., Kotal J., Almeida Martins L., Hackenberg M., Kotsyfakis M., Bensaoud C. IxoriDB. [(accessed on 20 August 2022)]. Available online: https://arn.ugr.es/IxoriDB.
Schmid-Hempel P. Immune Defence, Parasite Evasion Strategies and Their Relevance for ‘Macroscopic Phenomena’ Such as Virulence. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:85. doi: 10.1098/rstb.2008.0157. PubMed DOI PMC
Robinson M.D., Oshlack A. A Scaling Normalization Method for Differential Expression Analysis of RNA-Seq Data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics. 2010;26:139. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Genome sequences of four Ixodes species expands understanding of tick evolution
Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development
Editorial: Special Issue on the "Molecular Biology of Disease Vectors"