Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development

. 2023 Mar 04 ; 24 (5) : . [epub] 20230304

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36902400

Grantová podpora
grant19-382 07247S Czech Science Foundation
No. 384 CZ.02.1.01/0.0/0.0/16_019/0000759 ERD Funds, project CePaVip OPVVV

Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.

Zobrazit více v PubMed

de la Fuente J., Kocan K.M. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Rev. Vaccines. 2003;2:583–593. doi: 10.1586/14760584.2.4.583. PubMed DOI

Weaver G.V., Anderson N., Garrett K., Thompson A.T., Yabsley M.J. Ticks and Tick-Borne Pathogens in Domestic Animals, Wild Pigs, and Off-Host Environmental Sampling in Guam, USA. Front. Vet. Sci. 2022;8:803424. doi: 10.3389/fvets.2021.803424. PubMed DOI PMC

Jones K.E., Patel N.G., Levy M.A., Storeygard A., Balk D., Gittleman J.L., Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451:990–993. doi: 10.1038/nature06536. PubMed DOI PMC

Beugnet F., Marié J.-L. Emerging arthropod-borne diseases of companion animals in Europe. Vet. Parasitol. 2009;163:298–305. doi: 10.1016/j.vetpar.2009.03.028. PubMed DOI

Peter S.G., Kariuki H.W., Aboge G.O., Gakuya D.W., Maingi N., Mulei C.M. Prevalence of Ticks Infesting Dairy Cattle and the Pathogens They Harbour in Smallholder Farms in Peri-Urban Areas of Nairobi, Kenya. Vet. Med. Int. 2021;2021:9501648. doi: 10.1155/2021/9501648. PubMed DOI PMC

Graf J.-F., Gogolewski R., Leach-Bing N., Sabatini G.A., Molento M.B., Bordin E.L., Arantes G.J. Tick control: An industry point of view. Parasitology. 2004;129:S427–S442. doi: 10.1017/S0031182004006079. PubMed DOI

de la Fuente J. Vaccines for vector control: Exciting possibilities for the future. Vet. J. 2012;194:139–140. doi: 10.1016/j.tvjl.2012.07.029. PubMed DOI

Sparagano O., Földvári G., Derdáková M., Kazimírová M. New challenges posed by ticks and tick-borne diseases. Biologia. 2022;77:1497–1501. doi: 10.1007/s11756-022-01097-5. DOI

Doolan D.L., Apte S.H., Proietti C. Genome-based vaccine design: The promise for malaria and other infectious diseases. Int. J. Parasitol. 2014;44:901–913. doi: 10.1016/j.ijpara.2014.07.010. PubMed DOI

Bragazzi N.L., Gianfredi V., Villarini M., Rosselli R., Nasr A., Hussein A., Martini M., Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is (“Isolate-Inactivate-Inject”) Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front. Public Health. 2018;6:62. doi: 10.3389/fpubh.2018.00062. PubMed DOI PMC

Zepp F. Principles of vaccine design—Lessons from nature. Vaccine. 2010;28((Suppl. 3)):C14–C24. doi: 10.1016/j.vaccine.2010.07.020. PubMed DOI

Bouazzaoui A., Abdellatif A., Al-Allaf F., Bogari N., Al-Dehlawi S., Qari S. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics. 2021;13:140. doi: 10.3390/pharmaceutics13020140. PubMed DOI PMC

D’Argenio D.A., Wilson C.B. A Decade of Vaccines: Integrating Immunology and Vaccinology for Rational Vaccine Design. Immunity. 2010;33:437–440. doi: 10.1016/j.immuni.2010.10.011. PubMed DOI

Merino O., Antunes S., Mosqueda J., Moreno-Cid J.A., de la Lastra J.M.P., Rosario-Cruz R., Rodríguez S., Domingos A., de la Fuente J. Vaccination with proteins involved in tick–pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896. doi: 10.1016/j.vaccine.2013.09.037. PubMed DOI

White A.L., Gaff H. Review: Application of Tick Control Technologies for Blacklegged, Lone Star, and American Dog Ticks. J. Integr. Pest Manag. 2018;9:12. doi: 10.1093/jipm/pmy006. DOI

Willadsen P. Anti-tick vaccines. Parasitology. 2004;129:S367–S387. doi: 10.1017/S0031182003004657. PubMed DOI

de la Fuente J., Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31:5923–5929. doi: 10.1016/j.vaccine.2013.10.049. PubMed DOI

Hill C.A., Wikel S.K. The Ixodes scapularis Genome Project: An opportunity for advancing tick research. Trends Parasitol. 2005;21:151–153. doi: 10.1016/j.pt.2005.02.004. PubMed DOI

Medina J.M., Abbas M.N., Bensaoud C., Hackenberg M., Kotsyfakis M. Bioinformatic Analysis of Ixodes ricinus Long Non-Coding RNAs Predicts Their Binding Ability of Host miRNAs. Int. J. Mol. Sci. 2022;23:9761. doi: 10.3390/ijms23179761. PubMed DOI PMC

Valle M.R., Guerrero F.D. Anti-tick vaccines in the omics era. Front. Biosci. (Elite Ed.) 2018;10:122–136. doi: 10.2741/e812. PubMed DOI

Logullo C., Vaz I.D.S., Sorgine M.H.F., Paiva-Silva G.O., Faria F.S., Zingali R.B., DE Lima M.F.R., Abreu L., Oliveira E.F., Alves E.W., et al. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology. 1998;116:525–532. doi: 10.1017/S0031182098002698. PubMed DOI

Kurlovs A.H., Li J., Cheng D., Zhong J. Ixodes pacificus Ticks Maintain Embryogenesis and Egg Hatching after Antibiotic Treatment of Rickettsia Endosymbiont. PLoS ONE. 2014;9:e104815. doi: 10.1371/journal.pone.0104815. PubMed DOI PMC

Sappington T.W., Hays A.R., Raikhel A.S. Mosquito vitellogenin receptor: Purification, developmental and biochemical characterization. Insect Biochem. Mol. Biol. 1995;25:807–817. doi: 10.1016/0965-1748(95)00016-O. PubMed DOI

Vaz I.D.S., Logullod C., Sorgine M., Velloso F.F., de Lima M.F.R., Gonzales J.C., Masuda H., Oliveira P.L., Masudaa A. Immunization of bovines with an aspartic proteinase precursor isolated from Boophilus microplus eggs. Vet. Immunol. Immunopathol. 1998;66:331–341. doi: 10.1016/s0165-2427(98)00194-9. PubMed DOI

Leal A.T., Seixas A., Pohl P.C., Ferreira C.A., Logullo C., Oliveira P.L., Farias S.E., Termignoni C., Vaz I.D.S., Masuda A. Vaccination of bovines with recombinant Boophilus Yolk pro-Cathepsin. Vet. Immunol. Immunopathol. 2006;114:341–345. doi: 10.1016/j.vetimm.2006.08.011. PubMed DOI

Leal A.T., Pohl P.C., Ferreira C.A., Nascimento-Silva M.C., Sorgine M.H., Logullo C., Oliveira P.L., Farias S.E., Vaz I.D.S., Masuda A. Purification and antigenicity of two recombinant forms of Boophilus microplus yolk pro-cathepsin expressed in inclusion bodies. Protein Expr. Purif. 2006;45:107–114. doi: 10.1016/j.pep.2005.07.009. PubMed DOI

Yamashita O., Indrasith L.S. Metabolic Fates of Yolk Proteins during Embryogenesis in Arthropods. (Arthropods/embryogenesis/yolk proteins/limited proteolysis/protease) Dev. Growth Differ. 1988;30:337–346. doi: 10.1111/j.1440-169X.1988.00337.x. PubMed DOI

Tellam R., Kemp D., Riding G., Briscoe S., Smith D., Sharp P., Irving D., Willadsen P. Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet. Parasitol. 2002;103:141–156. doi: 10.1016/S0304-4017(01)00573-8. PubMed DOI

Boldbaatar D., Umemiya-Shirafuji R., Liao M., Tanaka T., Xuan X., Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. J. Insect Physiol. 2010;56:1587–1598. doi: 10.1016/j.jinsphys.2010.05.019. PubMed DOI

Seixas A., Dos Santos P.C., Velloso F.F., Vaz I.D.S., Masuda A., Horn F., Termignoni C. A Boophilus microplus vitellin-degrading cysteine endopeptidase. Parasitology. 2003;126:155–163. doi: 10.1017/S0031182002002731. PubMed DOI

Seixas A., Leal A.T., Nascimento-Silva M.C.L., Masuda A., Termignoni C., Vaz I.D.S. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE) Vet. Immunol. Immunopathol. 2008;124:332–340. doi: 10.1016/j.vetimm.2008.04.001. PubMed DOI

Jarmey J., Riding G., Pearson R., McKenna R., Willadsen P. Carboxydipeptidase from Boophilus microplus: A “concealed” antigen with similarity to angiotensin-converting enzyme. Insect Biochem. Mol. Biol. 1995;25:969–974. doi: 10.1016/0965-1748(95)00038-W. PubMed DOI

Willadsen P., Smith D., Cobon G., McKenna R.V. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91. Parasite Immunol. 1996;18:241–246. doi: 10.1046/j.1365-3024.1996.d01-90.x. PubMed DOI

García-García J.C., Montero C., Redondo M., Vargas M., Canales M., Boue O., Rodríguez M., Joglar M., Machado H., González I.L., et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine. 2000;18:2275–2287. doi: 10.1016/S0264-410X(99)00548-4. PubMed DOI

Lambertz C., Chongkasikit N., Jittapalapong S., Gauly M. Immune Response of Bos indicus Cattle against the Anti-Tick Antigen Bm91 Derived from Local Rhipicephalus (Boophilus) microplus Ticks and Its Effect on Tick Reproduction under Natural Infestation. J. Parasitol. Res. 2012;2012:907607. doi: 10.1155/2012/907607. PubMed DOI PMC

Zivkovic Z., Esteves E., Almazán C., Daffre S., Nijhof A.M., Kocan K.M., Jongejan F., De La Fuente J. Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale. BMC Genom. 2010;11:186. doi: 10.1186/1471-2164-11-186. PubMed DOI PMC

Alarcon-Chaidez F.J., Sun J., Wikel S.K. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae) Insect Biochem. Mol. Biol. 2007;37:48–71. doi: 10.1016/j.ibmb.2006.10.002. PubMed DOI

Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X.F., Fish D., Anguita J., Norgard M.V., Kantor F.S., Anderson J.F., et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–577. doi: 10.1038/nature03812. PubMed DOI PMC

Hovius J.W.R., Levi M., Fikrig E. Salivating for Knowledge: Potential Pharmacological Agents in Tick Saliva. PLoS Med. 2008;5:e43. doi: 10.1371/journal.pmed.0050043. PubMed DOI PMC

Schuijt T.J., Hovius J.W.R., van Burgel N.D., Ramamoorthi N., Fikrig E., van Dam A.P. The Tick Salivary Protein Salp15 Inhibits the Killing of Serum-Sensitive Borrelia burgdorferi Sensu Lato Isolates. Infect. Immun. 2008;76:2888–2894. doi: 10.1128/IAI.00232-08. PubMed DOI PMC

Wen S., Wang F., Ji Z., Pan Y., Jian M., Bi Y., Zhou G., Luo L., Chen T., Li L., et al. Salp15, a Multifunctional Protein from Tick Saliva With Potential Pharmaceutical Effects. Front. Immunol. 2020;10:3067. doi: 10.3389/fimmu.2019.03067. PubMed DOI PMC

Dai J., Wang P., Adusumilli S., Booth C.J., Narasimhan S., Anguita J., Fikrig E. Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC

Kolb P., Verreiter J., Habicht J., Bentrop D., Wallich R., Nassal M. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli. FEBS Open Bio. 2015;5:42–55. doi: 10.1016/j.fob.2014.12.002. PubMed DOI PMC

Kolb P., Wallich R., Nassal M. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS ONE. 2015;10:e0136180. doi: 10.1371/journal.pone.0136180. PubMed DOI PMC

Kessenbrock K., Plaks V., Werb Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. PubMed DOI PMC

Francischetti I.M., Mather T.N., Ribeiro J.M. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem. Biophys. Res. Commun. 2003;305:869–875. doi: 10.1016/S0006-291X(03)00857-X. PubMed DOI PMC

Harnnoi T., Sakaguchi T., Nishikawa Y., Xuan X., Fujisaki K. Molecular characterization and comparative study of 6 salivary gland metalloproteases from the hard tick, Haemaphysalis longicornis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007;147:93–101. doi: 10.1016/j.cbpb.2006.12.008. PubMed DOI

Decrem Y., Beaufays J., Blasioli V., Lahaye K., Brossard M., Vanhamme L., Godfroid E. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J. 2008;275:1485–1499. doi: 10.1111/j.1742-4658.2008.06308.x. PubMed DOI

Barnard A.-C., Nijhof A.M., Gaspar A.R., Neitz A.W., Jongejan F., Maritz-Olivier C. Expression profiling, gene silencing and transcriptional networking of metzincin metalloproteases in the cattle tick, Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2012;186:403–414. doi: 10.1016/j.vetpar.2011.11.026. PubMed DOI

Ali A., Fernando Parizi L., Garcia Guizzo M., Tirloni L., Seixas A., da Silva Vaz I., Jr., Termignoni C. Immunoprotective potential of a Rhipicephalus (Boophilus) microplus metalloprotease. Vet. Parasitol. 2015;207:107–114. doi: 10.1016/j.vetpar.2014.11.007. PubMed DOI

Maruyama S.R., Garcia G.R., Teixeira F.R., Brandão L.G., Anderson J.M., Ribeiro J.M.C., Valenzuela J.G., Horackova J., Veríssimo C.J., Katiki L.M., et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites Vectors. 2017;10:206. doi: 10.1186/s13071-017-2136-2. PubMed DOI PMC

Rodríguez-Mallon A., Fernández E., Encinosa P.E., Bello Y., Méndez-Pérez L., Ruiz L.C., Pérez D., González M., Garay H., Reyes O., et al. A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine. 2012;30:1782–1789. doi: 10.1016/j.vaccine.2012.01.011. PubMed DOI

Cordeiro-Da-Silva A., Borges M.C., Guilvard E., Ouaissi A. Dual Role of the Leishmania major Ribosomal Protein S3a Homologue in Regulation of T- and B-Cell Activation. Infect. Immun. 2001;69:6588–6596. doi: 10.1128/IAI.69.11.6588-6596.2001. PubMed DOI PMC

Radulović M., Kim T.K., Porter L.M., Sze S.-H., Lewis L., Mulenga A. A 24–48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genom. 2014;15:518. doi: 10.1186/1471-2164-15-518. PubMed DOI PMC

Tirloni L., Reck J., Terra R.M.S., Martins J.R., Mulenga A., Sherman N.E., Fox J.W., Yates J.R., Termignoni C., Pinto A.F.M., et al. Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females. PLoS ONE. 2014;9:e94831. doi: 10.1371/journal.pone.0094831. PubMed DOI PMC

El-Sayed S.A.E., Rizk M.A., Eldoumani H., Sorour S.S., Terkawi M.A., Aboulaila M., Igarashi I., Sayed-Ahmed M.Z. Identification and Characterization of P0 Protein as a Vaccine Candidate Against Babesia divergens, Blood Parasite of Veterinary and Zoonotic Importance. Front. Vet. Sci. 2021;8:795906. doi: 10.3389/fvets.2021.795906. PubMed DOI PMC

Rodríguez-Mallon A., Encinosa P.E., Méndez-Pérez L., Bello Y., Fernández R.R., Garay H., Cabrales A., Méndez L., Borroto C., Estrada M.P. High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick-Borne Dis. 2015;6:530–537. doi: 10.1016/j.ttbdis.2015.04.007. PubMed DOI

Willadsen P., Riding A.G. On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochem. J. 1980;189:295–303. doi: 10.1042/bj1890295. PubMed DOI PMC

Kausar S., Abbas M.N., Qian C., Zhu B., Sun Y., Sun Y., Wang L., Wei G., Maqsood I., Liu C.-L. Serpin-14 negatively regulates prophenoloxidase activation and expression of antimicrobial peptides in Chinese oak silkworm Antheraea pernyi. Dev. Comp. Immunol. 2017;76:45–55. doi: 10.1016/j.dci.2017.05.017. PubMed DOI

Kausar S., Abbas M.N., Qian C., Zhu B., Gao J., Sun Y., Wang L., Wei G., Liu C. Role of Antheraea pernyi serpin 12 in prophenoloxidase activation and immune responses. Arch. Insect Biochem. Physiol. 2018;97:e21435. doi: 10.1002/arch.21435. PubMed DOI

Abbas M.N., Chlastáková A., Jmel M.A., Iliaki-Giannakoudaki E., Chmelař J., Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front. Cell. Infect. Microbiol. 2022;12:892770. doi: 10.3389/fcimb.2022.892770. PubMed DOI PMC

Guerrero F.D., Andreotti R., Bendele K.G., Cunha R.C., Miller R.J., Yeater K., de León A.A. P Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasit Vectors. 2014;7:475. PubMed PMC

Andreotti R., Malavazi-Piza K.C., Sasaki S.D., Torquato R.J.S., Gomes A., Tanaka A.S. Serine Proteinase Inhibitors from Eggs and Larvae of Tick Boophilus microplus: Purification and Biochemical Characterization. Protein J. 2001;20:337–343. doi: 10.1023/A:1012242817869. PubMed DOI

Andreotti R. A synthetic bmti n-terminal fragment as antigen in bovine immunoprotection against the tick Boophilus microplus in a pen trial. Exp. Parasitol. 2007;116:66–70. doi: 10.1016/j.exppara.2006.11.009. PubMed DOI

Andreotti R., Gomes A., Malavazi-Piza K.C., Sasaki S.D., Sampaio C.A., Tanaka A.S. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int. Immunopharmacol. 2002;2:557–563. doi: 10.1016/S1567-5769(01)00203-X. PubMed DOI

Andreotti R., Cunha R.C., Soares M.A., Guerrero F.D., Leite F.P.L., de León A.A.P. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine. 2012;30:6678–6685. doi: 10.1016/j.vaccine.2012.08.066. PubMed DOI

Imamura S., da Silva Vaz I., Jr., Sugino M., Ohashi K., Onuma M. A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine. 2005;23:1301–1311. doi: 10.1016/j.vaccine.2004.08.041. PubMed DOI

Jittapalapong S., Kaewhom P., Pumhom P., Canales M., De La Fuente J., Stich R.W. Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound. Emerg. Dis. 2010;57:103–106. doi: 10.1111/j.1865-1682.2010.01108.x. PubMed DOI

Kim T.K., Radulovic Z., Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick-borne Dis. 2015;7:405–414. doi: 10.1016/j.ttbdis.2015.12.017. PubMed DOI PMC

Ruddell R.G., Hoang-Le D., Barwood J.M., Rutherford P.S., Piva T.J., Watters D.J., Santambrogio P., Arosio P., Ramm G.A. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology. 2009;49:887–900. doi: 10.1002/hep.22716. PubMed DOI PMC

Hajdusek O., Sojka D., Kopacek P., Buresova V., Franta Z., Sauman I., Winzerling J., Grubhoffer L. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. USA. 2009;106:1033–1038. doi: 10.1073/pnas.0807961106. PubMed DOI PMC

Galay R.L., Miyata T., Umemiya-Shirafuji R., Maeda H., Kusakisako K., Tsuji N., Mochizuki M., Fujisaki K., Tanaka T. Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis. Parasites Vectors. 2014;7:482. doi: 10.1186/s13071-014-0482-x. PubMed DOI PMC

Kopácek P., Hajdusek O., Buresova V., Daffre S. Tick innate immunity. Adv. Exp. Med. Biol. 2010;708:137–162. PubMed

Manjunathachar H.V., Kumar B., Saravanan B.C., Choudhary S., Mohanty A.K., Nagar G., Chigure G., Kumar G.V.P.P.S.R., Fuente J., Ghosh S. Identification and characterization of vaccine candidates against Hyalomma anatolicum —Vector of Crimean-Congo haemorrhagic fever virus. Transbound. Emerg. Dis. 2019;66:422–434. doi: 10.1111/tbed.13038. PubMed DOI

Knorr S., Anguita J., Cortazar J.T., Hajdusek O., Kopáček P., Trentelman J.J., Kershaw O., Hovius J.W., Nijhof A.M. Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle. Front. Physiol. 2018;9:1696. doi: 10.3389/fphys.2018.01696. PubMed DOI PMC

Githaka N.W., Konnai S., Isezaki M., Goto S., Xavier M.A., Fujisawa S., Yamada S., Okagawa T., Maekawa N., Logullo C., et al. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick-Borne Dis. 2020;11:101547. doi: 10.1016/j.ttbdis.2020.101547. PubMed DOI

Xavier M., Konnai S., Parizi L.F., Githaka N.W., Isezaki M., Goto S., Fujisawa S., Yamada S., Okagawa T., Maekawa N., et al. Cross-species reactivity of antibodies against Ixodes persulcatus ferritin 2 to Rhipicephalus microplus. Jpn. J. Vet. Res. 2021;69:57.

Oleaga A., González-Pérez S., Peréz-Sánchez R. First molecular and functional characterisation of ferritin 2 proteins from Ornithodoros argasid ticks. Vet. Parasitol. 2022;304:109684. doi: 10.1016/j.vetpar.2022.109684. PubMed DOI

Pal U., Li X., Wang T., Montgomery R.R., Ramamoorthi N., Desilva A.M., Bao F., Yang X., Pypaert M., Pradhan D., et al. TROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi. Cell. 2004;119:457–468. doi: 10.1016/j.cell.2004.10.027. PubMed DOI

Antunes S., Galindo R.C., Almazán C., Rudenko N., Golovchenko M., Grubhoffer L., Shkap V., Rosário V.D., de la Fuente J., Domingos A. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 2012;42:187–195. doi: 10.1016/j.ijpara.2011.12.003. PubMed DOI

Pal U., Fikrig E. Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect. 2003;5:659–666. doi: 10.1016/S1286-4579(03)00097-2. PubMed DOI

Promnares K., Kumar M., Shroder D.Y., Zhang X., Anderson J.F., Pal U. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol. Microbiol. 2009;74:112–125. doi: 10.1111/j.1365-2958.2009.06853.x. PubMed DOI PMC

Tilly K., Rosa P.A., Stewart P.E. Biology of Infection with Borrelia burgdorferi. Infect. Dis. Clin. N. Am. 2008;22:217–234. doi: 10.1016/j.idc.2007.12.013. PubMed DOI PMC

Lahdenne P., Porcella S.F., Hagman E.K., Akins D.R., Popova T.G., Cox D.L., Katona I.L., Radolf J.D., Norgard M.V. Molecular characterization of a 6.6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect. Immun. 1997;65:412–421. doi: 10.1128/iai.65.2.412-421.1997. PubMed DOI PMC

Hovius J.W., van Dam A.P., Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–438. doi: 10.1016/j.pt.2007.07.001. PubMed DOI

Di Giorgio J.P., Soto G., Alleva K., Jozefkowicz C., Amodeo G., Muschietti J.P., Ayub N.D. Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses. J. Membr. Biol. 2013;247:107–125. doi: 10.1007/s00232-013-9618-8. PubMed DOI

Finn R.N., Cerdà J. Evolution and Functional Diversity of Aquaporins. Biol. Bull. 2015;229:6–23. doi: 10.1086/BBLv229n1p6. PubMed DOI

Campbell E.M., Ball A., Hoppler S., Bowman A.S. Invertebrate aquaporins: A review. J. Comp. Physiol. B. 2008;178:935–955. doi: 10.1007/s00360-008-0288-2. PubMed DOI

Stavang J.A., Chauvigné F., Kongshaug H., Cerdà J., Nilsen F., Finn R.N. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genom. 2015;16:618. doi: 10.1186/s12864-015-1814-8. PubMed DOI PMC

Verkman A.S. Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev. Physiol. Biochem. Pharmacol. 2005;155:31–55. PubMed

Holmes S.P., Li D., Ceraul S.M., Azad A.F. An aquaporin-like protein from the ovaries and gut of American dog tick (Acari: Ixodidae) J. Med. Entomol. 2008;45:68–74. doi: 10.1093/jmedent/45.1.68. PubMed DOI

Scoles G.A., Hussein H.E., Olds C.L., Mason K.L., Davis S.K. Vaccination of cattle with synthetic peptides corresponding to predicted extracellular domains of Rhipicephalus (Boophilus) microplus aquaporin 2 reduced the number of ticks feeding to repletion. Parasites Vectors. 2022;15:49. doi: 10.1186/s13071-022-05166-1. PubMed DOI PMC

Contreras M., de la Fuente J. Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. Vaccine. 2017;35:1323–1328. doi: 10.1016/j.vaccine.2017.01.052. PubMed DOI

Pérez-Sánchez R., Manzano-Román R., Obolo-Mvoulouga P., Oleaga A. Function-guided selection of midgut antigens from Ornithodoros erraticus ticks and an evaluation of their protective efficacy in rabbits. Vet. Parasitol. 2019;272:1–12. doi: 10.1016/j.vetpar.2019.06.016. PubMed DOI

Pérez-Sánchez R., Cano-Argüelles A.L., González-Sánchez M., Oleaga A. First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens. 2022;11:694. doi: 10.3390/pathogens11060694. PubMed DOI PMC

Ndekezi C., Nkamwesiga J., Ochwo S., Kimuda M.P., Mwiine F., Tweyongyere R., Amanyire W., Muhanguzi D. Identification of Ixodid Tick-Specific Aquaporin-1 Potential Anti-tick Vaccine Epitopes: An in-silico Analysis. Front. Bioeng. Biotechnol. 2019;7:236. doi: 10.3389/fbioe.2019.00236. PubMed DOI PMC

Schuijt T.J., Narasimhan S., Daffre S., DePonte K., Hovius J.W.R., Veer C.V., Van Der Poll T., Bakhtiari K., Meijers J.C.M., Boder E.T., et al. Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display. PLoS ONE. 2011;6:e15926. doi: 10.1371/journal.pone.0015926. PubMed DOI PMC

Almazán C., Kocan K.M., Bergman D.K., Garcia-Garcia J.C., Blouin E.F., de la Fuente J. Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine. 2003;21:1492–1501. doi: 10.1016/S0264-410X(02)00683-7. PubMed DOI

Almazán C., Lagunes R., Villar M., Canales M., Rosario-Cruz R., Jongejan F., de la Fuente J. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol. Res. 2010;106:471–479. doi: 10.1007/s00436-009-1689-1. PubMed DOI PMC

Merino O., Almazán C., Canales M., Villar M., Moreno-Cid J.A., Peña A.E., Kocan K.M., De La Fuente J. Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine. 2011;29:2248–2254. doi: 10.1016/j.vaccine.2011.01.050. PubMed DOI

Shakya M., Kumar B., Nagar G., de la Fuente J., Ghosh S. Subolesin: A candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine. 2014;32:3488–3494. doi: 10.1016/j.vaccine.2014.04.053. PubMed DOI

Almazán C., Moreno-Cantú O., Moreno-Cid J.A., Galindo R.C., Canales M., Villar M., de la Fuente J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine. 2012;30:265–272. doi: 10.1016/j.vaccine.2011.10.102. PubMed DOI

McKenna R.V., Riding G.A., Jarmey J.M., Pearson R.D., Willadsen P. Vaccination of cattle against the Boophilus microplus using a mucin-like membrane glycoprotein. Parasite Immunol. 1998;20:325–336. doi: 10.1046/j.1365-3024.1998.00149.x. PubMed DOI

Hope M., Jiang X., Gough J., Cadogan L., Josh P., Jonsson N., Willadsen P. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5′-nucleotidase. Parasite Immunol. 2010;32:135–142. doi: 10.1111/j.1365-3024.2009.01168.x. PubMed DOI PMC

de Lima M.R., Ferreira C., Freitas D., Valenzuela J., Masuda A. Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) glutathione S-transferase. Insect Biochem. Mol. Biol. 2002;32:747–754. doi: 10.1016/S0965-1748(01)00157-6. PubMed DOI

Jnr I.D.S.V., Imamura S., Ohashi K., Onuma M. Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S-transferase. Insect Mol. Biol. 2004;13:329–335. doi: 10.1111/j.0962-1075.2004.00493.x. PubMed DOI

Parizi L.F., Utiumi K.U., Imamura S., Onuma M., Ohashi K., Masuda A., Vaz I.D.S. Cross immunity with Haemaphysalis longicornis glutathione S-transferase reduces an experimental Rhipicephalus (Boophilus) microplus infestation. Exp. Parasitol. 2011;127:113–118. doi: 10.1016/j.exppara.2010.07.001. PubMed DOI

Liyou N., Hamilton S., Elvin C., Willadsen P., Field L.M., James A.A. Cloning and expression of ecto 5’-nucleotidase from the cattle tick Boophilus microplus. Insect Mol. Biol. 1999;8:257–266. doi: 10.1046/j.1365-2583.1999.820257.x. PubMed DOI

Liyou N., Hamilton S., McKenna R., Elvin C., Willadsen P. Localisation and functional studies on the 5′-nucleotidase of the cattle tick Boophilus microplus. Exp. Appl. Acarol. 2000;24:235–246. doi: 10.1023/A:1006452325210. PubMed DOI

Pérez-Sánchez R., Carnero-Morán Á., Soriano B., Llorens C., Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasites Vectors. 2021;14:170. doi: 10.1186/s13071-021-04671-z. PubMed DOI PMC

Díaz-Martín V., Manzano-Román R., Oleaga A., Pérez-Sánchez R. New salivary anti-haemostatics containing protective epitopes from Ornithodoros moubata ticks: Assessment of their individual and combined vaccine efficacy. Vet. Parasitol. 2015;212:336–349. doi: 10.1016/j.vetpar.2015.08.005. PubMed DOI

Moorhouse D.E., Tatchell R.J. The feeding processes of the cattle-tick Boophilus microplus (Canestrini): A study in host-parasite relations. I. Attachment to the host. Parasitology. 1966;56:623–631. doi: 10.1017/S003118200007164X. PubMed DOI

Suppan J., Engel B., Marchetti-Deschmann M., Nürnberger S. Tick attachment cement—Reviewing the mysteries of a biological skin plug system. Biol. Rev. Camb. Philos. Soc. 2018;93:1056–1076. doi: 10.1111/brv.12384. PubMed DOI PMC

Alekseev A.N., Arumova E.A., Vasilieva I.S. Borrelia burgdorferi sensu lato in the female cement plug of Ixodes persulcatus ticks (Acari, Ixodidae) Exp. Appl. Acarol. 1995;19:519–522. doi: 10.1007/BF00052920. PubMed DOI

Alekseev A.N., Burenkova L.A., Vasilieva I.S., Dubinina H.V., Chunikhin S.P. Preliminary studies on virus and spirochete accumulation in the cement plug of ixodid ticks. Exp. Appl. Acarol. 1996;20:713–723. doi: 10.1007/BF00051556. PubMed DOI

Trimnell A.R., Davies G.M., Lissina O., Hails R.S., Nuttall P.A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005;23:4329–4341. doi: 10.1016/j.vaccine.2005.03.041. PubMed DOI

Labuda M., Trimnell A.R., Ličková M., Kazimírová M., Davies G.M., Lissina O., Hails R., Nuttall A.P. An Antivector Vaccine Protects against a Lethal Vector-Borne Pathogen. PLoS Pathog. 2006;2:e27. doi: 10.1371/journal.ppat.0020027. PubMed DOI PMC

Willadsen P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 2006;138:161–168. doi: 10.1016/j.vetpar.2006.01.050. PubMed DOI

Hajdusek O., Almazán C., Loosova G., Villar M., Canales M., Grubhoffer L., Kopacek P., de la Fuente J. Characterization of ferritin 2 for the control of tick infestations. Vaccine. 2010;28:2993–2998. doi: 10.1016/j.vaccine.2010.02.008. PubMed DOI

Kumar A., Garg R., Yadav C., Vatsya S., Kumar R., Sugumar P., Chandran D., Mangamoorib L.N., Bedarkar S. Immune responses against recombinant tick antigen, Bm95, for the control of Rhipicephalus (Boophilus) microplus ticks in cattle. Vet. Parasitol. 2009;165:119–124. doi: 10.1016/j.vetpar.2009.06.030. PubMed DOI

Patarroyo J., Portela R., De Castro R., Pimentel J.C., Guzman F., Patarroyo M., Vargas M., Prates A., Mendes M.D. Immunization of cattle with synthetic peptides derived from the Boophilus microplus gut protein (Bm86) Vet. Immunol. Immunopathol. 2002;88:163–172. doi: 10.1016/S0165-2427(02)00154-X. PubMed DOI

Patarroyo S.J., Neves E.d.S., Fidelis C.F., Tafur-Gomez G.A., de Araujo L., Vargas M.I., Sossai S., Prates-Patarroyo P.A. Bovine immunisation with a recombinant peptide derived from synthetic SBm7462® (Bm86 epitope construct) immunogen for Rhipicephalus microplus control. Ticks Tick Borne Dis. 2020;11:101461. doi: 10.1016/j.ttbdis.2020.101461. PubMed DOI

Canales M., Almazán C., Naranjo V., Jongejan F., de la Fuente J. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol. 2009;9:29. doi: 10.1186/1472-6750-9-29. PubMed DOI PMC

Kumar B., Azhahianambi P., Ray D.D., Chaudhuri P., De La Fuente J., Kumar R., Ghosh S. Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. Parasite Immunol. 2012;34:297–301. doi: 10.1111/j.1365-3024.2012.01356.x. PubMed DOI

Aguirre A.d.A.R., Lobo F.P., Cunha R.C., Garcia M.V., Andreotti R. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Vet. Parasitol. 2016;221:30–38. doi: 10.1016/j.vetpar.2016.02.032. PubMed DOI

Trentelman J.J.A., Teunissen H., Kleuskens J.A.G.M., van de Crommert J., de la Fuente J., Hovius J.W.R., Schetters T.P.M. A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasites Vectors. 2019;12:362. doi: 10.1186/s13071-019-3616-3. PubMed DOI PMC

Contreras M., Kasaija P.D., Merino O., de la Cruz-Hernandez N.I., Gortazar C., de la Fuente J. Oral Vaccination with a Formulation Combining Rhipicephalus microplus Subolesin with Heat Inactivated Mycobacterium bovis Reduces Tick Infestations in Cattle. Front. Cell. Infect. Microbiol. 2019;9:45. doi: 10.3389/fcimb.2019.00045. PubMed DOI PMC

Csordas B.G., Cunha R.C., Garcia M.V., da Silva S.S., Leite F.L., Andreotti R. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus. PLoS ONE. 2018;13:e0191596. doi: 10.1371/journal.pone.0191596. PubMed DOI PMC

Contreras M., José C.S., Estrada-Peña A., Talavera V., Rayas E., León C.I., Núñez J.L., de Mera I.G.F., de la Fuente J. Control of tick infestations in wild roe deer (Capreolus capreolus) vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine. 2020;38:6450–6454. doi: 10.1016/j.vaccine.2020.07.062. PubMed DOI

Fan X., Xu X., Wu Y., Liu X., Yang F., Hu Y. Evaluation of anti-tick efficiency in rabbits induced by DNA vaccines encoding Haemaphysalis longicornis lipocalin homologue. Med. Vet. Èntomol. 2022;36:511–515. doi: 10.1111/mve.12594. PubMed DOI

Wikel S.K. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet. Sci. 2018;5:60. doi: 10.3390/vetsci5020060. PubMed DOI PMC

de Castro J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997;71:77–97. doi: 10.1016/S0304-4017(97)00033-2. PubMed DOI

Ghosh S., Azhahianambi P., Yadav M.P. Upcoming and future strategies of tick control: A review. J. Vector Borne Dis. 2007;44:79–89. PubMed

Rodríguez-Vivas R., Rivas A., Chowell G., Fragoso S., Rosario C., García Z., Smith S., Williams J., Schwager S. Spatial distribution of acaricide profiles (Boophilus microplus strains susceptible or resistant to acaricides) in southeastern Mexico. Veter- Parasitol. 2007;146:158–169. doi: 10.1016/j.vetpar.2007.01.016. PubMed DOI

Perez-Cogollo L., Rodriguez-Vivas R., Ramirez-Cruz G., Miller R. First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Vet. Parasitol. 2010;168:165–169. doi: 10.1016/j.vetpar.2009.10.021. PubMed DOI

Seixas A., Oliveira P., Termignoni C., Logullo C., Masuda A., Vaz I.D.S. Rhipicephalus (Boophilus) microplus embryo proteins as target for tick vaccine. Vet. Immunol. Immunopathol. 2012;148:149–156. doi: 10.1016/j.vetimm.2011.05.011. PubMed DOI

Estrada-Peña A., Salman M. Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture. 2013;3:221–235. doi: 10.3390/agriculture3020221. DOI

Wolff J.A., Ludtke J.J., Acsadi G., Williams P., Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1992;1:363–369. doi: 10.1093/hmg/1.6.363. PubMed DOI

Wang Z., Troilo P.J., Wang X., Griffiths T.G., Pacchione S.J., Barnum A.B., Harper L.B., Pauley C.J., Niu Z., Denisova L., et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11:711–721. doi: 10.1038/sj.gt.3302213. PubMed DOI

Manam S., Ledwith B.J., Barnum A.B., Troilo P.J., Pauley C.J., Harper L.B., Ii T.G.G., Niu Z., Denisova L., Follmer T.T., et al. Plasmid DNA Vaccines: Tissue Distribution and Effects of DNA Sequence, Adjuvants and Delivery Method on Integration into Host DNA. Intervirology. 2000;43:273–281. doi: 10.1159/000053994. PubMed DOI

Jiao S., Williams P., Berg R.K., Hodgeman B.A., Liu L., Repetto G., Wolff J.A. Direct Gene Transfer into Nonhuman Primate Myofibers In Vivo. Hum. Gene Ther. 1992;3:21–33. doi: 10.1089/hum.1992.3.1-21. PubMed DOI

Mairhofer J., Lara A.R. Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines. Methods Mol. Biol. 2014;1139:505–541. doi: 10.1007/978-1-4939-0345-0_38. PubMed DOI

Myhr A.I. DNA Vaccines: Regulatory Considerations and Safety Aspects. Curr. Issues Mol. Biol. 2017;22:79–88. doi: 10.21775/cimb.022.079. PubMed DOI

De Rose R., McKenna R.V., Cobon G., Tennent J., Zakrzewski H., Gale K., Wood P.R., Scheerlinck J.-P.Y., Willadsen P. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep. Vet. Immunol. Immunopathol. 1999;71:151–160. doi: 10.1016/S0165-2427(99)00038-0. PubMed DOI

Kutzler M.A., Weiner D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008;9:776–788. doi: 10.1038/nrg2432. PubMed DOI PMC

Ghaffarifar F. Plasmid DNA vaccines: Where are we now? Drugs Today (Barc) 2018;54:315–333. doi: 10.1358/dot.2018.54.5.2807864. PubMed DOI

Tregoning J.S., Kinnear E. Using Plasmids as DNA Vaccines for Infectious Diseases. Microbiol. Spectr. 2014;2 doi: 10.1128/microbiolspec.PLAS-0028-2014. PubMed DOI

Li L., Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines. 2015;15:313–329. doi: 10.1586/14760584.2016.1124762. PubMed DOI PMC

Sayed M.A., Kammah K.M.E., El-Fiky Z.A. A preliminary study on the DNA-vaccine for chicken protection against tick Argas persicus (Oken, 1818) Arab. J. Biotech. 2004;7:273–282.

Ruiz L.M., Orduz S., López E.D., Guzmán F., Patarroyo M.E., Armengol G. Immune response in mice and cattle after immunization with a Boophilus microplus DNA vaccine containing bm86 gene. Vet. Parasitol. 2007;144:138–145. doi: 10.1016/j.vetpar.2006.09.033. PubMed DOI

Zhang T.-T., Zhang J.-C., Cui X.-J., Zheng J.-J., Li R., Wang F., Liu J.-Z., Hu Y.-H. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasites Vectors. 2017;10:325. doi: 10.1186/s13071-017-2262-x. PubMed DOI PMC

Tshilwane S., Thema N., Steyn H., van Kleef M., Pretorius A. A multi-epitope DNA vaccine co-administered with monophosphoryl lipid A adjuvant provides protection against tick transmitted Ehrlichia ruminantium in sheep. Vaccine. 2019;37:4354–4363. doi: 10.1016/j.vaccine.2019.06.027. PubMed DOI

Matias J., Kurokawa C., Sajid A., Narasimhan S., Arora G., Diktas H., Lynn G.E., DePonte K., Pardi N., Valenzuela J.G., et al. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine. 2021;39:7661–7668. doi: 10.1016/j.vaccine.2021.11.003. PubMed DOI PMC

Sajid A., Matias J., Arora G., Kurokawa C., DePonte K., Tang X., Lynn G., Wu M.-J., Pal U., Strank N.O., et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 2021;13:eabj9827. doi: 10.1126/scitranslmed.abj9827. PubMed DOI

Allen J.R., Humphreys S.J. Immunisation of guinea pigs and cattle against ticks. Nature. 1979;280:491–493. doi: 10.1038/280491a0. PubMed DOI

Kemp D., Agbede R., Johnston L., Gough J. Immunization of cattle against Boophilus microplus using extracts derived from adult female ticks: Feeding and survival of the parasite on vaccinated cattle. Int. J. Parasitol. 1986;16:115–120. doi: 10.1016/0020-7519(86)90096-2. PubMed DOI

Willadsen P., Kemp D.H. Vaccination with ‘concealed’ antigens for tick control. Parasitol. Today. 1988;4:196–198. doi: 10.1016/0169-4758(88)90084-1. PubMed DOI

Willadsen P., Riding G.A., McKenna R.V., Kemp D.H., Tellam R.L., Nielsen J.N., Lahnstein J., Cobon G.S., Gough J.M. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol. 1989;143:1346–1351. doi: 10.4049/jimmunol.143.4.1346. PubMed DOI

Gough J.M., Kemp D.H. Localization of a Low Abundance Membrane Protein (Bm86) on the Gut Cells of the Cattle Tick Boophilus microplus by Immunogold Labeling. J. Parasitol. 1993;79:900. doi: 10.2307/3283728. PubMed DOI

Jonsson N., Matschoss A., Pepper P., Green P., Albrecht M., Hungerford J., Ansell J. Evaluation of TickGARDPLUS, a novel vaccine against Boophilus microplus, in lactating Holstein–Friesian cows. Vet. Parasitol. 2000;88:275–285. doi: 10.1016/S0304-4017(99)00213-7. PubMed DOI

de la Fuente J., Almazan C., Canales M., de la Lastra J.M.P., Kocan M.K., Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007;8:23–28. doi: 10.1017/S1466252307001193. PubMed DOI

Rodríguez M., Penichet M., Mouris A., Labarta V., Luaces L.L., Rubiera R., Cordovés C., Sánchez P., Ramos E., Soto A., et al. Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Vet. Parasitol. 1995;57:339–349. doi: 10.1016/0304-4017(94)00678-6. PubMed DOI

Parizi L.F., Pohl P.C., Masuda A., Junior I.D.S.V. New approaches toward anti-Rhipicephalus (Boophilus) microplus tick vaccine. Rev. Bras. Parasitol. Vet. 2009;18:1–7. doi: 10.4322/rbpv.01801001. PubMed DOI

De La Fuente J., Rodríguez M., García-Garí J.C. Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann. N. Y. Acad. Sci. 2000;916:617–621. doi: 10.1111/j.1749-6632.2000.tb05347.x. PubMed DOI

Canales M., Moreno-Cid J.A., Almazan C., Villar M., de la Fuente J. Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. Biochem. Eng. J. 2010;52:79–90. doi: 10.1016/j.bej.2010.07.008. DOI

de Vos S., Zeinstra L., Taoufik A., Willadsen P., Jongejan F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 2001;25:245–261. doi: 10.1023/A:1010609007009. PubMed DOI

Perez-Perez D., Bechara G., Machado R., Andrade G., del Vecchio R., Pedroso M., Hernández M., Farnós O. Efficacy of the Bm86 antigen against immature instars and adults of the dog tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) Vet. Parasitol. 2010;167:321–326. doi: 10.1016/j.vetpar.2009.09.034. PubMed DOI

Ferreira Leal B., Sanchez Ferreira C.A. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet. Parasitol. 2021;300:109610. doi: 10.1016/j.vetpar.2021.109610. PubMed DOI

Odongo D., Kamau L., Skilton R., Mwaura S., Nitsch C., Musoke A., Taracha E., Daubenberger C., Bishop R. Vaccination of cattle with TickGARD induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus. Vaccine. 2007;25:1287–1296. doi: 10.1016/j.vaccine.2006.09.085. PubMed DOI

Toaleb N.I., Gabr H.S.M., El-Shafy S.A., Abdel-Rahman E.H. Evaluation of vaccine candidates purified from the adult ticks of Ornithodoros savignyi (Acari: Argasidae) and Hyalomma dromedarii (Acari: Ixodidae) against tick infestations. J. Parasit. Dis. 2019;43:246–255. doi: 10.1007/s12639-018-01082-3. PubMed DOI PMC

Popara M., Villar M., Mateos-Hernández L., de Mera I.G.F., Marina A., del Valle M., Almazán C., Domingos A., de la Fuente J. Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine. 2013;31:4728–4735. doi: 10.1016/j.vaccine.2013.08.031. PubMed DOI

Vargas M., Montero C., Sanchez D., Perez D., Valdes M., Alfonso A., Joglar M., Machado H., Rodriguez E., Mendez L., et al. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus) microplus induce similar reproductive suppression to three initial vaccinations under production conditions. BMC Vet. Res. 2010;6:43. doi: 10.1186/1746-6148-6-43. PubMed DOI PMC

Nijhof A.M., Balk J.A., Postigo M., Rhebergen A.M., Taoufik A., Jongejan F. Bm86 homologues and novel ATAQ proteins with multiple epidermal growth factor (EGF)-like domains from hard and soft ticks. Int. J. Parasitol. 2010;40:1587–1597. doi: 10.1016/j.ijpara.2010.06.003. PubMed DOI PMC

Coumou J., Wagemakers A., Trentelman J.J., Nijhof A., Hovius J.W. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition. PLoS ONE. 2014;10:e0123495. doi: 10.1371/journal.pone.0123495. PubMed DOI PMC

Valle M.R., Mendez L., Valdez M., Redondo M., Espinosa C.M., Vargas M., Cruz R.L., Barrios H.P., Seoane G., Ramirez E.S., et al. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Exp. Appl. Acarol. 2004;34:375–382. doi: 10.1007/s10493-004-1389-6. PubMed DOI

Suarez M., Rubi J., Pérez D., Cordova V., Salazar Y., Vielma A., Barrios F., Gil C.A., Segura N., Carrillo Y., et al. High impact and effectiveness of Gavac™ vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest. Sci. 2016;187:48–52. doi: 10.1016/j.livsci.2016.02.005. DOI

Xu D., Tang B., Wang Y., Zhang L., Qu Z., Shi W., Wang X., Sun Q., Sun S., Liu M. The immune protection induced by a serine protease from the Trichinella spiralis adult administered as DNA and protein vaccine. Acta Trop. 2020;211:105622. doi: 10.1016/j.actatropica.2020.105622. PubMed DOI

Hassan I.A., Wang Y., Zhou Y., Cao J., Zhang H., Zhou J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine. 2020;38:907–915. doi: 10.1016/j.vaccine.2019.10.076. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace