Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
grant19-382 07247S
Czech Science Foundation
No. 384 CZ.02.1.01/0.0/0.0/16_019/0000759
ERD Funds, project CePaVip OPVVV
PubMed
36902400
PubMed Central
PMC10003026
DOI
10.3390/ijms24054969
PII: ijms24054969
Knihovny.cz E-zdroje
- Klíčová slova
- anti-tick vaccine, antigen candidates, tick control, vaccinomics,
- MeSH
- akaricidy * MeSH
- antigeny MeSH
- genomika metody MeSH
- klíšťata * MeSH
- lidé MeSH
- proteomika metody MeSH
- vakcíny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- akaricidy * MeSH
- antigeny MeSH
- vakcíny * MeSH
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Department of Biochemistry CARIM Maastricht University 6229 ER Maastricht The Netherlands
State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
Zobrazit více v PubMed
de la Fuente J., Kocan K.M. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Rev. Vaccines. 2003;2:583–593. doi: 10.1586/14760584.2.4.583. PubMed DOI
Weaver G.V., Anderson N., Garrett K., Thompson A.T., Yabsley M.J. Ticks and Tick-Borne Pathogens in Domestic Animals, Wild Pigs, and Off-Host Environmental Sampling in Guam, USA. Front. Vet. Sci. 2022;8:803424. doi: 10.3389/fvets.2021.803424. PubMed DOI PMC
Jones K.E., Patel N.G., Levy M.A., Storeygard A., Balk D., Gittleman J.L., Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451:990–993. doi: 10.1038/nature06536. PubMed DOI PMC
Beugnet F., Marié J.-L. Emerging arthropod-borne diseases of companion animals in Europe. Vet. Parasitol. 2009;163:298–305. doi: 10.1016/j.vetpar.2009.03.028. PubMed DOI
Peter S.G., Kariuki H.W., Aboge G.O., Gakuya D.W., Maingi N., Mulei C.M. Prevalence of Ticks Infesting Dairy Cattle and the Pathogens They Harbour in Smallholder Farms in Peri-Urban Areas of Nairobi, Kenya. Vet. Med. Int. 2021;2021:9501648. doi: 10.1155/2021/9501648. PubMed DOI PMC
Graf J.-F., Gogolewski R., Leach-Bing N., Sabatini G.A., Molento M.B., Bordin E.L., Arantes G.J. Tick control: An industry point of view. Parasitology. 2004;129:S427–S442. doi: 10.1017/S0031182004006079. PubMed DOI
de la Fuente J. Vaccines for vector control: Exciting possibilities for the future. Vet. J. 2012;194:139–140. doi: 10.1016/j.tvjl.2012.07.029. PubMed DOI
Sparagano O., Földvári G., Derdáková M., Kazimírová M. New challenges posed by ticks and tick-borne diseases. Biologia. 2022;77:1497–1501. doi: 10.1007/s11756-022-01097-5. DOI
Doolan D.L., Apte S.H., Proietti C. Genome-based vaccine design: The promise for malaria and other infectious diseases. Int. J. Parasitol. 2014;44:901–913. doi: 10.1016/j.ijpara.2014.07.010. PubMed DOI
Bragazzi N.L., Gianfredi V., Villarini M., Rosselli R., Nasr A., Hussein A., Martini M., Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is (“Isolate-Inactivate-Inject”) Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front. Public Health. 2018;6:62. doi: 10.3389/fpubh.2018.00062. PubMed DOI PMC
Zepp F. Principles of vaccine design—Lessons from nature. Vaccine. 2010;28((Suppl. 3)):C14–C24. doi: 10.1016/j.vaccine.2010.07.020. PubMed DOI
Bouazzaoui A., Abdellatif A., Al-Allaf F., Bogari N., Al-Dehlawi S., Qari S. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics. 2021;13:140. doi: 10.3390/pharmaceutics13020140. PubMed DOI PMC
D’Argenio D.A., Wilson C.B. A Decade of Vaccines: Integrating Immunology and Vaccinology for Rational Vaccine Design. Immunity. 2010;33:437–440. doi: 10.1016/j.immuni.2010.10.011. PubMed DOI
Merino O., Antunes S., Mosqueda J., Moreno-Cid J.A., de la Lastra J.M.P., Rosario-Cruz R., Rodríguez S., Domingos A., de la Fuente J. Vaccination with proteins involved in tick–pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896. doi: 10.1016/j.vaccine.2013.09.037. PubMed DOI
White A.L., Gaff H. Review: Application of Tick Control Technologies for Blacklegged, Lone Star, and American Dog Ticks. J. Integr. Pest Manag. 2018;9:12. doi: 10.1093/jipm/pmy006. DOI
Willadsen P. Anti-tick vaccines. Parasitology. 2004;129:S367–S387. doi: 10.1017/S0031182003004657. PubMed DOI
de la Fuente J., Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31:5923–5929. doi: 10.1016/j.vaccine.2013.10.049. PubMed DOI
Hill C.A., Wikel S.K. The Ixodes scapularis Genome Project: An opportunity for advancing tick research. Trends Parasitol. 2005;21:151–153. doi: 10.1016/j.pt.2005.02.004. PubMed DOI
Medina J.M., Abbas M.N., Bensaoud C., Hackenberg M., Kotsyfakis M. Bioinformatic Analysis of Ixodes ricinus Long Non-Coding RNAs Predicts Their Binding Ability of Host miRNAs. Int. J. Mol. Sci. 2022;23:9761. doi: 10.3390/ijms23179761. PubMed DOI PMC
Valle M.R., Guerrero F.D. Anti-tick vaccines in the omics era. Front. Biosci. (Elite Ed.) 2018;10:122–136. doi: 10.2741/e812. PubMed DOI
Logullo C., Vaz I.D.S., Sorgine M.H.F., Paiva-Silva G.O., Faria F.S., Zingali R.B., DE Lima M.F.R., Abreu L., Oliveira E.F., Alves E.W., et al. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology. 1998;116:525–532. doi: 10.1017/S0031182098002698. PubMed DOI
Kurlovs A.H., Li J., Cheng D., Zhong J. Ixodes pacificus Ticks Maintain Embryogenesis and Egg Hatching after Antibiotic Treatment of Rickettsia Endosymbiont. PLoS ONE. 2014;9:e104815. doi: 10.1371/journal.pone.0104815. PubMed DOI PMC
Sappington T.W., Hays A.R., Raikhel A.S. Mosquito vitellogenin receptor: Purification, developmental and biochemical characterization. Insect Biochem. Mol. Biol. 1995;25:807–817. doi: 10.1016/0965-1748(95)00016-O. PubMed DOI
Vaz I.D.S., Logullod C., Sorgine M., Velloso F.F., de Lima M.F.R., Gonzales J.C., Masuda H., Oliveira P.L., Masudaa A. Immunization of bovines with an aspartic proteinase precursor isolated from Boophilus microplus eggs. Vet. Immunol. Immunopathol. 1998;66:331–341. doi: 10.1016/s0165-2427(98)00194-9. PubMed DOI
Leal A.T., Seixas A., Pohl P.C., Ferreira C.A., Logullo C., Oliveira P.L., Farias S.E., Termignoni C., Vaz I.D.S., Masuda A. Vaccination of bovines with recombinant Boophilus Yolk pro-Cathepsin. Vet. Immunol. Immunopathol. 2006;114:341–345. doi: 10.1016/j.vetimm.2006.08.011. PubMed DOI
Leal A.T., Pohl P.C., Ferreira C.A., Nascimento-Silva M.C., Sorgine M.H., Logullo C., Oliveira P.L., Farias S.E., Vaz I.D.S., Masuda A. Purification and antigenicity of two recombinant forms of Boophilus microplus yolk pro-cathepsin expressed in inclusion bodies. Protein Expr. Purif. 2006;45:107–114. doi: 10.1016/j.pep.2005.07.009. PubMed DOI
Yamashita O., Indrasith L.S. Metabolic Fates of Yolk Proteins during Embryogenesis in Arthropods. (Arthropods/embryogenesis/yolk proteins/limited proteolysis/protease) Dev. Growth Differ. 1988;30:337–346. doi: 10.1111/j.1440-169X.1988.00337.x. PubMed DOI
Tellam R., Kemp D., Riding G., Briscoe S., Smith D., Sharp P., Irving D., Willadsen P. Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet. Parasitol. 2002;103:141–156. doi: 10.1016/S0304-4017(01)00573-8. PubMed DOI
Boldbaatar D., Umemiya-Shirafuji R., Liao M., Tanaka T., Xuan X., Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. J. Insect Physiol. 2010;56:1587–1598. doi: 10.1016/j.jinsphys.2010.05.019. PubMed DOI
Seixas A., Dos Santos P.C., Velloso F.F., Vaz I.D.S., Masuda A., Horn F., Termignoni C. A Boophilus microplus vitellin-degrading cysteine endopeptidase. Parasitology. 2003;126:155–163. doi: 10.1017/S0031182002002731. PubMed DOI
Seixas A., Leal A.T., Nascimento-Silva M.C.L., Masuda A., Termignoni C., Vaz I.D.S. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE) Vet. Immunol. Immunopathol. 2008;124:332–340. doi: 10.1016/j.vetimm.2008.04.001. PubMed DOI
Jarmey J., Riding G., Pearson R., McKenna R., Willadsen P. Carboxydipeptidase from Boophilus microplus: A “concealed” antigen with similarity to angiotensin-converting enzyme. Insect Biochem. Mol. Biol. 1995;25:969–974. doi: 10.1016/0965-1748(95)00038-W. PubMed DOI
Willadsen P., Smith D., Cobon G., McKenna R.V. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91. Parasite Immunol. 1996;18:241–246. doi: 10.1046/j.1365-3024.1996.d01-90.x. PubMed DOI
García-García J.C., Montero C., Redondo M., Vargas M., Canales M., Boue O., Rodríguez M., Joglar M., Machado H., González I.L., et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine. 2000;18:2275–2287. doi: 10.1016/S0264-410X(99)00548-4. PubMed DOI
Lambertz C., Chongkasikit N., Jittapalapong S., Gauly M. Immune Response of Bos indicus Cattle against the Anti-Tick Antigen Bm91 Derived from Local Rhipicephalus (Boophilus) microplus Ticks and Its Effect on Tick Reproduction under Natural Infestation. J. Parasitol. Res. 2012;2012:907607. doi: 10.1155/2012/907607. PubMed DOI PMC
Zivkovic Z., Esteves E., Almazán C., Daffre S., Nijhof A.M., Kocan K.M., Jongejan F., De La Fuente J. Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale. BMC Genom. 2010;11:186. doi: 10.1186/1471-2164-11-186. PubMed DOI PMC
Alarcon-Chaidez F.J., Sun J., Wikel S.K. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae) Insect Biochem. Mol. Biol. 2007;37:48–71. doi: 10.1016/j.ibmb.2006.10.002. PubMed DOI
Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X.F., Fish D., Anguita J., Norgard M.V., Kantor F.S., Anderson J.F., et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–577. doi: 10.1038/nature03812. PubMed DOI PMC
Hovius J.W.R., Levi M., Fikrig E. Salivating for Knowledge: Potential Pharmacological Agents in Tick Saliva. PLoS Med. 2008;5:e43. doi: 10.1371/journal.pmed.0050043. PubMed DOI PMC
Schuijt T.J., Hovius J.W.R., van Burgel N.D., Ramamoorthi N., Fikrig E., van Dam A.P. The Tick Salivary Protein Salp15 Inhibits the Killing of Serum-Sensitive Borrelia burgdorferi Sensu Lato Isolates. Infect. Immun. 2008;76:2888–2894. doi: 10.1128/IAI.00232-08. PubMed DOI PMC
Wen S., Wang F., Ji Z., Pan Y., Jian M., Bi Y., Zhou G., Luo L., Chen T., Li L., et al. Salp15, a Multifunctional Protein from Tick Saliva With Potential Pharmaceutical Effects. Front. Immunol. 2020;10:3067. doi: 10.3389/fimmu.2019.03067. PubMed DOI PMC
Dai J., Wang P., Adusumilli S., Booth C.J., Narasimhan S., Anguita J., Fikrig E. Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC
Kolb P., Verreiter J., Habicht J., Bentrop D., Wallich R., Nassal M. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli. FEBS Open Bio. 2015;5:42–55. doi: 10.1016/j.fob.2014.12.002. PubMed DOI PMC
Kolb P., Wallich R., Nassal M. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS ONE. 2015;10:e0136180. doi: 10.1371/journal.pone.0136180. PubMed DOI PMC
Kessenbrock K., Plaks V., Werb Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. PubMed DOI PMC
Francischetti I.M., Mather T.N., Ribeiro J.M. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem. Biophys. Res. Commun. 2003;305:869–875. doi: 10.1016/S0006-291X(03)00857-X. PubMed DOI PMC
Harnnoi T., Sakaguchi T., Nishikawa Y., Xuan X., Fujisaki K. Molecular characterization and comparative study of 6 salivary gland metalloproteases from the hard tick, Haemaphysalis longicornis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007;147:93–101. doi: 10.1016/j.cbpb.2006.12.008. PubMed DOI
Decrem Y., Beaufays J., Blasioli V., Lahaye K., Brossard M., Vanhamme L., Godfroid E. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J. 2008;275:1485–1499. doi: 10.1111/j.1742-4658.2008.06308.x. PubMed DOI
Barnard A.-C., Nijhof A.M., Gaspar A.R., Neitz A.W., Jongejan F., Maritz-Olivier C. Expression profiling, gene silencing and transcriptional networking of metzincin metalloproteases in the cattle tick, Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2012;186:403–414. doi: 10.1016/j.vetpar.2011.11.026. PubMed DOI
Ali A., Fernando Parizi L., Garcia Guizzo M., Tirloni L., Seixas A., da Silva Vaz I., Jr., Termignoni C. Immunoprotective potential of a Rhipicephalus (Boophilus) microplus metalloprotease. Vet. Parasitol. 2015;207:107–114. doi: 10.1016/j.vetpar.2014.11.007. PubMed DOI
Maruyama S.R., Garcia G.R., Teixeira F.R., Brandão L.G., Anderson J.M., Ribeiro J.M.C., Valenzuela J.G., Horackova J., Veríssimo C.J., Katiki L.M., et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites Vectors. 2017;10:206. doi: 10.1186/s13071-017-2136-2. PubMed DOI PMC
Rodríguez-Mallon A., Fernández E., Encinosa P.E., Bello Y., Méndez-Pérez L., Ruiz L.C., Pérez D., González M., Garay H., Reyes O., et al. A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine. 2012;30:1782–1789. doi: 10.1016/j.vaccine.2012.01.011. PubMed DOI
Cordeiro-Da-Silva A., Borges M.C., Guilvard E., Ouaissi A. Dual Role of the Leishmania major Ribosomal Protein S3a Homologue in Regulation of T- and B-Cell Activation. Infect. Immun. 2001;69:6588–6596. doi: 10.1128/IAI.69.11.6588-6596.2001. PubMed DOI PMC
Radulović M., Kim T.K., Porter L.M., Sze S.-H., Lewis L., Mulenga A. A 24–48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genom. 2014;15:518. doi: 10.1186/1471-2164-15-518. PubMed DOI PMC
Tirloni L., Reck J., Terra R.M.S., Martins J.R., Mulenga A., Sherman N.E., Fox J.W., Yates J.R., Termignoni C., Pinto A.F.M., et al. Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females. PLoS ONE. 2014;9:e94831. doi: 10.1371/journal.pone.0094831. PubMed DOI PMC
El-Sayed S.A.E., Rizk M.A., Eldoumani H., Sorour S.S., Terkawi M.A., Aboulaila M., Igarashi I., Sayed-Ahmed M.Z. Identification and Characterization of P0 Protein as a Vaccine Candidate Against Babesia divergens, Blood Parasite of Veterinary and Zoonotic Importance. Front. Vet. Sci. 2021;8:795906. doi: 10.3389/fvets.2021.795906. PubMed DOI PMC
Rodríguez-Mallon A., Encinosa P.E., Méndez-Pérez L., Bello Y., Fernández R.R., Garay H., Cabrales A., Méndez L., Borroto C., Estrada M.P. High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick-Borne Dis. 2015;6:530–537. doi: 10.1016/j.ttbdis.2015.04.007. PubMed DOI
Willadsen P., Riding A.G. On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochem. J. 1980;189:295–303. doi: 10.1042/bj1890295. PubMed DOI PMC
Kausar S., Abbas M.N., Qian C., Zhu B., Sun Y., Sun Y., Wang L., Wei G., Maqsood I., Liu C.-L. Serpin-14 negatively regulates prophenoloxidase activation and expression of antimicrobial peptides in Chinese oak silkworm Antheraea pernyi. Dev. Comp. Immunol. 2017;76:45–55. doi: 10.1016/j.dci.2017.05.017. PubMed DOI
Kausar S., Abbas M.N., Qian C., Zhu B., Gao J., Sun Y., Wang L., Wei G., Liu C. Role of Antheraea pernyi serpin 12 in prophenoloxidase activation and immune responses. Arch. Insect Biochem. Physiol. 2018;97:e21435. doi: 10.1002/arch.21435. PubMed DOI
Abbas M.N., Chlastáková A., Jmel M.A., Iliaki-Giannakoudaki E., Chmelař J., Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front. Cell. Infect. Microbiol. 2022;12:892770. doi: 10.3389/fcimb.2022.892770. PubMed DOI PMC
Guerrero F.D., Andreotti R., Bendele K.G., Cunha R.C., Miller R.J., Yeater K., de León A.A. P Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasit Vectors. 2014;7:475. PubMed PMC
Andreotti R., Malavazi-Piza K.C., Sasaki S.D., Torquato R.J.S., Gomes A., Tanaka A.S. Serine Proteinase Inhibitors from Eggs and Larvae of Tick Boophilus microplus: Purification and Biochemical Characterization. Protein J. 2001;20:337–343. doi: 10.1023/A:1012242817869. PubMed DOI
Andreotti R. A synthetic bmti n-terminal fragment as antigen in bovine immunoprotection against the tick Boophilus microplus in a pen trial. Exp. Parasitol. 2007;116:66–70. doi: 10.1016/j.exppara.2006.11.009. PubMed DOI
Andreotti R., Gomes A., Malavazi-Piza K.C., Sasaki S.D., Sampaio C.A., Tanaka A.S. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int. Immunopharmacol. 2002;2:557–563. doi: 10.1016/S1567-5769(01)00203-X. PubMed DOI
Andreotti R., Cunha R.C., Soares M.A., Guerrero F.D., Leite F.P.L., de León A.A.P. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine. 2012;30:6678–6685. doi: 10.1016/j.vaccine.2012.08.066. PubMed DOI
Imamura S., da Silva Vaz I., Jr., Sugino M., Ohashi K., Onuma M. A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine. 2005;23:1301–1311. doi: 10.1016/j.vaccine.2004.08.041. PubMed DOI
Jittapalapong S., Kaewhom P., Pumhom P., Canales M., De La Fuente J., Stich R.W. Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound. Emerg. Dis. 2010;57:103–106. doi: 10.1111/j.1865-1682.2010.01108.x. PubMed DOI
Kim T.K., Radulovic Z., Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick-borne Dis. 2015;7:405–414. doi: 10.1016/j.ttbdis.2015.12.017. PubMed DOI PMC
Ruddell R.G., Hoang-Le D., Barwood J.M., Rutherford P.S., Piva T.J., Watters D.J., Santambrogio P., Arosio P., Ramm G.A. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology. 2009;49:887–900. doi: 10.1002/hep.22716. PubMed DOI PMC
Hajdusek O., Sojka D., Kopacek P., Buresova V., Franta Z., Sauman I., Winzerling J., Grubhoffer L. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. USA. 2009;106:1033–1038. doi: 10.1073/pnas.0807961106. PubMed DOI PMC
Galay R.L., Miyata T., Umemiya-Shirafuji R., Maeda H., Kusakisako K., Tsuji N., Mochizuki M., Fujisaki K., Tanaka T. Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis. Parasites Vectors. 2014;7:482. doi: 10.1186/s13071-014-0482-x. PubMed DOI PMC
Kopácek P., Hajdusek O., Buresova V., Daffre S. Tick innate immunity. Adv. Exp. Med. Biol. 2010;708:137–162. PubMed
Manjunathachar H.V., Kumar B., Saravanan B.C., Choudhary S., Mohanty A.K., Nagar G., Chigure G., Kumar G.V.P.P.S.R., Fuente J., Ghosh S. Identification and characterization of vaccine candidates against Hyalomma anatolicum —Vector of Crimean-Congo haemorrhagic fever virus. Transbound. Emerg. Dis. 2019;66:422–434. doi: 10.1111/tbed.13038. PubMed DOI
Knorr S., Anguita J., Cortazar J.T., Hajdusek O., Kopáček P., Trentelman J.J., Kershaw O., Hovius J.W., Nijhof A.M. Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle. Front. Physiol. 2018;9:1696. doi: 10.3389/fphys.2018.01696. PubMed DOI PMC
Githaka N.W., Konnai S., Isezaki M., Goto S., Xavier M.A., Fujisawa S., Yamada S., Okagawa T., Maekawa N., Logullo C., et al. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick-Borne Dis. 2020;11:101547. doi: 10.1016/j.ttbdis.2020.101547. PubMed DOI
Xavier M., Konnai S., Parizi L.F., Githaka N.W., Isezaki M., Goto S., Fujisawa S., Yamada S., Okagawa T., Maekawa N., et al. Cross-species reactivity of antibodies against Ixodes persulcatus ferritin 2 to Rhipicephalus microplus. Jpn. J. Vet. Res. 2021;69:57.
Oleaga A., González-Pérez S., Peréz-Sánchez R. First molecular and functional characterisation of ferritin 2 proteins from Ornithodoros argasid ticks. Vet. Parasitol. 2022;304:109684. doi: 10.1016/j.vetpar.2022.109684. PubMed DOI
Pal U., Li X., Wang T., Montgomery R.R., Ramamoorthi N., Desilva A.M., Bao F., Yang X., Pypaert M., Pradhan D., et al. TROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi. Cell. 2004;119:457–468. doi: 10.1016/j.cell.2004.10.027. PubMed DOI
Antunes S., Galindo R.C., Almazán C., Rudenko N., Golovchenko M., Grubhoffer L., Shkap V., Rosário V.D., de la Fuente J., Domingos A. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 2012;42:187–195. doi: 10.1016/j.ijpara.2011.12.003. PubMed DOI
Pal U., Fikrig E. Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect. 2003;5:659–666. doi: 10.1016/S1286-4579(03)00097-2. PubMed DOI
Promnares K., Kumar M., Shroder D.Y., Zhang X., Anderson J.F., Pal U. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol. Microbiol. 2009;74:112–125. doi: 10.1111/j.1365-2958.2009.06853.x. PubMed DOI PMC
Tilly K., Rosa P.A., Stewart P.E. Biology of Infection with Borrelia burgdorferi. Infect. Dis. Clin. N. Am. 2008;22:217–234. doi: 10.1016/j.idc.2007.12.013. PubMed DOI PMC
Lahdenne P., Porcella S.F., Hagman E.K., Akins D.R., Popova T.G., Cox D.L., Katona I.L., Radolf J.D., Norgard M.V. Molecular characterization of a 6.6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect. Immun. 1997;65:412–421. doi: 10.1128/iai.65.2.412-421.1997. PubMed DOI PMC
Hovius J.W., van Dam A.P., Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–438. doi: 10.1016/j.pt.2007.07.001. PubMed DOI
Di Giorgio J.P., Soto G., Alleva K., Jozefkowicz C., Amodeo G., Muschietti J.P., Ayub N.D. Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses. J. Membr. Biol. 2013;247:107–125. doi: 10.1007/s00232-013-9618-8. PubMed DOI
Finn R.N., Cerdà J. Evolution and Functional Diversity of Aquaporins. Biol. Bull. 2015;229:6–23. doi: 10.1086/BBLv229n1p6. PubMed DOI
Campbell E.M., Ball A., Hoppler S., Bowman A.S. Invertebrate aquaporins: A review. J. Comp. Physiol. B. 2008;178:935–955. doi: 10.1007/s00360-008-0288-2. PubMed DOI
Stavang J.A., Chauvigné F., Kongshaug H., Cerdà J., Nilsen F., Finn R.N. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genom. 2015;16:618. doi: 10.1186/s12864-015-1814-8. PubMed DOI PMC
Verkman A.S. Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev. Physiol. Biochem. Pharmacol. 2005;155:31–55. PubMed
Holmes S.P., Li D., Ceraul S.M., Azad A.F. An aquaporin-like protein from the ovaries and gut of American dog tick (Acari: Ixodidae) J. Med. Entomol. 2008;45:68–74. doi: 10.1093/jmedent/45.1.68. PubMed DOI
Scoles G.A., Hussein H.E., Olds C.L., Mason K.L., Davis S.K. Vaccination of cattle with synthetic peptides corresponding to predicted extracellular domains of Rhipicephalus (Boophilus) microplus aquaporin 2 reduced the number of ticks feeding to repletion. Parasites Vectors. 2022;15:49. doi: 10.1186/s13071-022-05166-1. PubMed DOI PMC
Contreras M., de la Fuente J. Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. Vaccine. 2017;35:1323–1328. doi: 10.1016/j.vaccine.2017.01.052. PubMed DOI
Pérez-Sánchez R., Manzano-Román R., Obolo-Mvoulouga P., Oleaga A. Function-guided selection of midgut antigens from Ornithodoros erraticus ticks and an evaluation of their protective efficacy in rabbits. Vet. Parasitol. 2019;272:1–12. doi: 10.1016/j.vetpar.2019.06.016. PubMed DOI
Pérez-Sánchez R., Cano-Argüelles A.L., González-Sánchez M., Oleaga A. First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens. 2022;11:694. doi: 10.3390/pathogens11060694. PubMed DOI PMC
Ndekezi C., Nkamwesiga J., Ochwo S., Kimuda M.P., Mwiine F., Tweyongyere R., Amanyire W., Muhanguzi D. Identification of Ixodid Tick-Specific Aquaporin-1 Potential Anti-tick Vaccine Epitopes: An in-silico Analysis. Front. Bioeng. Biotechnol. 2019;7:236. doi: 10.3389/fbioe.2019.00236. PubMed DOI PMC
Schuijt T.J., Narasimhan S., Daffre S., DePonte K., Hovius J.W.R., Veer C.V., Van Der Poll T., Bakhtiari K., Meijers J.C.M., Boder E.T., et al. Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display. PLoS ONE. 2011;6:e15926. doi: 10.1371/journal.pone.0015926. PubMed DOI PMC
Almazán C., Kocan K.M., Bergman D.K., Garcia-Garcia J.C., Blouin E.F., de la Fuente J. Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine. 2003;21:1492–1501. doi: 10.1016/S0264-410X(02)00683-7. PubMed DOI
Almazán C., Lagunes R., Villar M., Canales M., Rosario-Cruz R., Jongejan F., de la Fuente J. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol. Res. 2010;106:471–479. doi: 10.1007/s00436-009-1689-1. PubMed DOI PMC
Merino O., Almazán C., Canales M., Villar M., Moreno-Cid J.A., Peña A.E., Kocan K.M., De La Fuente J. Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine. 2011;29:2248–2254. doi: 10.1016/j.vaccine.2011.01.050. PubMed DOI
Shakya M., Kumar B., Nagar G., de la Fuente J., Ghosh S. Subolesin: A candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine. 2014;32:3488–3494. doi: 10.1016/j.vaccine.2014.04.053. PubMed DOI
Almazán C., Moreno-Cantú O., Moreno-Cid J.A., Galindo R.C., Canales M., Villar M., de la Fuente J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine. 2012;30:265–272. doi: 10.1016/j.vaccine.2011.10.102. PubMed DOI
McKenna R.V., Riding G.A., Jarmey J.M., Pearson R.D., Willadsen P. Vaccination of cattle against the Boophilus microplus using a mucin-like membrane glycoprotein. Parasite Immunol. 1998;20:325–336. doi: 10.1046/j.1365-3024.1998.00149.x. PubMed DOI
Hope M., Jiang X., Gough J., Cadogan L., Josh P., Jonsson N., Willadsen P. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5′-nucleotidase. Parasite Immunol. 2010;32:135–142. doi: 10.1111/j.1365-3024.2009.01168.x. PubMed DOI PMC
de Lima M.R., Ferreira C., Freitas D., Valenzuela J., Masuda A. Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) glutathione S-transferase. Insect Biochem. Mol. Biol. 2002;32:747–754. doi: 10.1016/S0965-1748(01)00157-6. PubMed DOI
Jnr I.D.S.V., Imamura S., Ohashi K., Onuma M. Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S-transferase. Insect Mol. Biol. 2004;13:329–335. doi: 10.1111/j.0962-1075.2004.00493.x. PubMed DOI
Parizi L.F., Utiumi K.U., Imamura S., Onuma M., Ohashi K., Masuda A., Vaz I.D.S. Cross immunity with Haemaphysalis longicornis glutathione S-transferase reduces an experimental Rhipicephalus (Boophilus) microplus infestation. Exp. Parasitol. 2011;127:113–118. doi: 10.1016/j.exppara.2010.07.001. PubMed DOI
Liyou N., Hamilton S., Elvin C., Willadsen P., Field L.M., James A.A. Cloning and expression of ecto 5’-nucleotidase from the cattle tick Boophilus microplus. Insect Mol. Biol. 1999;8:257–266. doi: 10.1046/j.1365-2583.1999.820257.x. PubMed DOI
Liyou N., Hamilton S., McKenna R., Elvin C., Willadsen P. Localisation and functional studies on the 5′-nucleotidase of the cattle tick Boophilus microplus. Exp. Appl. Acarol. 2000;24:235–246. doi: 10.1023/A:1006452325210. PubMed DOI
Pérez-Sánchez R., Carnero-Morán Á., Soriano B., Llorens C., Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasites Vectors. 2021;14:170. doi: 10.1186/s13071-021-04671-z. PubMed DOI PMC
Díaz-Martín V., Manzano-Román R., Oleaga A., Pérez-Sánchez R. New salivary anti-haemostatics containing protective epitopes from Ornithodoros moubata ticks: Assessment of their individual and combined vaccine efficacy. Vet. Parasitol. 2015;212:336–349. doi: 10.1016/j.vetpar.2015.08.005. PubMed DOI
Moorhouse D.E., Tatchell R.J. The feeding processes of the cattle-tick Boophilus microplus (Canestrini): A study in host-parasite relations. I. Attachment to the host. Parasitology. 1966;56:623–631. doi: 10.1017/S003118200007164X. PubMed DOI
Suppan J., Engel B., Marchetti-Deschmann M., Nürnberger S. Tick attachment cement—Reviewing the mysteries of a biological skin plug system. Biol. Rev. Camb. Philos. Soc. 2018;93:1056–1076. doi: 10.1111/brv.12384. PubMed DOI PMC
Alekseev A.N., Arumova E.A., Vasilieva I.S. Borrelia burgdorferi sensu lato in the female cement plug of Ixodes persulcatus ticks (Acari, Ixodidae) Exp. Appl. Acarol. 1995;19:519–522. doi: 10.1007/BF00052920. PubMed DOI
Alekseev A.N., Burenkova L.A., Vasilieva I.S., Dubinina H.V., Chunikhin S.P. Preliminary studies on virus and spirochete accumulation in the cement plug of ixodid ticks. Exp. Appl. Acarol. 1996;20:713–723. doi: 10.1007/BF00051556. PubMed DOI
Trimnell A.R., Davies G.M., Lissina O., Hails R.S., Nuttall P.A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005;23:4329–4341. doi: 10.1016/j.vaccine.2005.03.041. PubMed DOI
Labuda M., Trimnell A.R., Ličková M., Kazimírová M., Davies G.M., Lissina O., Hails R., Nuttall A.P. An Antivector Vaccine Protects against a Lethal Vector-Borne Pathogen. PLoS Pathog. 2006;2:e27. doi: 10.1371/journal.ppat.0020027. PubMed DOI PMC
Willadsen P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 2006;138:161–168. doi: 10.1016/j.vetpar.2006.01.050. PubMed DOI
Hajdusek O., Almazán C., Loosova G., Villar M., Canales M., Grubhoffer L., Kopacek P., de la Fuente J. Characterization of ferritin 2 for the control of tick infestations. Vaccine. 2010;28:2993–2998. doi: 10.1016/j.vaccine.2010.02.008. PubMed DOI
Kumar A., Garg R., Yadav C., Vatsya S., Kumar R., Sugumar P., Chandran D., Mangamoorib L.N., Bedarkar S. Immune responses against recombinant tick antigen, Bm95, for the control of Rhipicephalus (Boophilus) microplus ticks in cattle. Vet. Parasitol. 2009;165:119–124. doi: 10.1016/j.vetpar.2009.06.030. PubMed DOI
Patarroyo J., Portela R., De Castro R., Pimentel J.C., Guzman F., Patarroyo M., Vargas M., Prates A., Mendes M.D. Immunization of cattle with synthetic peptides derived from the Boophilus microplus gut protein (Bm86) Vet. Immunol. Immunopathol. 2002;88:163–172. doi: 10.1016/S0165-2427(02)00154-X. PubMed DOI
Patarroyo S.J., Neves E.d.S., Fidelis C.F., Tafur-Gomez G.A., de Araujo L., Vargas M.I., Sossai S., Prates-Patarroyo P.A. Bovine immunisation with a recombinant peptide derived from synthetic SBm7462® (Bm86 epitope construct) immunogen for Rhipicephalus microplus control. Ticks Tick Borne Dis. 2020;11:101461. doi: 10.1016/j.ttbdis.2020.101461. PubMed DOI
Canales M., Almazán C., Naranjo V., Jongejan F., de la Fuente J. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol. 2009;9:29. doi: 10.1186/1472-6750-9-29. PubMed DOI PMC
Kumar B., Azhahianambi P., Ray D.D., Chaudhuri P., De La Fuente J., Kumar R., Ghosh S. Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. Parasite Immunol. 2012;34:297–301. doi: 10.1111/j.1365-3024.2012.01356.x. PubMed DOI
Aguirre A.d.A.R., Lobo F.P., Cunha R.C., Garcia M.V., Andreotti R. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Vet. Parasitol. 2016;221:30–38. doi: 10.1016/j.vetpar.2016.02.032. PubMed DOI
Trentelman J.J.A., Teunissen H., Kleuskens J.A.G.M., van de Crommert J., de la Fuente J., Hovius J.W.R., Schetters T.P.M. A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasites Vectors. 2019;12:362. doi: 10.1186/s13071-019-3616-3. PubMed DOI PMC
Contreras M., Kasaija P.D., Merino O., de la Cruz-Hernandez N.I., Gortazar C., de la Fuente J. Oral Vaccination with a Formulation Combining Rhipicephalus microplus Subolesin with Heat Inactivated Mycobacterium bovis Reduces Tick Infestations in Cattle. Front. Cell. Infect. Microbiol. 2019;9:45. doi: 10.3389/fcimb.2019.00045. PubMed DOI PMC
Csordas B.G., Cunha R.C., Garcia M.V., da Silva S.S., Leite F.L., Andreotti R. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus. PLoS ONE. 2018;13:e0191596. doi: 10.1371/journal.pone.0191596. PubMed DOI PMC
Contreras M., José C.S., Estrada-Peña A., Talavera V., Rayas E., León C.I., Núñez J.L., de Mera I.G.F., de la Fuente J. Control of tick infestations in wild roe deer (Capreolus capreolus) vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine. 2020;38:6450–6454. doi: 10.1016/j.vaccine.2020.07.062. PubMed DOI
Fan X., Xu X., Wu Y., Liu X., Yang F., Hu Y. Evaluation of anti-tick efficiency in rabbits induced by DNA vaccines encoding Haemaphysalis longicornis lipocalin homologue. Med. Vet. Èntomol. 2022;36:511–515. doi: 10.1111/mve.12594. PubMed DOI
Wikel S.K. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet. Sci. 2018;5:60. doi: 10.3390/vetsci5020060. PubMed DOI PMC
de Castro J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997;71:77–97. doi: 10.1016/S0304-4017(97)00033-2. PubMed DOI
Ghosh S., Azhahianambi P., Yadav M.P. Upcoming and future strategies of tick control: A review. J. Vector Borne Dis. 2007;44:79–89. PubMed
Rodríguez-Vivas R., Rivas A., Chowell G., Fragoso S., Rosario C., García Z., Smith S., Williams J., Schwager S. Spatial distribution of acaricide profiles (Boophilus microplus strains susceptible or resistant to acaricides) in southeastern Mexico. Veter- Parasitol. 2007;146:158–169. doi: 10.1016/j.vetpar.2007.01.016. PubMed DOI
Perez-Cogollo L., Rodriguez-Vivas R., Ramirez-Cruz G., Miller R. First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Vet. Parasitol. 2010;168:165–169. doi: 10.1016/j.vetpar.2009.10.021. PubMed DOI
Seixas A., Oliveira P., Termignoni C., Logullo C., Masuda A., Vaz I.D.S. Rhipicephalus (Boophilus) microplus embryo proteins as target for tick vaccine. Vet. Immunol. Immunopathol. 2012;148:149–156. doi: 10.1016/j.vetimm.2011.05.011. PubMed DOI
Estrada-Peña A., Salman M. Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture. 2013;3:221–235. doi: 10.3390/agriculture3020221. DOI
Wolff J.A., Ludtke J.J., Acsadi G., Williams P., Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1992;1:363–369. doi: 10.1093/hmg/1.6.363. PubMed DOI
Wang Z., Troilo P.J., Wang X., Griffiths T.G., Pacchione S.J., Barnum A.B., Harper L.B., Pauley C.J., Niu Z., Denisova L., et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11:711–721. doi: 10.1038/sj.gt.3302213. PubMed DOI
Manam S., Ledwith B.J., Barnum A.B., Troilo P.J., Pauley C.J., Harper L.B., Ii T.G.G., Niu Z., Denisova L., Follmer T.T., et al. Plasmid DNA Vaccines: Tissue Distribution and Effects of DNA Sequence, Adjuvants and Delivery Method on Integration into Host DNA. Intervirology. 2000;43:273–281. doi: 10.1159/000053994. PubMed DOI
Jiao S., Williams P., Berg R.K., Hodgeman B.A., Liu L., Repetto G., Wolff J.A. Direct Gene Transfer into Nonhuman Primate Myofibers In Vivo. Hum. Gene Ther. 1992;3:21–33. doi: 10.1089/hum.1992.3.1-21. PubMed DOI
Mairhofer J., Lara A.R. Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines. Methods Mol. Biol. 2014;1139:505–541. doi: 10.1007/978-1-4939-0345-0_38. PubMed DOI
Myhr A.I. DNA Vaccines: Regulatory Considerations and Safety Aspects. Curr. Issues Mol. Biol. 2017;22:79–88. doi: 10.21775/cimb.022.079. PubMed DOI
De Rose R., McKenna R.V., Cobon G., Tennent J., Zakrzewski H., Gale K., Wood P.R., Scheerlinck J.-P.Y., Willadsen P. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep. Vet. Immunol. Immunopathol. 1999;71:151–160. doi: 10.1016/S0165-2427(99)00038-0. PubMed DOI
Kutzler M.A., Weiner D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008;9:776–788. doi: 10.1038/nrg2432. PubMed DOI PMC
Ghaffarifar F. Plasmid DNA vaccines: Where are we now? Drugs Today (Barc) 2018;54:315–333. doi: 10.1358/dot.2018.54.5.2807864. PubMed DOI
Tregoning J.S., Kinnear E. Using Plasmids as DNA Vaccines for Infectious Diseases. Microbiol. Spectr. 2014;2 doi: 10.1128/microbiolspec.PLAS-0028-2014. PubMed DOI
Li L., Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines. 2015;15:313–329. doi: 10.1586/14760584.2016.1124762. PubMed DOI PMC
Sayed M.A., Kammah K.M.E., El-Fiky Z.A. A preliminary study on the DNA-vaccine for chicken protection against tick Argas persicus (Oken, 1818) Arab. J. Biotech. 2004;7:273–282.
Ruiz L.M., Orduz S., López E.D., Guzmán F., Patarroyo M.E., Armengol G. Immune response in mice and cattle after immunization with a Boophilus microplus DNA vaccine containing bm86 gene. Vet. Parasitol. 2007;144:138–145. doi: 10.1016/j.vetpar.2006.09.033. PubMed DOI
Zhang T.-T., Zhang J.-C., Cui X.-J., Zheng J.-J., Li R., Wang F., Liu J.-Z., Hu Y.-H. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasites Vectors. 2017;10:325. doi: 10.1186/s13071-017-2262-x. PubMed DOI PMC
Tshilwane S., Thema N., Steyn H., van Kleef M., Pretorius A. A multi-epitope DNA vaccine co-administered with monophosphoryl lipid A adjuvant provides protection against tick transmitted Ehrlichia ruminantium in sheep. Vaccine. 2019;37:4354–4363. doi: 10.1016/j.vaccine.2019.06.027. PubMed DOI
Matias J., Kurokawa C., Sajid A., Narasimhan S., Arora G., Diktas H., Lynn G.E., DePonte K., Pardi N., Valenzuela J.G., et al. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine. 2021;39:7661–7668. doi: 10.1016/j.vaccine.2021.11.003. PubMed DOI PMC
Sajid A., Matias J., Arora G., Kurokawa C., DePonte K., Tang X., Lynn G., Wu M.-J., Pal U., Strank N.O., et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 2021;13:eabj9827. doi: 10.1126/scitranslmed.abj9827. PubMed DOI
Allen J.R., Humphreys S.J. Immunisation of guinea pigs and cattle against ticks. Nature. 1979;280:491–493. doi: 10.1038/280491a0. PubMed DOI
Kemp D., Agbede R., Johnston L., Gough J. Immunization of cattle against Boophilus microplus using extracts derived from adult female ticks: Feeding and survival of the parasite on vaccinated cattle. Int. J. Parasitol. 1986;16:115–120. doi: 10.1016/0020-7519(86)90096-2. PubMed DOI
Willadsen P., Kemp D.H. Vaccination with ‘concealed’ antigens for tick control. Parasitol. Today. 1988;4:196–198. doi: 10.1016/0169-4758(88)90084-1. PubMed DOI
Willadsen P., Riding G.A., McKenna R.V., Kemp D.H., Tellam R.L., Nielsen J.N., Lahnstein J., Cobon G.S., Gough J.M. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol. 1989;143:1346–1351. doi: 10.4049/jimmunol.143.4.1346. PubMed DOI
Gough J.M., Kemp D.H. Localization of a Low Abundance Membrane Protein (Bm86) on the Gut Cells of the Cattle Tick Boophilus microplus by Immunogold Labeling. J. Parasitol. 1993;79:900. doi: 10.2307/3283728. PubMed DOI
Jonsson N., Matschoss A., Pepper P., Green P., Albrecht M., Hungerford J., Ansell J. Evaluation of TickGARDPLUS, a novel vaccine against Boophilus microplus, in lactating Holstein–Friesian cows. Vet. Parasitol. 2000;88:275–285. doi: 10.1016/S0304-4017(99)00213-7. PubMed DOI
de la Fuente J., Almazan C., Canales M., de la Lastra J.M.P., Kocan M.K., Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007;8:23–28. doi: 10.1017/S1466252307001193. PubMed DOI
Rodríguez M., Penichet M., Mouris A., Labarta V., Luaces L.L., Rubiera R., Cordovés C., Sánchez P., Ramos E., Soto A., et al. Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Vet. Parasitol. 1995;57:339–349. doi: 10.1016/0304-4017(94)00678-6. PubMed DOI
Parizi L.F., Pohl P.C., Masuda A., Junior I.D.S.V. New approaches toward anti-Rhipicephalus (Boophilus) microplus tick vaccine. Rev. Bras. Parasitol. Vet. 2009;18:1–7. doi: 10.4322/rbpv.01801001. PubMed DOI
De La Fuente J., Rodríguez M., García-Garí J.C. Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann. N. Y. Acad. Sci. 2000;916:617–621. doi: 10.1111/j.1749-6632.2000.tb05347.x. PubMed DOI
Canales M., Moreno-Cid J.A., Almazan C., Villar M., de la Fuente J. Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. Biochem. Eng. J. 2010;52:79–90. doi: 10.1016/j.bej.2010.07.008. DOI
de Vos S., Zeinstra L., Taoufik A., Willadsen P., Jongejan F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 2001;25:245–261. doi: 10.1023/A:1010609007009. PubMed DOI
Perez-Perez D., Bechara G., Machado R., Andrade G., del Vecchio R., Pedroso M., Hernández M., Farnós O. Efficacy of the Bm86 antigen against immature instars and adults of the dog tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) Vet. Parasitol. 2010;167:321–326. doi: 10.1016/j.vetpar.2009.09.034. PubMed DOI
Ferreira Leal B., Sanchez Ferreira C.A. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet. Parasitol. 2021;300:109610. doi: 10.1016/j.vetpar.2021.109610. PubMed DOI
Odongo D., Kamau L., Skilton R., Mwaura S., Nitsch C., Musoke A., Taracha E., Daubenberger C., Bishop R. Vaccination of cattle with TickGARD induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus. Vaccine. 2007;25:1287–1296. doi: 10.1016/j.vaccine.2006.09.085. PubMed DOI
Toaleb N.I., Gabr H.S.M., El-Shafy S.A., Abdel-Rahman E.H. Evaluation of vaccine candidates purified from the adult ticks of Ornithodoros savignyi (Acari: Argasidae) and Hyalomma dromedarii (Acari: Ixodidae) against tick infestations. J. Parasit. Dis. 2019;43:246–255. doi: 10.1007/s12639-018-01082-3. PubMed DOI PMC
Popara M., Villar M., Mateos-Hernández L., de Mera I.G.F., Marina A., del Valle M., Almazán C., Domingos A., de la Fuente J. Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine. 2013;31:4728–4735. doi: 10.1016/j.vaccine.2013.08.031. PubMed DOI
Vargas M., Montero C., Sanchez D., Perez D., Valdes M., Alfonso A., Joglar M., Machado H., Rodriguez E., Mendez L., et al. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus) microplus induce similar reproductive suppression to three initial vaccinations under production conditions. BMC Vet. Res. 2010;6:43. doi: 10.1186/1746-6148-6-43. PubMed DOI PMC
Nijhof A.M., Balk J.A., Postigo M., Rhebergen A.M., Taoufik A., Jongejan F. Bm86 homologues and novel ATAQ proteins with multiple epidermal growth factor (EGF)-like domains from hard and soft ticks. Int. J. Parasitol. 2010;40:1587–1597. doi: 10.1016/j.ijpara.2010.06.003. PubMed DOI PMC
Coumou J., Wagemakers A., Trentelman J.J., Nijhof A., Hovius J.W. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition. PLoS ONE. 2014;10:e0123495. doi: 10.1371/journal.pone.0123495. PubMed DOI PMC
Valle M.R., Mendez L., Valdez M., Redondo M., Espinosa C.M., Vargas M., Cruz R.L., Barrios H.P., Seoane G., Ramirez E.S., et al. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Exp. Appl. Acarol. 2004;34:375–382. doi: 10.1007/s10493-004-1389-6. PubMed DOI
Suarez M., Rubi J., Pérez D., Cordova V., Salazar Y., Vielma A., Barrios F., Gil C.A., Segura N., Carrillo Y., et al. High impact and effectiveness of Gavac™ vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest. Sci. 2016;187:48–52. doi: 10.1016/j.livsci.2016.02.005. DOI
Xu D., Tang B., Wang Y., Zhang L., Qu Z., Shi W., Wang X., Sun Q., Sun S., Liu M. The immune protection induced by a serine protease from the Trichinella spiralis adult administered as DNA and protein vaccine. Acta Trop. 2020;211:105622. doi: 10.1016/j.actatropica.2020.105622. PubMed DOI
Hassan I.A., Wang Y., Zhou Y., Cao J., Zhang H., Zhou J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine. 2020;38:907–915. doi: 10.1016/j.vaccine.2019.10.076. PubMed DOI